Three Major Map Models

Grid-Based:
Collection of discretized obstacle/free-space pixels

Elfes, Moravec, Thrun, Burgard, Fox, Simmons, Koenig, Konolige, etc.

Feature-Based:
Collection of landmark locations and correlated uncertainty

Smith/Self/Cheeseman, Durrant–Whyte, Leonard, Nebot, Christensen, etc.

Topological:
Collection of nodes and their interconnections

Kuipers/Byun, Chong/Kleeman, Dudek, Choset, Howard, Mataric, etc.
Three Major Map Models

<table>
<thead>
<tr>
<th></th>
<th>Grid-Based</th>
<th>Feature-Based</th>
<th>Topological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution vs. Scale</td>
<td>Discrete localization</td>
<td>Arbitrary localization</td>
<td>Localize to nodes</td>
</tr>
<tr>
<td>Computational Complexity</td>
<td>Grid size and resolution</td>
<td>Landmark covariance (N^2)</td>
<td>Minimal complexity</td>
</tr>
<tr>
<td>Exploration Strategies</td>
<td>Frontier-based exploration</td>
<td>No inherent exploration</td>
<td>Graph exploration</td>
</tr>
</tbody>
</table>

Specialized estimation techniques & literatures
Gmapping

Occupancy Grid: “map” is a grid of “cells”: \{x_{i,j}^m\}

- \(x_{i,j}^m = 0\) if cell (i,j) is empty; \(x_{i,j}^m = 1\) if cell (i,j) is occupied

- \(p \left(x_{k+1}^r, \{x_{i,j}^m\}_{k+1} \mid x_{1:k}^r, \{x_{i,j}^m\}_k, y_{1:k+1}\right)\) (estimate cell occupancy probability)

Gmapping:
- Uses a *Rao-Blackwellized* particle filter for estimator
- Actually computes \(p \left(x_{1:T}^r, \{x_{i,j}^m\} \mid x_{1:k}^r, x_k^m, y_{1:k+1}\right)\)
Axioms of Set-Based Probability

Probability Space:
- Let Ω be a set of experimental outcomes (e.g., roll of dice)
 $$\Omega = \{A_1, A_2, \ldots, A_N\}$$
 - the A_i are “elementary events” and subsets of Ω are termed “events”
 - Empty set \emptyset is the “impossible event”
 - $S=\{\Omega\}$ is the “certain event”
- A probability space (Ω, F, P)
 - F = set of subsets of Ω, or “events”, P assigns probabilities to events

Probability of an Event—the Key Axioms:
- Assign to each A_i a number, $P(A_i)$, termed the “probability” of event A_i
- $P(A_i)$ must satisfy these axioms
 1. $P(A_i) \geq 0$
 2. $P(S) = 1$
 3. If events $A, B \in \Omega$ are “mutually exclusive,” or disjoint, elements or events $(A \cap B = \emptyset)$, then
 $$P(A \cup B) = P(A) + P(B)$$
Axioms of Set-Based Probability

As a result of these three axioms and basic set operations (e.g., DeMorgan’s laws, such as $A \cup B = \overline{A \cap B}$)

- $P(\emptyset) = 0$
- $P(A) = 1 - P(\overline{A}) \Rightarrow P(A) + P(\overline{A}) = 1$, where \overline{A} is complement of A
- If A_1, A_2, \ldots, A_N mutually disjoint
 \[P(A_1 \cup A_1 \cup \cdots \cup A_N) = P(A_1) + P(A_1) + \cdots + P(A_N) \]

For Ω an infinite, but countable, set we add the “Axiom of infinite additivity”

3(b). If A_1, A_2, \ldots are mutually exclusive,

\[P(A_1 \cup A_1 \cup \cdots) = P(A_1) + P(A_1) + \cdots \]

We assume that all countable sets of events satisfy Axioms 1, 2, 3, 3(b)

But we need to model uncountable sets…
Continuous Random Variables (CRVs)

Let $\Omega = \mathbb{R}$ (an uncountable set of events)

- **Problem:** it is not possible to assign probabilities to subsets of \mathbb{R} which satisfy the above Axioms

- **Solution:**
 - let “events” be intervals of \mathbb{R}: $A = \{x_{\ell} \leq x \leq x_u\}$, and their countable unions and intersections.
 - Assign probabilities to these events

$$P(x_{\ell} \leq x \leq x_u) = \text{Probability that } x \text{ takes values in } [x_{\ell}, x_u]$$

- x is a “continuous random variable (CRV).

Some basic properties of CRVs
- If x is a CRV in $[L, U]$, then $P(L \leq x \leq U) = 1$
- If y in $[L, U]$, then $P(L \leq y \leq x) = 1 - P(y \leq x \leq U)$
Probability Density Function (pdf)

E.g.

- **Uniform Probability pdf:**
 \[p(x) = \frac{1}{b-a} \]

- **Gaussian (Normal) pdf:**
 \[p(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2} \]

 \(\mu \) = “mean” of pdf

 \(\sigma \) = “standard deviation”

Most of our Estimation theory will be built on the Gaussian distribution
Expectation

Expectation: (key for estimation)

- Let x be a CRV with distribution $p(x)$. The expected value (or mean) of x is

\[E[x] = \int_{-\infty}^{\infty} xp(x)dx \quad E[g(x)] = \int_{-\infty}^{\infty} g(x)p(x)dx \]

Mean Square:

\[E[x^2] = \int_{-\infty}^{\infty} x^2p(x)dx \]

Variance:

\[\sigma^2 = E[(x - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2p(x)dx \quad \mu(x) = E[x] \]
A stochastic system whose state is characterized by a time evolving CRV, $x(t)$, $t \in [0,T]$.

- At each t, $x(t)$ is a CRV.
- $x(t)$ is the “state” of the random process, which can be characterized by

$$P[x_l \leq x(t) \leq x_u] = \int_{x_l}^{x_u} p(x,t)dx$$

Random Processes can also be characterized by:

- Joint probability function

$$P[x_{1l} \leq x(t_1) \leq x_{1u}; x_{2l} \leq x(t_2) \leq x_{2u}] = \int_{x_{1l}}^{x_{1u}} \int_{x_{2l}}^{x_{2u}} p(x_1,x_2,t_1,t_2) dx_1 dx_2$$

- A random process $x(t)$ is **Stationary** if $p(x,t+\tau)=p(x,t)$ for all τ

- Correlation Function

$$E[x(t_1)x(t_2)] = \int_{-\infty}^{\infty} x_1 x_2 p(x_1,x_2,t_1,t_2) dx_1 dx_2 \equiv \rho(t_1,t_2)$$
Joint and Conditional Probability

• \(P(X = x \text{ and } Y = y) = P(x, y) \)

• If \(X \) and \(Y \) are independent then
 \[P(x, y) = P(x) \cdot P(y) \]

• \(P(x \mid y) \) is the probability of \(x \) given \(y \)
 \[P(x \mid y) = \frac{P(x, y)}{P(y)} \]
 \[P(x, y) = P(x \mid y) \cdot P(y) \]

• If \(X \) and \(Y \) are independent then
 \[P(x \mid y) = P(x) \]

Conditional independence

\[P(x, y \mid z) = P(x \mid z) \cdot P(y \mid z) \]

Equivalent to

• \(P(x \mid z) = P(x \mid z, y) \)
• \(P(y \mid z) = P(y \mid z, x) \)
Law of Total Probability, Marginals

Discrete case

\[
\sum_x P(x) = 1
\]

\[
P(x) = \sum_y P(x, y)
\]

\[
P(x) = \sum_y P(x \mid y)P(y)
\]

\[
P(x \mid y) = \sum_z p(x \mid y, z)p(z \mid y)
\]

Continuous case

\[
\int p(x) \, dx = 1
\]

\[
p(x) = \int p(x, y) \, dy
\]

\[
p(x) = \int p(x \mid y)p(y) \, dy
\]

\[
p(x \mid y) = \int p(x \mid y, z)p(z \mid y) \, dz
\]
Bayes Formula

\[P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x) \]

\[\Rightarrow \]

\[P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}} \]

Normalization

\[P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)} = \eta P(y \mid x)P(x) \]

\[\eta = P(y)^{-1} = \frac{1}{\sum_{x} P(y \mid x)P(x)} \]

Bayes Rule with Background Knowledge

\[P(x \mid y, z) = \frac{P(y \mid x, z)P(x \mid z)}{P(y \mid z)} \]
Simple Example

- Suppose robot measures z
- What is $P(\text{open}|z)$?

- $P(\text{open}|z)$ is diagnostic.
- $P(z|\text{open})$ is causal.
- Often causal knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge:
 - Causal knowledge can come from a frequentist approach
 - Causal knowledge can come from a model.

$$P(\text{open}|z) = \frac{P(z|\text{open})P(\text{open})}{P(z)}$$