
ME/CS 132(b)

Notes on the Visual Odometry Lab

This lab explores the concept of visual odometry, and how it can be combined with wheel
odometry in an Extended Kalman Filter (EKF) framework. These notes review the basic
EKF equations for this sensory combination.

1 The EKF structure

The EKF used to “fuse” or blend the wheel odometry uses the standard two-step process
that alternates dynamic updates and measurement updates.

Dynamic Update. We assume that the discrete time motion of the robot can be modeled
as:

~pRk+1 = f(~pRk , ~uk) + ~ηk .

where ~pR is the position of the robot, and ~η is the disturbance in the vehicle’s motion.

Assuming that an estimate ~pRk|k and its covariance Pk|k are known at tk, the dynamic update
is:

~pRk+1|k = f(~pRk|k, ~uk)

Pk+1|k = FkPk|kF
T
k + Vk

Fk =
∂f

∂~pR

∣∣∣∣
p̂T
k|k,~uk

and Vk is the covariance of the process noise. For a wheeled mobile robot, the process noise
captures some of the following effects:

• the unmodeled and unmeasured slipping of the drive wheels during the robot’s move-
ment,

• small errors in the modeling process (e.g., the kinematic model assumes that the wheel
contacts the ground at a single point),

• disturbances when the vehicle rolls over non-planar floor features, such as cracks or or
door jambs.

Measurement Update. We assume that the robot operates its on-board laswer scanner at
time tk to capture a “scan” of its nearby environment. The robot moves to a new location
at tk+1, and takes another scan. The scan matching process provides a noisy estimate
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of the robot’s displacement between its location at time tk and its location at tk+1. Let
∆~pTk+1 =

(
∆xTk+1 ∆yTk+1 ∆θTk+1

)
denote this planar displacement. The measurement

equation that relates this displacement measurement to the system state takes the form:

∆~pRk+1 = ~pRk+1 − ~pRk = h(~pRk+1, ~p
R
k ) + ~ωk+1

where ~ωk+1 is the noise on the measurement yk+1.

Using this form of the measurement equation, the measurement update of the Extended
Kalman Filter is:

~νk+1 = ~yk+1 − h(p̂Rk+1|k, p̂
Rk|k) (1)

Sk+1 = Hk+1Pk+1|kH
T
k+1 +Qk (2)

Kk+1 = Pk+1|kH
T
k+1S

−1
k+1 (3)

p̂Rk+1|k+1 = p̂Rk+1|k +Kk+1~νk+1 (4)

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k (5)

where Qk is the covariance of the measurement noise, and Hk+1 is the linearization of the
meaasurement equation:

Hk+1 =
∂h(~pRk+1, ~p

R
k )

∂~pRk+1

∣∣∣∣
p̂k+1|k

= I. (6)

NOTE: There is a subtle error in the above analysis that we will not concern ourselves
about. The theory behind the derivation of the Kalman Filter (and by extension, the EKF)
is based on an assumption about independence of noise across measurements. That is,
the measurement noise ~ωk+1 is assumed to be independent of the measurement noise ~ωk.
However, in the case of scan matching (which is a form of visual odometry), the noise
at measurement noise at tk+1 is correlated with the measurement noise at tk, since the
measurements yk+1 and yk use the laser scan at tk in the displacement estimates at tk+1 and
tk. To properly account for those correlations, one can use the stochastic cloning version of
the Kalman Filter–see the course web site for a reference.

2 Iterated Closest Point (ICP) Algorithm

This section presents one of many possible approaches to derive a robot displacement es-
timate from a pair of laser scans. At time tk, the robot takes a scan, Vk, of its nearby
environment. This scan consists of Nk measurements of the distance (or range) r to the
nearest reflecting surface along Nk different measurement directions (or bearings), φ, in the
scanning plane. For a planar robot, we generally assume that the scanning plane is a plane
which is parallel to the plane upon which the robot moves, but at some fixed height above
the floor.
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Let {(rik, φik)} for i = 1, . . . , Nk denote theNk range and bearing measurements pairs obtained
in scan Vk. In the local body-fixed reference frame of the robot, these range and bearing data
can be converted into the Cartesian location of the points where the laser beam intersects
an obstacle in the scanning plane:

~pk,i =

[
rik cos(φik)
rik sin(φik)

]
for i = 1, . . . , Nk.

Similarly, the range and bearing scans at time tk can be converted into a set of points {~pk+1,i}
for i = 1, . . . , Nk+1, where Nk+1 is the number of data points sampled at tk+1. Generally,
Nk = Nk+1, but the success of the following approaches doesn’t require a uniform number
of points to be found in each scan.

Due to occlusions and other geometric features of the robot’s environment, not all of the
points which are observed in tk can be seen from the robot’s vantage point at tk+1. Similarly,
some of the points observed at tk+1 cannot be seen by the robot at tk. Let us assume that
there is a subset of M points which can be viewed from both vantage points. Let us next
assume that the points define M matching pairs of points. That is, for point ~pk,i (where
i ∈ 1, . . . ,M), there exist a point in Vk+1 that is assumed to arise from the same reflection
point in the environment. We will order the matching pairs in Vk+1 so that this matching
point is indexed as ~pk+1,i. In reality, due to the nature of the scanning process, the matching
points are

To derive an estimate of the robot’s displacement,

∆~pRk+1 = ~pRk+1 − ~pRk =

∆xk+1

∆yk+1

∆θk+1


we will create a matching error function whose minimum is the “best” estimate of the robot’s
displacement:

E(∆x,∆y,∆θ) =
M∑
i=1

||R(∆θ)~pk+1,k + ~T − ~pk,i||2 (7)

where T =
[
∆x ∆y

]
is the translation between the robot’s pose at tk and its subsequent

pose at tk+1, and R(∆θ) is the rotation matrix which represents the rotation from the robot’s
position at tk+1 to its position at tk:

R(∆θ) =

[
cos(∆θ) − sin(∆θ)
sin(∆θ) cos(∆θ)

]
(8)

I.e., function (7) is the sum of the squares of the errors in the distance between the matching
points in Vk and Vk+1. Note that in order to measure the Cartesian distance between the
matching points, they must be represented in a common coordinate system. In Equation
(7), the data points from Vk+1 are translated to the same coordinate system in which the
measurements Vk are obtained. We could have alternatively translated the points in Vk into
the robot’s body-fixed coordinate system at tk+1.
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A necessary condition to minimize this matching error with respect to the displacement
variables is 

∂E(∆x,∆y,∆θ)
∂∆x

∂E(∆x,∆y,∆θ)
∂∆y

∂E(∆x,∆y,∆θ)
∂∆θ

 =

(
∂E(∆x,∆y,∆θ)

∂T
∂E(∆x,∆y,∆θ)

∂∆θ

)
=

(
~0
0

)

Displacement Estimate. To estimate the displacement ~T =
(
∆x ∆y

)T
,

∂E(∆x,∆y,∆θ)

∂ ~T
=

[
∂

∂ ~T

(
M∑
i=1

R(∆Θ)~pk+1,i + ~T − ~pk,i

)]T [ M∑
i=1

R(∆Θ)~pk+1,i + ~T − ~pk,i

]

= I

[
M∑
i=1

R(∆Θ)~pk+1,i + ~T − ~pk,i

]
= MR(∆θ)

(
x
y

)
+M ~T −M

(
x

′

y
′

)
(9)

= 0

where: (
x
y

)
=

1

M

M∑
i=1

~pk+1,i

(
x

′

y
′

)
=

1

M

M∑
i=1

~pk,i .

From equation (9) we can see that

~T =

[
∆x
∆y

]
=

[
x

′

y
′

]
−R(∆θ)

[
x
y

]
. (10)

Rotation Estimate. To estimate the rotation ∆θ

∂E(∆x,∆y,∆θ)

∂∆θ
=

[
∂

∂∆θ

(
M∑
i=1

R(∆Θ)~pk+1,i + ~T − ~pk,i

)]T [ M∑
i=1

R(∆Θ)~pk+1,i + ~T − ~pk,i

]

=

[
M∑
i=1

~pk+1,i

]T (
∂R(∆θ)

∂∆θ

)T [ M∑
i=1

R(∆Θ)~pk+1,i + ~T − ~pk,i

]

= M

[
x
y

]T (
∂R(∆θ)

∂∆θ

)T [
MR(∆θ)

[
x
y

]
+M ~T −M

[
x

′

y
′

]]
= M2

[
x
y

]T (
∂R(∆θ)

∂∆θ

)T
R(∆θ)

[
x
y

]
+M2

[
x
y

](
∂R(∆θ)

∂∆θ

)T [
~T −

[
x

′

y
′

]]
= 0 (11)

A tedious calculation shows that:[
x
y

]T (
∂R(∆θ)

∂∆θ

)T
R(∆θ)

[
x
y

]
= 0.

Hence, Equation (11) reduces to:[
x
y

]T (
∂R(∆θ)

∂∆θ

)T [
~T −

[
x

′

y
′

]]
= 0 . (12)
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To simplify this equation, let:

∆x,x′ = ∆x− x′
∆y,y′ = ∆y − y′

.

With this notation, Equation (12) becomes:

[
x y

] [cos(∆θ) − sin(∆θ)
sin(∆θ) cos(∆θ)

] [
∆x,x′

∆y,y′

]
= 0. (13)

The terms in this equation can be expanded and rearranged to yield:

tan(∆θ) =
y∆x,x′ − x∆y,y′

y∆y,y′ + x∆x,x′
=

y∆x− x∆y + xy
′ − yx′

y∆y + x∆x− (yy′ + xx′)
. (14)

ICP scan Matching Algorithm. Based on these results, one iterates the following algo-
rithm to yield an estimate (∆x,∆y,∆θ)

1. Choose an intial estimate of (∆x,∆y,∆θ). Typically, this estimate is provided by
wheel odometry.

2. Transform the points in Vk+1 to the coordinate system of Vk using the displacement
estimate.

3. Find the M points which can be seen in both scans, and find the matching pairs of
points.

4. Compute and estimate of ~T using Equation (10).

5. Using the translation estimates from the previous step, compute the rotation estimate
using Equation (14).

6. If the error (7) is below a threshold, then stop and return the translation and rotation
displacement estimates. Else, go to step 2.

5


