CDS 110: Homework #1
(Due Friday, October 14, 2016)

Problem 1 (CDS 101, CDS 110): (20 points for CDS 101, 25 Points for CDS 110)
The goal of this problem is to explore the behavior and stability of a hardening spring mass-spring-damper mechanical system, whose dynamics are given by:

\[m\ddot{q} = -k(q + aq^3) - b\dot{q} \]

where \(m \) is the mass of the system, \(k \) is the “linear” spring constant, \(a \) is the hardening coefficient of the spring, and \(b \) is the “damping coefficient.” For this homework problem, choose \(m = 1000 \text{ kg} \), \(k = 250 \text{ kg/s}^2 \), \(a = 0.02 \), and \(b = 100 \text{ kg/s} \).

Part (a): Find the equilibria of this system.
Part (b): Using MATLAB, plot a representation of the phase space around an equilibrium point.
Part (c): Linearize the system about an equilibrium point.
Part (d): Determine the stability of this systems at an equilibrium (i.e., is it unstable, stable, or asymptotically stable).
Part (e), (CDS 110 only!): Is the system exponentially stable?

Problem 2 (CDS 101, 110): (15 points) Do problem 5.3 on page 5-34 of Chapter 5 in FBS-2e

Problem 3 (CDS 110): (15 points) Do problem 5.4 in page 5-34 in Chapter 5 of FBS-2e.

Problem 4 (CDS 110): (15 points) Do problem 5.10 in page 5-34 in Chapter 5 of FBS-2e.