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Simo Särkkä simo.sarkka@aalto.fi

Department of Biomedical Engineering and Computational Science (BECS)

Aalto University, School of Science

P.O. Box 12200, FI-00076 Aalto, Finland

Abstract

This paper proposes a novel scheme for reduced-rank Gaussian process regression. The
method is based on an approximate series expansion of the covariance function in terms of
an eigenfunction expansion of the Laplace operator in a compact subset of Rd. On this ap-
proximate eigenbasis the eigenvalues of the covariance function can be expressed as simple
functions of the spectral density of the Gaussian process, which allows the GP inference
to be solved under a computational cost scaling as O(nm2) (initial) and O(m3) (hyper-
parameter learning) with m basis functions and n data points. The approach also allows
for rigorous error analysis with Hilbert space theory, and we show that the approximation
becomes exact when the size of the compact subset and the number of eigenfunctions go
to infinity. The expansion generalizes to Hilbert spaces with an inner product which is
defined as an integral over a specified input density. The method is compared to previously
proposed methods theoretically and through empirical tests with simulated and real data.

Keywords: Gaussian process regression, Laplace operator, eigenfunction expansion,
pseudo-differential operator, reduced-rank approximation

1. Introduction

Gaussian processes (GPs, Rasmussen and Williams, 2006) are powerful tools for non-
parametric Bayesian inference and learning. In GP regression the model functions f(x)
are assumed to be realizations from a Gaussian random process prior with a given covari-
ance function k(x,x′), and learning amounts to solving the posterior process given a set of
noisy measurements y1, y2, . . . , yn at some given test inputs. This model is often written in
the form

f ∼ GP(0, k(x,x′)),

yi = f(xi) + εi,
(1)

where εi ∼ N (0, σ2
n), for i = 1, 2, . . . , n. One of the main limitations of GPs in machine

learning is the computational and memory requirements that scale as O(n3) and O(n2) in
a direct implementation. This limits the applicability of GPs when the number of training
samples n grows large. The computational requirements arise because in solving the GP
regression problem we need to invert the n×n Gram matrix K+σ2

nI, where Kij = k(xi,xj),
which is an O(n3) operation in general.

c©2014 Arno Solin and Simo Särkkä.
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To overcome this problem, over the years, several schemes have been proposed. They
typically reduce the storage requirements to O(nm) and complexity to O(nm2), where
m < n. Some early methods have been reviewed in Rasmussen and Williams (2006), and
Quiñonero-Candela and Rasmussen (2005a) provide a unifying view on several methods.
From a spectral point of view, several of these methods (e.g., SOR, DTC, VAR, FIC) can
be interpreted as modifications to the so-called Nyström method (see Baker, 1977; Williams
and Seeger, 2001), a scheme for approximating the eigenspectrum.

For stationary covariance functions the spectral density of the covariance function can
be employed: in this context the spectral approach has mainly been considered in regular
grids, as this allows for the use of FFT-based methods for fast solutions (see Paciorek, 2007;
Fritz et al., 2009), and more recently in terms of converting GPs to state space models
(Särkkä and Hartikainen, 2012; Särkkä et al., 2013). Recently, Lázaro-Gredilla et al. (2010)
proposed a sparse spectrum method where a randomly chosen set of spectral points span a
trigonometric basis for the problem.

The methods proposed in this article fall into the class of methods called reduced-rank
approximations (see, e.g., Rasmussen and Williams, 2006) which are based on approximat-
ing the Gram matrix K with a matrix K̃ with a smaller rank m < n. This allows for the
use of matrix inversion lemma (Woodbury formula) to speed up the computations. It is
well-known that the optimal reduced-rank approximation of the Gram (covariance) matrix
K with respect to the Frobenius norm is K̃ = ΦΛΦT, where Λ is a diagonal matrix of the
leading m eigenvalues of K and Φ is the matrix of the corresponding orthonormal eigen-
vectors (Golub and Van Loan, 1996; Rasmussen and Williams, 2006). Yet, as computing
the eigendecomposition is an O(n3) operation, this provides no remedy as such.

In this work we propose a novel method for obtaining approximate eigendecompositions
of covariance functions in terms of an eigenfunction expansion of the Laplace operator in
a compact subset of Rd. The method is based on interpreting the covariance function
as the kernel of a pseudo-differential operator (Shubin, 1987) and approximating it using
Hilbert space methods (Courant and Hilbert, 2008; Showalter, 2010). This results in a
reduced-rank approximation for the covariance function. This path has not been explored
in GP regression context before, although the approach is closely related to the stochastic
partial differential equation based methods recently introduced to spatial statistics and GP
regression (Lindgren et al., 2011; Särkkä and Hartikainen, 2012; Särkkä et al., 2013). We also
show how the solution formally converges to the exact solution in well-defined conditions,
and provide theoretical and experimental comparisons to existing state-of-the-art methods.

This paper is structured as follows: In Section 2 we derive the approximative series
expansion of the covariance functions. Section 3 is dedicated to applying the approximation
scheme to GP regression and providing details of the computational benefits. We provide
a detailed analysis of the convergence of the method in Section 4. Section 5 and 6 provide
comparisons to existing methods, the former from a more theoretical point of view, whereas
the latter contains examples and comparative evaluation on several datasets. Finally the
properties of the method are summarized and discussed in Section 7.
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2. Approximating the Covariance Function

In this section, we start by stating the assumptions and properties of the class of covariance
functions that we are considering, and show how a homogenous covariance function can
be considered as a pseudo-differential operator constructed as a series of Laplace operators.
Then we show how the pseudo-differential operators can be approximated with Hilbert space
methods on compact subsets of Rd or via inner products with integrable weight functions,
and discuss connections to Sturm–Liouville theory.

2.1 Spectral Densities of Homogeneous and Isotropic Gaussian Processes

In this work it is assumed that the covariance function is homogeneous (stationary), which
means that the covariance function k(x,x′) is actually a function of r = x − x′ only. This
means that the covariance structure of the model function f(x) is the same regardless of
the absolute position in the input space (cf. Rasmussen and Williams, 2006). In this case
the covariance function can be equivalently represented in terms of the spectral density.
This results from the Bochner’s theorem (see, e.g., Akhiezer and Glazman, 1993; Da Prato
and Zabczyk, 1992) which states that an arbitrary positive definite function k(r) can be
represented as

k(r) =
1

(2π)d

∫
exp

(
iωTr

)
µ(dω), (2)

where µ is a positive measure.
If the measure µ(ω) has a density, it is called the spectral density S(ω) corresponding to

the covariance function k(r). This gives rise to the Fourier duality of covariance and spectral
density, which is known as the Wiener–Khintchin theorem (Rasmussen and Williams, 2006),
giving the identities

k(r) =
1

(2π)d

∫
S(ω) eiωTr dω and S(ω) =

∫
k(r) e−iωTr dr. (3)

From these identities it is easy to see that if the covariance function is isotropic, that is, it
only depends on the Euclidean norm ‖r‖ such that k(r) , k(‖r‖), then the spectral density
will also only depend on the norm of ω such that we can write S(ω) , S(‖ω‖). In the
following we assume that the considered covariance functions are indeed isotropic, but the
approach can be generalized to more general homogenous covariance functions.

2.2 The Covariance Operator As a Pseudo-Differential Operator

Associated to each covariance function k(x,x′) we can also define a covariance operator K
as follows:

K φ =

∫
k(·,x′)φ(x′) dx′. (4)

As we show in the next section, this interpretation allows us to approximate the covariance
operator using Hilbert space methods which are typically used for approximating differential
and pseudo-differential operators in the context of partial differential equations (Showalter,
2010). When the covariance function is homogenous, the corresponding operator will be
translation invariant thus allowing for Fourier-representation as a transfer function. This
transfer function is just the spectral density of the Gaussian process.
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Consider an isotropic covariance function k(x,x′) , k(‖r‖) (recall that ‖·‖ denotes
the Euclidean norm). The spectral density of the Gaussian process and thus the transfer
function corresponding to the covariance operator will now have the form S(‖ω‖). We can
formally write it as a function of ‖ω‖2 such that

S(‖ω‖) = ψ(‖ω‖2). (5)

Assume that the spectral density S(·) and hence ψ(·) are regular enough so that the spectral
density has the following polynomial expansion:

ψ(‖ω‖2) = a0 + a1‖ω‖2 + a2(‖ω‖2)2 + a3(‖ω‖2)3 + · · · . (6)

Thus we also have

S(‖ω‖) = a0 + a1‖ω‖2 + a2(‖ω‖2)2 + a3(‖ω‖2)3 + · · · . (7)

Recall that the transfer function corresponding to the Laplacian operator ∇2 is −‖ω‖2 in
the sense that

F [∇2f ](ω) = −‖ω‖2F [f ](ω), (8)

where F [·] denotes the Fourier transform of its argument. If we take the Fourier transform
of (7), we get the following representation for the covariance operator K, which defines a
pseudo-differential operator (Shubin, 1987) as a formal series of Laplacian operators:

K = a0 + a1(−∇2) + a2(−∇2)2 + a3(−∇2)3 + · · · . (9)

In the next section we will use this representation to form a series expansion approximation
for the covariance function.

2.3 Hilbert-Space Approximation of the Covariance Operator

We will now form a Hilbert-space approximation for the pseudo-differential operator defined
by (9). Let Ω ⊂ Rd be a compact set, and consider the eigenvalue problem for the Laplacian
operators with Dirichlet boundary conditions (we could use other boundary conditions as
well): {

−∇2φj(x) = λj φj(x), x ∈ Ω

φj(x) = 0, x ∈ ∂Ω.
(10)

Because −∇2 is a positive definite Hermitian operator, the set of eigenfunctions φj(·) is
orthonormal with respect to the inner product

〈f, g〉 =

∫
Ω
f(x) g(x) dx (11)

that is, ∫
Ω
φi(x)φj(x) dx = δij , (12)

and all the eigenvalues λj are real and positive. The negative Laplace operator can then be
assigned the formal kernel

l(x,x′) =
∑
j

λj φj(x)φj(x
′) (13)
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in the sense that

−∇2f(x) =

∫
l(x,x′) f(x′) dx′, (14)

for sufficiently (weakly) differentiable functions f in the domain Ω assuming Dirichlet bound-
ary conditions.

If we consider the formal powers of this representation, due to orthonormality of the
basis, we can write the arbitrary operator power s = 1, 2, . . . of the kernel as

ls(x,x′) =
∑
j

λsj φj(x)φj(x
′). (15)

This is again to be interpreted to mean that

−(∇2)sf(x) =

∫
ls(x,x′) f(x′) dx′, (16)

for regular enough functions f and in the current domain with the assumed boundary
conditions.

This implies that on the domain Ω, assuming the boundary conditions, we also have[
a0 + a1(−∇2) + a2(−∇2)2 + a3(−∇2)3 + · · ·

]
f(x)

=

∫ [
a0 + a1 l

1(x,x′) + a2 l
2(x,x′) + a3 l

3(x,x′) + · · ·
]
f(x′) dx′. (17)

The left hand side is just K f via (9), on the domain with the boundary conditions, and
thus by comparing to (4) and using (15) we can conclude that

k(x,x′) ≈ a0 + a1 l
1(x,x′) + a2 l

2(x,x′) + a3 l
3(x,x′) + · · ·

=
∑
j

[
a0 + a1 λ

1
j + a2 λ

2
j + a3 λ

3
j + · · ·

]
φj(x)φj(x

′), (18)

which is only an approximation to the covariance function due to restriction of the domain
to Ω and the boundary conditions. By letting ‖ω‖2 = λj in (7) we now obtain

S(
√
λj) = a0 + a1λ

1
j + a2λ

2
j + a3λ

3
j + · · · . (19)

and substituting this into (18) then leads to the approximation

k(x,x′) ≈
∑
j

S(
√
λj)φj(x)φj(x

′), (20)

where S(·) is the spectral density of the covariance function, λj is the jth eigenvalue and
φj(·) the eigenfunction of the Laplace operator in a given domain. These expressions tend
to be simple closed-form expressions.

The right hand side of (20) is very easy to evaluate, because it corresponds to evaluating
the spectral density at the square roots of the eigenvalues and multiplying them with the
eigenfunctions of the Laplace operator. Because the eigenvalues of the Laplacian operator
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Figure 1: Approximations to covariance functions of the Matérn class of various degrees
of smoothness; ν = 1/2 corresponds to the exponential Ornstein–Uhlenbeck covariance
function, and ν → ∞ to the squared exponential (exponentiated quadratic) covariance
function. Approximations are shown for 12, 32, 64, and 128 eigenfunctions.

are monotonically increasing with j and for bounded covariance functions the spectral den-
sity goes to zero fast with higher frequencies, we can expect to obtain a good approximation
of the right hand side by retaining only a finite number of terms in the series. However,
even with an infinite number of terms this is only an approximation, because we assumed a
compact domain with boundary conditions. The approximation can be, though, expected
to be good at the input values which are not near the boundary of Ω, where the Laplacian
was taken to be zero.

As an example, Figure 1 shows Matérn covariance functions of various degrees of
smoothness ν (see, e.g., Rasmussen and Williams, 2006) and approximations for differ-
ent numbers of basis functions in the approximation. The basis consists of the functions
φj(x) = L−1/2 sin(πj(x + L)/(2L)) and the eigenvalues were λj = (π j/(2L))2 with L = 1
and ` = 0.1. For the squared exponential the approximation is indistinguishable from the
exact curve already at m = 12, whereas the less smooth functions require more terms.

2.4 Inner Product Point of View

Instead of considering a compact bounded set Ω, we can consider the same approximation
in terms of an inner product defined by an input density (Williams and Seeger, 2000). Let
the inner product be defined as

〈f, g〉 =

∫
f(x) g(x)w(x) dx, (21)

where w(x) is some positive weight function such that
∫
w(x) dx < ∞. In terms of this

inner product, we define the operator

Kf =

∫
k(·,x) f(x)w(x) dx. (22)

This operator is self-adjoint with respect to the inner product, 〈Kf, g〉 = 〈f,Kg〉, and
according to the spectral theorem there exists an orthonormal set of basis functions and
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positive constants, {ϕj(x), γj | j = 1, 2, . . .}, that satisfies the eigenvalue equation

(Kϕj)(x) = γj ϕj(x). (23)

Thus k(x,x′) has the series expansion

k(x,x′) =
∑
j

γj ϕj(x)ϕj(x
′). (24)

Similarly, we also have the Karhunen–Loeve expansion for a sample function f(x) with zero
mean and the above covariance function:

f(x) =
∑
j

fj ϕj(x), (25)

where fjs are independent zero mean Gaussian random variables with variances γj (see,
e.g., Lenk, 1991).

For the negative Laplacian the corresponding definition is

Df = −∇2[f w], (26)

which implies

〈Df, g〉 = −
∫
f(x)w(x)∇2[g(x)w(x)] dx, (27)

and the operator defined by (26) can be seen to be self-adjoint. Again, there exists an
orthonormal basis {φj(x) | j = 1, 2, . . .} and positive eigenvalues λj which satisfy the
eigenvalue equation

(D φj)(x) = λj φj(x). (28)

Thus the kernel of D has a series expansion similar to Equation (13) and thus an approxi-
mation can be given in the same form as in Equation (20). In this case the approximation
error comes from approximating the Laplacian operator with the more smooth operator,

∇2f ≈ ∇2[f w], (29)

which is closely related to assumption of an input density w(x) for the Gaussian process.
However, when the weight function w(·) is close to constant in the area where the inputs
points are located, the approximation is accurate.

2.5 Connection to Sturm–Liouville Theory

The presented methodology is also related to the Sturm–Liouville theory arising in the
theory of partial differential equations (Courant and Hilbert, 2008). When the input x is
scalar, the eigenvalue problem in Equation (23) can be written in Sturm–Liouville form as
follows:

− d

dx

[
w2(x)

dφj(x)

dx

]
− w(x)

d2w(x)

dx2
φj(x) = λj w(x)φj(x). (30)

The above equation can be solved for φj(x) and λj using numerical methods for Sturm–
Liouville equations. Also note that if we select w(x) = 1 in a finite set, we obtain the

7
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(a) ν = 1
2 and ` = 0.5 (b) ν = 3

2 and ` = 0.5 (c) ν →∞ and ` = 0.5

Figure 2: Approximate random draws of Gaussian processes with the Matérn covariance
function on the hull of a unit sphere. The color scale and radius follow the process.

equation −d2/ dx2 φj(x) = λj φj(x) which is compatible with the results in the previous
section.

We consider the case where x ∈ Rd and w(x) is symmetric around the origin and thus
is only a function of the norm r = ‖x‖ (i.e. has the form w(r)). The Laplacian in spherical
coordinates is

∇2f =
1

rd−1

∂

∂r

(
rd−1 ∂f

∂r

)
+

1

r2
∆Sd−1f, (31)

where ∆Sd−1 is the Laplace–Beltrami operator on Sd−1. Let us assume that φj(r, ξ) =
hj(r) g(ξ), where ξ denotes the angular variables. After some algebra, writing the equations
into Sturm–Liouville form yields for the radial part

− d

dr

(
w2(r) r

dhj(r)

dr

)
−
(

dw(r)

dr
w(r) +

d2w(r)

dr2
w(r) r

)
hj(r) = λj w(r) r hj(r), (32)

and ∆Sd−1g(ξ) = 0 for the angular part. The solutions to the angular part are the Laplace’s
spherical harmonics. Note that if we assume that we have w(r) = 1 on some area of finite
radius, the first equation becomes (when d > 1):

r2 d2hj(r)

dr2
+ r

dhj(r)

dr
+ r2 λj hj(r) = 0. (33)

Figure 2 shows example Gaussian random field draws on a unit sphere, where the basis
functions are the Laplace spherical harmonics and the covariance functions of the Matérn
class with different degrees of smoothness ν. Our approximation is straight-forward to apply
in any domain, where the eigendecomposition of the Laplacian can be formed.

3. Application of the Method to GP Regression

In this section we show how the approximation (20) can be used in Gaussian process regres-
sion. We also write down the expressions needed for hyperparameter learning and discuss
the computational requirements of the methods.
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3.1 Gaussian Process Regression

GP regression is usually formulated as predicting an unknown scalar output f(x∗) associated
with a known input x∗ ∈ Rd, given a training data set D = {(xi, yi) | i = 1, 2, . . . , n}. The
model functions f are assumed to be realizations of a Gaussian random process prior and
the observations corrupted by Gaussian noise:

f ∼ GP(0, k(x,x′))

yi = f(xi) + εi,
(34)

where εi ∼ N (0, σ2
n). For notational simplicity the functions in the above model are a priori

zero mean and the measurement errors are independent Gaussian, but the results of this
paper can be easily generalized to arbitrary mean functions and dependent Gaussian errors.
The direct solution to the GP regression problem (34) gives the predictions p(f(x∗) | D) =
N (f(x∗) | E[f(x∗)],V[f(x∗)]). The conditional mean and variance can be computed in
closed-form as (Rasmussen and Williams, 2006)

E[f(x∗)] = kT
∗ (K + σ2

nI)−1y,

V[f(x∗)] = k(x∗,x∗)− kT
∗ (K + σ2

nI)−1k∗,
(35)

where Kij = k(xi,xj), k∗ is an n-dimensional vector with the ith entry being k(x∗,xi), and
y is a vector of the n observations.

In order to avoid the n× n matrix inversion in (35), we use the approximation scheme
presented in the previous section and project the process to a truncated set of m basis
functions of the Laplacian as given in Equation (20) such that

f(x) ≈
m∑
j=1

fj φj(x), (36)

where fj ∼ N (0, S(
√
λj)). We can then form an approximate eigendecomposition of the

matrix K ≈ ΦΛΦT, where Λ is a diagonal matrix of the leading m approximate eigenvalues
such that Λjj = S(

√
λj), j = 1, 2, . . . ,m. Here S(·) is the spectral density of the Gaussian

process and λj the jth eigenvalue of the Laplace operator. The corresponding eigenvectors
in the decomposition are given by the eigenvectors φj(x) of the Laplacian such that Φij =
φj(xi).

Using the matrix inversion lemma we rewrite (35) as follows:

E[f∗] ≈ φT
∗ (ΦTΦ + σ2

nΛ−1)−1ΦTy,

V[f∗] ≈ σ2
nφ

T
∗ (ΦTΦ + σ2

nΛ−1)−1φ∗,
(37)

where φ∗ is an m-dimensional vector with the jth entry being φj(x∗). Thus, when the size
of the training set is higher than the number of required basis functions n > m, the use of
this approximation is advantageous.

3.2 Learning the Hyperparameters

A common way to learn the hyperparameters θ of the covariance function (suppressed
earlier in the notation for brevity) and the noise variance σ2

n is by maximizing the marginal

9
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likelihood function (Rasmussen and Williams, 2006; Quiñonero-Candela and Rasmussen,
2005b). Let Q = K + σ2

nI for the full model, then the negative log marginal likelihood and
its derivatives are

L =
1

2
log |Q|+ 1

2
yTQ−1y +

n

2
log(2π), (38)

∂L
∂θk

=
1

2
Tr

(
Q−1 ∂Q

∂θk

)
− 1

2
yTQ−1 ∂Q

∂θk
Q−1y, (39)

∂L
∂σ2

n

=
1

2
Tr
(
Q−1

)
− 1

2
yTQ−1Q−1y, (40)

and they can be combined with a conjugate gradient optimizer. The problem in this case is
the inversion of Q, which is an n× n matrix. And thus each step of running the optimizer
is O(n3). For our approximation scheme, let Q̃ = ΦΛΦT + σ2

nI. Now replacing Q with Q̃
in the above expressions gives us the following:

L̃ =
1

2
log |Q̃|+ 1

2
yTQ̃−1y +

n

2
log(2π), (41)

∂L̃
∂θk

=
1

2

∂ log |Q̃|
∂θk

+
1

2

∂yTQ̃−1y

∂θk
, (42)

∂L̃
∂σ2

n

=
1

2

∂ log |Q̃|
∂σ2

n

+
1

2

∂yTQ̃−1y

∂σ2
n

, (43)

where for the terms involving log |Q̃|:

log |Q̃| = (n−m) log σ2
n + log |Z|+

m∑
j=1

logS(
√
λj), (44)

∂ log |Q̃|
∂θk

=
m∑
j=1

S(
√
λj)
−1∂S(

√
λj)

∂θk
− σ2

nTr

(
Z−1Λ−2 ∂Λ

∂θk

)
, (45)

∂ log |Q̃|
∂σ2

n

=
n−m
σ2

n

+ Tr
(
Z−1Λ−1

)
, (46)

and for the terms involving Q̃−1:

yTQ̃−1y =
1

σ2
n

(
yTy − yΦZ−1ΦTy

)
, (47)

∂yTQ̃−1y

∂θk
= −yTZ−1

(
Λ−2 ∂Λ

∂θk

)
Z−1y, (48)

∂yTQ̃−1y

∂σ2
n

=
1

σ2
n

yTΦZ−1Λ−1Z−1ΦTy − 1

σ2
n

yTQ̃y, (49)

where Z = σ2
nΛ−1 + ΦTΦ. For efficient implementation, matrix-to-matrix multiplications

can be avoided in many cases, and the inversion of Z can be carried out through Cholesky
factorization for numerical stability. This factorization (LLT = Z) can also be used for

10
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the term log |Z| = 2
∑

j log Ljj , and Tr
(
Z−1Λ−1

)
=
∑

j 1/(ZjjΛjj) can be evaluated by
element-wise multiplication.

Once the marginal likelihood and its derivatives are available, it is also possible to use
other methods for parameter inference such as Markov chain Monte Carlo methods (Liu,
2001; Brooks et al., 2011) including Hamiltonian Monte Carlo (HMC, Duane et al., 1987;
Neal, 2011) as well as numerous others.

3.3 Discussion on the Computational Complexity

As can be noted from Equation (20), the basis functions in the reduced-rank approximation
do not depend on the hyperparameters of the covariance function. Thus it is enough to
calculate the product ΦTΦ only once, which means that the method has a overall asymp-
totic computational complexity of O(nm2). After this initial cost, evaluating the marginal
likelihood and the marginal likelihood gradient is an O(m3) operation—which in practice
comes from the Cholesky factorization of Z on each step.

If the number of observations n is so large that storing the n×m matrix Φ is not feasible,
the computations of ΦTΦ can be carried out in blocks. Storing the evaluated eigenfunctions
in Φ is not necessary, because the φj(x) are closed-form expressions that can be evaluated
when necessary. In practice, it might be preferable to cache the result of ΦTΦ (causing a
memory requirement scaling as O(m2)), but this is not required.

The computational complexity of conventional sparse GP approximations typically scale
as O(nm2) in time for each step of evaluating the marginal likelihood. The scaling in
demand of storage is O(nm). This comes from the inevitable cost of re-evaluating all results
involving the basis functions on each step and storing the matrices required for doing this.
This applies to all the methods that will be discussed in Section 5, with the exception of
SSGP, where the storage demand can be relaxed by re-evaluating the basis functions on
demand.

We can also consider the rather restricting, but in certain applications often encountered
case, where the measurements are constrained to a regular grid. This causes the product of
the orthonormal eigenfunction matrices ΦTΦ to be diagonal, avoiding the calculation of the
matrix inverse altogether. This relates to the FFT-based methods for GP regression (Pa-
ciorek, 2007; Fritz et al., 2009), and the projections to the basis functions can be evaluated
by fast Fourier transform in O(n log n) time complexity.

4. Convergence Analysis

In this section we analyze the convergence of the proposed approximation when the size of
the domain Ω and the number of terms in the series grows to infinity. We start by analyzing
a univariate problem in the domain Ω = [−L,L] and with Dirichlet boundary conditions
and then generalize the result to d-dimensional cubes Ω = [−L1, L1]× · · · × [−Ld, Ld]. We
also discuss how the analysis could be extended to other types of basis functions.
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4.1 Univariate Dirichlet Case

In the univariate case, the m-term approximation has the form

k̃m(x, x′) =
m∑
j=1

S(
√
λj)φj(x)φj(x

′), (50)

where the eigenfunctions and eigenvalues are:

φj(x) =
1√
L

sin

(
π j (x+ L)

2L

)
and λj =

(
π j

2L

)2

, for j = 1, 2, . . . . (51)

The true covariance function k(x, x′) is assumed to be stationary and have a spectral density
which is uniformly bounded S(ω) <∞, has at least two bounded derivatives |S′(ω)| <∞,
|S′′(ω)| < ∞, and has a bounded integral over the real axis

∫∞
−∞ S(ω) dω < ∞. We also

assume that our training and test sets are constrained in the area [−L̃, L̃], where L̃ < L,
and thus we are only interested in the case x, x′ ∈ [−L̃, L̃]. For the purposes of analysis we
also assume that L is bounded below by a constant.

The univariate convergence result can be summarized as the following theorem which is
proved in Appendix A.1.

Theorem 4.1. There exists a constant C such that∣∣∣k(x, x′)− k̃m(x, x′)
∣∣∣ ≤ C

L
+

2

π

∫ ∞
πm
2L

S(ω) dω, (52)

which in turn implies that uniformly

lim
L→∞

[
lim
m→∞

k̃m(x, x′)
]

= k(x, x′). (53)

Remark 4.2. Note that we cannot simply exchange the order of the limits in the above
theorem. However, the theorem does ensure the convergence of the approximation in the joint
limit m,L→∞ provided that we add terms to the series fast enough such that m/L→∞.
That is, in this limit, the approximation k̃m(x, x′) converges uniformly to k(x, x′).

As such, the results above only ensure the convergence of the prior covariance functions.
However, it turns out that this also ensures the convergence of the posterior as is summarized
in the following corollary.

Corollary 4.3. Because the Gaussian process regression equations only involve pointwise
evaluations of the kernels, it also follows that the posterior mean and covariance functions
converge uniformly to the exact solutions in the limit m,L→∞.

4.2 Multivariate Cartesian Dirichlet Case

In order to generalize the results from the previous section, we turn our attention to a
d-dimensional inputs space with rectangular domain Ω = [−L1, L1] × · · · × [−Ld, Ld] with

12
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Dirichlet boundary conditions. In this case we consider a truncated m = m̂d term approxi-
mation of the form

k̃m(x,x′) =

m̂∑
j1,...,jd=1

S(
√
λj1,...,jd)φj1,...,jd(x)φj1,...,jd(x

′) (54)

with the eigenfunctions and eigenvalues

φj1,...,jd(x) =
d∏

k=1

1√
Lk

sin

(
π jk (xk + Lk)

2Lk

)
and λj1,...,jd =

d∑
k=1

(
π jk
2Lk

)2

. (55)

The true covariance function k(x,x′) is assumed to be stationary and have a spectral den-
sity S(ω) which is two times differentiable and the derivatives are assumed to be bounded.
We also assume that the single-variable integrals are finite

∫∞
−∞ S(ω) dωk < ∞, which

in this case is equivalent to requiring that the integral over the whole space is finite∫
Rd S(ω) dω <∞. Furthermore, we assume that the training and test sets are contained in

the d-dimensional cube [−L̃, L̃]d and that Lks are bounded from below.

The following result for this d-dimensional case is proved in Appendix A.2.

Theorem 4.4. There exists a constant Cd such that∣∣∣k(x,x′)− k̃m(x,x′)
∣∣∣ ≤ Cd

L
+

1

πd

∫
‖ω‖≥π m̂

2L

S(ω) dω, (56)

where L = mink Lk, which in turn implies that uniformly

lim
L1,...,Ld→∞

[
lim
m→∞

k̃m(x,x′)
]

= k(x,x′). (57)

Remark 4.5. Analogously as in the one-dimensional case we cannot simply exchange the
order of the limits above. Furthermore, we need to add terms fast enough so that m̂/Lk →∞
when m,L1, . . . , Ld →∞.

Corollary 4.6. As in the one-dimensional case, the uniform convergence of the prior co-
variance function also implies uniform convergence of the posterior mean and covariance
in the limit m,L1, . . . , Ld →∞.

4.3 Other Domains

It would also be possible carry out similar convergence analysis, for example, in a spherical
domain. In that case the technical details become slightly more complicated, because instead
sinusoidals we will have Bessel functions and the eigenvalues no longer form a uniform grid.
This means that instead of Riemann integrals we need to consider weighted integrals where
the distribution of the zeros of Bessel functions is explicitly accounted for. It might also
be possible to use some more general theoretical results from mathematical analysis to
obtain the convergence results. However, due to these technical challenges more general
convergence proof will be developed elsewhere.

13
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There is also a similar technical challenge in the analysis when the basis functions are
formed by assuming an input density (see Section 2.4) instead of a bounded domain. Because
explicit expressions for eigenfunctions and eigenvalues cannot be obtained in general, the
elementary proof methods which we used here cannot be applied. Therefore the convergence
analysis of this case is also left as a topic for future research.

5. Relationship to Other Methods

In this section we compare our method to existing sparse GP methods from a theoretical
point of view. We consider two different classes of approaches: a class of inducing input
methods based on the Nyström approximation (following the interpretation of Quiñonero-
Candela and Rasmussen, 2005a), and direct spectral approximations.

5.1 Methods from the Nyström Family

A crude but rather effective scheme for approximating the eigendecomposition of the Gram
matrix is the Nyström method (see, e.g., Baker, 1977, for the integral approximation
scheme). This method is based on choosing a set of m inducing inputs xu and scaling
the corresponding eigendecomposition of their corresponding covariance matrix Ku,u to
match that of the actual covariance. The Nyström approximations to the jth eigenvalue
and eigenfunction are

λ̃j =
1

m
λu,j , (58)

φ̃j(x) =

√
m

λu,j
k(x,xu)φu,j , (59)

where λu,j and φu,j correspond to the jth eigenvalue and eigenvector of Ku,u. This scheme
was originally introduced to the GP context by Williams and Seeger (2001). They presented
a sparse scheme, where the resulting approximate prior covariance over the latent variables
is Kf,uK−1

u,uKu,f , which can be derived directly from Equations (58) and (59).
As discussed by Quiñonero-Candela and Rasmussen (2005a), the Nyström method by

Williams and Seeger (2001) does not correspond to a well-formed probabilistic model. How-
ever, several methods modifying the inducing point approach are widely used. The Subset
of Regressors (SOR, Smola and Bartlett, 2001) method uses the Nyström approximation
scheme for approximating the whole covariance function,

kSOR(x,x′) =

m∑
j=1

λ̃j φ̃j(x) φ̃j(x
′), (60)

whereas the sparse Nyström method (Williams and Seeger, 2001) only replaces the training
data covariance matrix. The SOR method is in this sense a complete Nyström approxima-
tion to the full GP problem. A method in-between is the Deterministic Training Conditional
(DTC, Csató and Opper, 2002; Seeger et al., 2003) method which retains the true covari-
ance for the training data, but uses the approximate cross-covariances between training and
test data. For DTC, tampering with the covariance matrix causes the result not to actu-
ally be a Gaussian process. The Variational Approximation (VAR, Titsias, 2009) method
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modifies the DTC method by an additional trace term in the likelihood that comes from
the variational bound.

The Fully Independent (Training) Conditional (FIC, Quiñonero-Candela and Rasmussen,
2005a) method (originally introduced as Sparse Pseudo-Input GP by Snelson and Ghahra-
mani, 2006) is also based on the Nyström approximation but contains an additional diagonal
term replacing the diagonal of the approximate covariance matrix with the values from the
true covariance. The corresponding prior covariance function for FIC, is thus

kFIC(xi,xj) = kSOR(xi,xj) + δi,j(k(xi,xj)− kSOR(xi,xj)), (61)

where δi,j is the Kronecker delta.

Figure 3 illustrates the effect of the approximations compared to the exact correlation
structure in the GP. The dashed contours show the exact correlation contours computed
for three locations with the squared exponential covariance function. Figure 3a shows the
results for the FIC approximation with 16 inducing points (locations shown in the figure).
It is clear that the number of inducing points or their locations are not sufficient to capture
the correlation structure. For similar figures and discussion on the effects of the inducing
points, see Vanhatalo et al. (2010). This behavior is not unique to SOR or FIC, but applies
to all the methods from the Nyström family.

5.2 Direct Spectral Methods

The sparse spectrum GP (SSGP) method introduced by Lázaro-Gredilla et al. (2010) uses
the spectral representation of the covariance function for drawing random samples from the
spectrum. These samples are used for representing the GP on a trigonometric basis

φ(x) =
(
cos(2π sT1 x) sin(2π sT1 x) . . . cos(2π sThx) sin(2π sThx)

)
, (62)

where the spectral points sr, r = 1, 2, . . . , h (2h = m), are sampled from the spectral density
of the original stationary covariance function (following the normalization convention used
in the original paper). The covariance function corresponding to the SSGP scheme is now
of the form

kSSGP(x,x′) =
2σ2

m
φ(x)φT(x′) =

σ2

h

h∑
r=1

cos
(

2π sTr (x− x′)
)
, (63)

where σ2 is the magnitude scale hyperparameter. This representation of the sparse spec-
trum method converges to the full GP in the limit of the number of spectral points going
to infinity, and it is the preferred formulation of the method in one or two dimensions (see
Lázaro-Gredilla, 2010, for discussion). We can interpret the SSGP method in (63) as a
Monte Carlo approximation of the Wiener–Khintchin integral. In order to have a represen-
tative sample of the spectrum, the method typically requires the number of spectral points
to be large. For high-dimensional inputs the number of required spectral points becomes
overwhelming, and optimizing the spectral locations along with the hyperparameters at-
tractive. However, as argued by Lázaro-Gredilla et al. (2010), this option does not converge
to the full GP and suffers from overfitting to the training data.
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Figure 3: Correlation contours computed for three locations ( ) corresponding to the
squared exponential covariance function (exact contours dashed). The rank of each ap-
proximation is m = 16, and the locations of the inducing inputs are marked with blue stars
( ). The hyperparameters are the same in each figure. The domain boundary is shown in
thin grey ( ) if extended outside the box.

Contours for the sparse spectrum SSGP method are visualized in Figure 3c. Here the
spectral points were chosen at random following Lázaro-Gredilla (2010). Because the basis
functions are spanned using both sines and cosines, the number of spectral points was
h = 8 in order to match the rank m = 16. These results agree well with those presented in
the Lázaro-Gredilla et al. (2010) for a one-dimensional example. For this particular set of
spectral points some directions of the contours happen to match the true values very well,
while other directions are completely off. Increasing the rank from 16 to 100 would give
comparable results to the other methods.

While SSGP is based on a sparse spectrum, the reduced-rank method proposed in this
paper aims to make the spectrum as ‘full’ as possible at a given rank. While SSGP can be
interpreted as a Monte Carlo integral approximation, the corresponding interpretation to
the proposed method would a numerical quadrature-based integral approximation (cf. the
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convergence proof in Appendix A.1). Figure 3d shows the same contours obtained by the
proposed reduced-rank method. Here the eigendecomposition of the Laplace operator has
been obtained for the square Ω = [−L,L] × [−L,L] with Dirichlet boundary conditions.
The contours match well with the full solution towards the middle of the domain. The
boundary effects drive the process to zero, which is seen as distortion near the edges.

Figure 3e shows how extending the boundaries just by 25% and keeping the number
of basis functions fixed at 16, gives good results. The last Figure 3f corresponds to using
a disk shaped domain instead of the rectangular. The eigendecomposition of the Laplace
operator is done in polar coordinates, and the Dirichlet boundary is visualized by a circle
in the figure.

6. Experiments

In this section we aim to provide examples of the practical use of the proposed method,
and to compare it against other methods that are typically used in a similar setting. We
start with a small simulated one-dimensional dataset, and then provide more extensive
comparisons by using real-world data. We also consider an example of data, where the
input domain is the surface of a sphere, and conclude our comparison by using a very large
dataset to demonstrate what possibilities the computational benefits open.

6.1 Experimental Setup

For assessing the performance of different methods we use 10-fold cross-validation and
evaluate the following measures based on the validation set: the standardized mean squared
error (SMSE) and the mean standardized log loss (MSLL), respectively defined as:

SMSE =

n∗∑
i=1

(y∗i − µ∗i)2

Var[y]
, and MSLL =

1

2n∗

n∗∑
i=1

(
(y∗i − µ∗i)2

σ2
∗i

+ log 2πσ2
∗i

)
,

where µ∗i = E[f(x∗i)] and σ2
∗i = V[f(x∗i)] + σ2

n are the predictive mean and variance for
test sample i = 1, 2, . . . , n∗, and y∗i is the actual test value. The training data variance is
denoted by Var[y]. For all experiments, the values reported are averages over ten repetitions.

We compare our solution to SOR, DTC, VAR, and FIC using the implementations
provided in the GPstuff software package (version 4.3.1, see Vanhatalo et al., 2013) for
Mathworks Matlab. The sparse spectrum SSGP method by Lázaro-Gredilla et al. (2010) was
implemented into the GPstuff toolbox for the comparisons.1 The reference implementation
was modified such that also non-ARD covariances could be accounted for.

The m inducing inputs for SOR, DTC, VAR, and FIC were chosen at random as a
subset from the training data and kept fixed between the methods. For low-dimensional
inputs, this tends to lead to good results and avoid over-fitting to the training data, while
optimizing the input locations alongside hyperparameters becomes the preferred approach
in high input dimensions (Quiñonero-Candela and Rasmussen, 2005a). The results are
averaged over ten repetitions in order to present the average performance of the methods.
In Sections 6.2, 6.3, and 6.5, we used a Cartesian domain with Dirichlet boundary conditions

1. The implementation is based on the code available from Miguel Lázaro-Gredilla: http://www.tsc.uc3m.
es/~miguel/downloads.php.
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Figure 4: (a) 256 data points generated from a GP with hyperparameters (σ2, `, σ2
n) =

(12, 0.1, 0.22), the full GP solution, and an approximate solution with m = 32. (b) Negative
marginal likelihood curves for the signal variance σ2, length-scale `, and noise variance σ2

n.

for the new reduced-rank method. To avoid boundary effects, the domain was extended by
10% outside the inputs in each direction.

In the comparisons we followed the guidelines given by Chalupka et al. (2013) for making
comparisons between the actual performance of different methods. For hyperparameter op-
timization we used the fminunc routine in Matlab with a Quasi-Newton optimizer. We also
tested several other algorithms, but the results were not sensitive to the choice of optimizer.
The optimizer was run with a termination tolerance of 10−5 on the target function value
and on the optimizer inputs. The number of required target function evaluations stayed
fairly constant for all the comparisons, making the comparisons for the hyperparameter
learning bespoke.

6.2 Toy Example

Figure 4 shows a simulated example, where 256 data points are drawn from a Gaussian pro-
cess prior with a squared exponential covariance function. We use the same parametrization
as Rasmussen and Williams (2006) and denote the signal variance σ2, length-scale `, and
noise variance σ2

n. Figure 4b shows the negative marginal log likelihood curves both for the
full GP and the approximation with m = 32 basis functions. The likelihood curve approxi-
mations are almost exact and only differs from the full GP likelihood for small length-scales
(roughly for values smaller than 2L/m). Figure 4a shows the approximate GP solution.
The mean estimate follows the exact GP mean, and the shaded region showing the 95%
confidence area differs from the exact solution (dashed) only near the boundaries.

Figures 5a and 5b show the SMSE and MSLL values for m = 8, 10, . . . , 32 inducing
inputs and basis functions for the toy dataset from Figure 4. The convergence of the
proposed reduced rank method is fast and a soon as the number of eigenfunctions is large
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Figure 5: Standardized mean squared error (SMSE) and mean standardized log loss (MSLL)
results for the toy data (d = 1, n = 256) from Figure 4 and the precipitation data (d = 2,
n = 5776) evaluated by 10-fold cross-validation and averaged over ten repetitions. The
evaluation time includes hyperparameter learning.

enough (m = 20) to account for the short length-scales, the approximation converges to the
exact full GP solution (shown by the dashed line).

In this case the SOR method that uses the Nyström approximation to directly approx-
imate the spectrum of the full GP (see Section 5) seems to give good results. However, as
the resulting approximation in SOR corresponds to a singular Gaussian distribution, the
predictive variance is underestimated. This can be seen in Figure 5b, where SOR seems to
give better results than the full GP. These results are however due to the smaller predictive
variance on the test set. DTC tries to fix this shortcoming of SOR—they are identical in
other respects except predictive variance evaluation—and while SOR and DTC give iden-
tical results in terms of SMSE, they differ in MSLL. We also note that additional trace
term in the marginal likelihood in VAR makes the likelihood surface flat, which explains
the differences in the results in comparison to DTC.

The sparse spectrum SSGP method did not perform well on average. Still, it can be
seen that it converges towards the performance of the full GP. The dependence on the
number of spectral points differs from the rest of the methods, and a rank of m = 32
is not enough to meet the other methods. However, in terms of best case performance
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Figure 6: Interpolation of the yearly precipitation levels using reduced-rank GP regression.
Subfigure 6a shows the n = 5776 weather station locations. Subfigures 6b and 6c show the
results for the full GP model and the new reduced-rank GP method.

over the ten repetitions with different inducing inputs and spectral points, both FIC and
SSGP outperformed SOR, DTC, and VAR. Because of its ‘dense spectrum’ approach, the
proposed reduced-rank method is not sensitive to the choice of spectral points, and thus the
performance remained the same between repetitions. In terms of variance over the 10-fold
cross-validation folds, the methods in order of growing variance in the figure legend (the
variance approximately doubling between FULL and SSGP).

6.3 Precipitation Data

As a real-data example, we consider a precipitation data set that contain US annual pre-
cipitation summaries for year 1995 (d = 2 and n = 5776, available online, see Vanhatalo
et al., 2013). The observation locations are shown on a map in Figure 6a.

We limit the number of inducing inputs and spectral points to m = 128, 192, . . . , 512.
For the new method we additionally consider ranks m = 1024, 1536, . . . , 4096, and show
that this causes a computational burden of the same order as the conventional sparse GP
methods with smaller ms.

In order to demonstrate the computational benefits of the proposed model, we also
present the running time of the GP inference (including hyperparameter optimization). All
methods were implemented under a similar framework in the GPstuff package, and they all
employ similar reformulations for numerical stability. The key difference in the evaluation
times comes from hyperparameter optimization, where SOR, DTC, VAR, FIC, and SSGP
scale as O(nm2) for each evaluation of the marginal likelihood. The proposed reduced-rank
method scales as O(m3) for each evaluation (after an initial cost of O(nm2)).

Figures 5c and 5d show the SMSE and MSLL results for this data against evaluation
time. On this scale we note that the evaluation time and accuracy, both in terms of
SMSE and MSLL, are alike for SOR, DTC, VAR, and FIC. SSGP is faster to evaluate in
comparison with the Nyström family of methods, which comes from the simpler structure of
the approximation. Still, the number of required spectral points to meet a certain average
error level is larger for SSGP.

The results for the proposed reduced-rank method (NEW) show that with two input
dimensions, the required number of basis functions is larger. For the first seven points,
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Figure 7: Modeling of the yearly mean temperature on the spherical surface of the Earth
(n = 11 028). Figure 7b shows the standard deviation contours which match well with the
continents.

we notice that even though the evaluation is two orders of magnitude faster, the method
performs only slightly worse in comparison to conventional sparse methods. By considering
higher ranks (the next seven points), the new method converges to the performance of the
full GP (both in SMSE and MSLL), while retaining a computational time comparable to
the conventional methods. This type of spatial medium-size GP regression problems can
thus be solved in seconds.

Figures 6b and 6c show interpolation of the precipitation levels using a full GP model
and the reduced-rank method (m = 1728), respectively. The results are practically identical,
as is easy to confirm from the color surfaces. Obtaining the reduced-rank result (including
initialization and hyperparameter learning) took slightly less than 30 seconds on a laptop
computer (MacBook Air, Late 2010 model, 2.13 GHz, 4 GB RAM), while the full GP
inference took approximately 18 minutes.

6.4 Temperature Data on the Surface of the Globe

We also demonstrate the use of the method in non-Cartesian coordinates. We consider
modeling of the spatial mean temperature over a number of n = 11 028 locations around
the globe.2

As earlier demonstrated in Figure 2, we use the Laplace operator in spherical coordinates
as defined in (31). The eigenfunctions for the angular part are the Laplace’s spherical
harmonics. The evaluation of the approximation does not depend on the coordinate system,
and thus all the equations presented in the earlier sections remain valid. We use the squared
exponential covariance function and m = 1 089 basis functions.

Figure 7 visualizes the modeling outcome. The results are visualized using an inter-
rupted projection (an adaption of the Goode homolosine projection) in order to preserve
the length-scale structure across the map. The uncertainty is visualized in Figure 7b,
which corresponds to the n = 11 028 observation locations that are mostly spread over the
continents and western countries (the white areas in Figure 7b contain no observations).

2. The data are available for download from US National Climatic Data Center: http://www7.ncdc.noaa.
gov/CDO/cdoselect.cmd (accessed January 3, 2014).
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Method SMSE MSLL

The reduced-rank method 0.388 (0.007) 0.608 (0.009)
Random subset (n = 500) 0.419 (0.035) 0.648 (0.014)
Random subset (n = 1000) 0.392 (0.022) 0.614 (0.010)

Table 1: Results for the apartment data set (d = 2, n = 102 890) for predicting the
log-apartment prices across England and Wales. The results for the Standardized mean
squared error (SMSE) and mean standardized log loss (MSLL) were obtained by 10-fold
cross-validation, where the shown values are the mean (standard deviation parenthesised).

Obtaining the reduced-rank result (including initialization and hyperparameter learning)
took approximately 50 seconds on a laptop computer (MacBook Air, Late 2010 model,
2.13 GHz, 4 GB RAM), which scales with n in comparison to the evaluation time in the
previous section.

6.5 Apartment Price Data

In order to fully use the computational benefits of the method, we consider a large dataset.
We use records of sold apartments3 in the UK for the period of February to October 2013.
The data consist of n = 102 890 records for apartments, which were cross-referenced against
a postcode database to get the geographical coordinates on which the normalized logarithmic
prices were regressed. The dataset is similar to that used in Hensman et al. (2013), where
the records were for year 2012.

To account for both the national and regional variations in apartment prices, we used
two squared exponential covariance functions with different length-scales and magnitudes.
Additionally, a Gaussian noise term captures the variation that is not related to location
alone. Applying the reduced-rank methodology to a sum of covariances is straight-forward,
as the the kernel approximations share basis functions and only the spectra have to be
summed.

To validate the results, because the full GP solution is infeasible, we used the subset
of data approach as was done in Hensman et al. (2013). We solved the full GP problem
by considering subsets of n = 500 and n = 1000 data points randomly chosen from the
training set. For each fold in the cross-validation the results were averaged over ten choices
of subsets. The rank of the reduced-rank approximation was fixed at m = 1000 in order to
match with the larger of the two subsets.

Table 1 shows the SMSE and MSLL values for the apartment data. The results show
that the reduced rank method. The results show that the proposed method gives good
results in terms of both SMSE and MSLL, and the standard deviation between the folds is
also small. In this case the reduced-rank result (including initialization and hyperparameter
learning) took approximately 130 seconds on a laptop computer (MacBook Air, Late 2010
model, 2.13 GHz, 4 GB RAM).

3. The data are available from http://data.gov.uk/dataset/land-registry-monthly-price-paid-data/

(accessed January 6, 2014).
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7. Conclusion and Discussion

In this paper we have proposed a novel approximation scheme for forming approximate
eigendecompositions of covariance functions in terms of the Laplace operator eigenbasis
and the spectral density of the covariance function. The eigenfunction decomposition of the
Laplacian can easily be formed in various domains, and the eigenfunctions are independent
of the choice of hyperparameters of the covariance.

An advantage of the method is that it has the ability to approximate the eigendecom-
position using only the eigendecomposition of the Laplacian and the spectral density of the
covariance function, both of which are closed-from expressions. This together with having
the eigenvectors in Φ mutually orthogonal and independent of the hyperparameters, is the
key to efficiency. This allows an implementation with a computational cost of O(nm2)
(initial) and O(m3) (marginal likelihood evaluation), with negligible memory requirements.

Of the infinite number of possible basis functions only an extremely small subset are
of any relevance to the GP being approximated. In GP regression the model functions
are conditioned on a covariance function (kernel), which imposes desired properties on the
solutions. We choose the basis functions such that they are as close as possible (w.r.t. the
Frobenius norm) to those of the particular covariance function. Our method gives the exact
eigendecomposition of a GP that has been constrained to be zero at the boundary of the
domain.

The method allows for theoretical analysis of the error induced by the truncation of
the series and the boundary effects. This is something new in this context and extremely
important, for example, in medical imaging applications. The approximative eigendecom-
position also opens a range of interesting possibilities for further analysis. In learning curve
estimation, the eigenvalues of the Gaussian process can now be directly approximated. For
example, we can approximate the Opper–Vivarelli bound (Opper and Vivarelli, 1999) as

εOV(n) ≈ σ2
n

∑
j

S(
√
λj)

σ2
n + nS(

√
λj)

. (64)

Sollich’s eigenvalue based bounds (Sollich and Halees, 2002) can be approximated and an-
alyzed in an analogous way.

However, some of these abilities come with a cost. As demonstrated throughout the
paper, restraining the domain to boundary conditions introduces edge effects. These are,
however, known and can be accounted for. Extrapolating with a stationary covariance
function outside the training inputs only causes the predictions to revert to the prior mean
and variance. Therefore we consider the boundary effects a minor problem for practical use.

A more severe limitation for applicability is the ‘full’ nature of the spectrum. For
high-dimensional inputs the required number of basis functions grows large. There is, how-
ever, a substantial call for GPs in low-dimensional problems, especially in medical imaging
applications (typical number of training data points in millions) and spatial problems. Fur-
thermore, the mathematical formulation of the method provides a foundation for future
sparse methods to build upon. A step in this direction has been taken by Lázaro-Gredilla
et al. (2010), which has shown good results in high-dimensional input spaces.
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Appendix A. Proofs of Convergence Theorems

A.1 Proof of Theorem 4.1

The Wiener–Khinchin identity and the symmetry of the spectral density allows us to write

k(x, x′) =
1

2π

∫ ∞
−∞

S(ω) exp(−iω (x− x′)) dω

=
1

π

∫ ∞
0

S(ω) cos(ω (x− x′)) dω.

(65)

In a one-dimensional domain Ω = [−L,L] with Dirichet boundary conditions we have an
m-term approximation of the form

k̃m(x, x′) =

m∑
j=1

S

(
π j

2L

)
1

L
sin

(
π j (x+ L)

2L

)
sin

(
π j (x′ + L)

2L

)
. (66)

We start by showing the convergence by growing the domain and therefore first consider an
approximation with an infinite number of terms m =∞:

k̃∞(x, x′) =
∞∑
j=1

S(
√
λj)φj(x)φj(x

′). (67)

Lemma A.1. There exists a constant D1 such that for all x, x′ ∈ [−L̃, L̃] we have∣∣∣∣∣
∞∑
j=1

S

(
π j

2L

)
1

L
sin

(
π j (x+ L)

2L

)
sin

(
π j (x′ + L)

2L

)

− 1

π

∫ ∞
0

S(ω) cos(ω (x− x′)) dω

∣∣∣∣∣ ≤ D1

L
. (68)

That is, ∣∣∣k̃∞(x, x′)− k(x, x′)
∣∣∣ ≤ D1

L
, for x, x′ ∈ [−L̃, L̃]. (69)

Proof. We can rewrite the summation in (68) as

∞∑
j=1

S

(
π j

2L

)
1

L
sin

(
π j (x+ L)

2L

)
sin

(
π j (x′ + L)

2L

)
(70)

=
∞∑
j=1

S

(
π j

2L

)
cos

(
π j (x− x′)

2L

)
1

2L

− 1

2L

∞∑
j=1

[
S

(
π 2j

2L

)
− S

(
π (2j − 1)

2L

)]
cos

(
π 2j (x+ x′)

2L

)

− 1

2L

∞∑
j=1

S

(
π (2j − 1)

2L

) [
cos

(
π 2j (x+ x′)

2L

)
− cos

(
π (2j − 1) (x+ x′)

2L

)]
(71)
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First consider the first term above in Equation (71). Let ∆ = π
2L , and thus it can be seen

to have the form

1

π

∞∑
j=1

S (∆ j) cos
(
∆ j (x− x′)

)
∆, (72)

which can be recognized as a Riemannian sum approximation to the integral 1
π

∫∞
0 S(ω) cos(ω (x−

x′)) dω. Because we assume that x, x′ ∈ [−L̃, L̃], the integrand and its derivatives are
bounded and because the integral

∫∞
−∞ S(ω) dω < ∞, the Riemannian integral converges,

and hence we conclude that∣∣∣∣∣
∞∑
j=1

S

(
π j

2L

)
cos

(
π j (x− x′)

2L

)
1

2L
− 1

π

∫ ∞
0

S(ω) cos(ω (x− x′)) dω

∣∣∣∣∣ ≤ D2

L
(73)

for some constant D2.

The second summation term in Equation (71) can also be interpreted as a Riemann sum
if we set ∆ = π

L :

1

2L

∞∑
j=1

[S (∆ j) − S (∆ j −∆/2)] cos
(
∆ (x+ x′)

)
=

1

2L

∞∑
j=1

1

∆
[S (∆ j) − S (∆ j −∆/2)] cos

(
∆ (x+ x′)

)
∆

≈ 1

2L

∫ ∞
0

2S′(ω) cos(ω (x+ x′)) dω. (74)

Because we assumed that also the second derivative of S(·) is bounded, the derivative and
the Riemann sum converge (alternatively, we could analyze the sums as a Stieltjes integral
with respect to a differentiable function), and hence the exists a constant D′3 such that

∣∣∣∣∣ 1

2L

∞∑
j=1

[S (∆ j) − S (∆ j −∆/2)] cos
(
∆ (x+ x′)

)
− 1

2L

∫ ∞
0

2S′(ω) cos(ω (x+ x′)) dω

∣∣∣∣∣ ≤ D′3
L

(75)

But now because
∫∞

0 2S′(ω) cos(ω (x+ x′)) dω <∞, this actually implies that

∣∣∣∣∣ 1

2L

∞∑
j=1

[
S

(
π 2j

2L

)
− S

(
π (2j − 1)

2L

)]
cos

(
π 2j (x+ x′)

2L

) ∣∣∣∣∣ ≤ D3

L
(76)
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for some constant D3. For the last summation term in Equation (71) we get the interpre-
tation

1

2L

∞∑
j=1

S

(
π (2j − 1)

2L

) [
cos

(
π 2j (x+ x′)

2L

)
− cos

(
π (2j − 1) (x+ x′)

2L

)]

≈ 1

2L

∫ ∞
0

S(ω) 2

[
d

dω
cos(ω (x+ x′))

]
dω

= − 1

2L

∫ ∞
0

S(ω) 2 (x+ x′) sin(ω (x+ x′)) dω, (77)

which by boundedness of x and x′ implies∣∣∣∣∣ 1

2L

∞∑
j=1

S

(
π (2j − 1)

2L

) [
cos

(
π 2j (x+ x′)

2L

)
− cos

(
π (2j − 1) (x+ x′)

2L

)] ∣∣∣∣∣ ≤ D4

L
(78)

for some constant D4. The result now follows by combining (73), (76), and (78) via the
triangle inequality.

Let us now return to the original question, and consider what happens when we replace
the infinite sum approximation with a finite m number of terms. We are now interested in

k̃∞(x, x′)− k̃m(x, x′) =
∞∑

j=m+1

S

(
π j

2L

)
1

L
sin

(
π j (x+ L)

2L

)
sin

(
π j (x′ + L)

2L

)
. (79)

Lemma A.2. There exists a constant D5 such that for all x, x′ ∈ [−L̃, L̃] we have∣∣∣k̃∞(x, x′)− k̃m(x, x′)
∣∣∣ ≤ D5

L
+

2

π

∫ ∞
πm
2L

S(ω) dω. (80)

Proof. Because the sinusoidals are bounded by unity, we get∣∣∣∣∣∣
∞∑

j=m+1

S

(
π j

2L

)
1

L
sin

(
π j (x+ L)

2L

)
sin

(
π j (x′ + L)

2L

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∞∑

j=m+1

S

(
π j

2L

)
1

L

∣∣∣∣∣∣ . (81)

The right-hand term can now be seen as Riemann sum approximation to the integral

∞∑
j=m+1

S

(
π j

2L

)
1

L
≈ 2

π

∫ ∞
πm
2L

S(ω) dω. (82)

Our assumptions ensure that this integral converges and hence there exists a constant D5

such that ∣∣∣∣∣
∞∑

j=m+1

S

(
π j

2L

)
1

L
− 2

π

∫ ∞
πm
2L

S(ω) dω

∣∣∣∣∣ ≤ D5

L
. (83)
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Hence by the triangle inequality we get∣∣∣∣∣
∞∑

j=m+1

S

(
π j

2L

)
1

L

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

j=m+1

S

(
π j

2L

)
1

L
− 2

π

∫ ∞
πm
2L

S(ω) dω +
2

π

∫ ∞
πm
2L

S(ω) dω

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑

j=m+1

S

(
π j

2L

)
1

L
− 2

π

∫ ∞
πm
2L

S(ω) dω

∣∣∣∣∣+
2

π

∫ ∞
πm
2L

S(ω) dω

≤ D5

L
+

2

π

∫ ∞
πm
2L

S(ω) dω (84)

and thus the result follows.

The above result can now easily be combined to a proof of the one-dimensional conver-
gence theorem as follows:

Proof of Theorem 4.1. The first result follows by combining Lemmas A.1 and A.2 via the
triangle inequality. Because our assumptions imply that

lim
x→∞

∫ ∞
x

S(ω) dω = 0, (85)

for any fixed L we have

lim
m→∞

[
E

L
+

2

π

∫ ∞
πm
2L

S(ω) dω

]
→ E

L
. (86)

If we now take the limit L→∞, the second result in the theorem follows.

A.2 Proof of Theorem 4.4

When x ∈ Rd, the Wiener–Khinchin identity and symmetry of the spectral density imply
that

k(x,x′) =
1

(2π)d

∫
Rd
S(ω) exp(−iωT(x− x′)) dω

=
1

πd

∫ ∞
0
· · ·
∫ ∞

0
S(ω)

d∏
k=1

cos(ωk (xk − x′k)) dω1 · · · dωd.

(87)

The m = m̂d term approximation now has the form

k̃m(x,x′) =

m̂∑
j1,...,jd=1

S

(
π j1
2L1

, . . . ,
π jd
2Ld

) d∏
k=1

1

Lk
sin

(
π jk (xk + Lk)

2Lk

)
sin

(
π jk (x′k + Lk)

2Lk

)
.

(88)
As in the one-dimensional problem we start by considering the case where m̂ =∞.
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Lemma A.3. There exists a constant D1 such that for all x,x′ ∈ [−L̃, L̃]d we have∣∣∣∣∣
∞∑

j1,...,jd=1

S

(
π j1
2L1

, . . . ,
π jd
2Ld

) d∏
k=1

1

Lk
sin

(
π jk (xk + Lk)

2Lk

)
sin

(
π jk (x′k + Lk)

2Lk

)

− 1

πd

∫ ∞
0
· · ·
∫ ∞

0
S(ω)

d∏
k=1

cos(ωk (x− x′)) dω1 · · · dωd

∣∣∣∣∣ ≤ D1

d∑
k=1

1

Lk
. (89)

That is, ∣∣∣k̃∞(x,x′)− k(x,x′)
∣∣∣ ≤ D1

d∑
k=1

1

Lk
for x,x′ ∈ [−L̃, L̃]d. (90)

Proof. We can separate the summation over j1 in the summation term above as follows:

∞∑
j2,...,jd=1

[ ∞∑
j1=1

S

(
π j1
2L1

, . . . ,
π jd
2Ld

)
sin

(
π j1 (x1 + L1)

2L1

)
sin

(
π j1 (x′1 + L1)

2L1

)]

×
d∏

k=2

1

Lk
sin

(
π jk (xk + Lk)

2Lk

)
sin

(
π jk (x′k + Lk)

2Lk

)
. (91)

By Lemma A.1 there now exists a constant D1,1 such that∣∣∣∣∣
∞∑
j1=1

S

(
π j1
2L1

, . . . ,
π jd
2Ld

)
sin

(
π j1 (x1 + L1)

2L1

)
sin

(
π j1 (x′1 + L1)

2L1

)

− 1

π

∫ ∞
0

S

(
ω1,

π j2
2L2

, . . . ,
π jd
2Ld

)
cos(ω1 (x1 − x′1)) dω1

∣∣∣∣∣ ≤ D1,1

L1
. (92)

The triangle inequality then gives∣∣∣∣∣
∞∑

j1,...,jd=1

S

(
π j1
2L1

, . . . ,
π jd
2Ld

) d∏
k=1

1

Lk
sin

(
π jk (xk + Lk)

2Lk

)
sin

(
π jk (x′k + Lk)

2Lk

)

− 1

πd

∫ ∞
0
· · ·
∫ ∞

0
S(ω)

d∏
k=1

cos(ωj (xk − x′k)) dω1 · · · dωd

∣∣∣∣∣ (93)

≤ D1,1

L1
+

∣∣∣∣∣ 1π
∞∑

j2,...,jd=1

∫ ∞
0

S

(
ω1,

π j2
2L2

, . . . ,
π jd
2Ld

)
cos(ω1 (x1 − x′1)) dω1

×
d∏

k=2

1

Lk
sin

(
π jk (xk + Lk)

2Lk

)
sin

(
π jk (x′k + Lk)

2Lk

)

− 1

πd

∫ ∞
0
· · ·
∫ ∞

0
S(ω)

d∏
k=1

cos(ωk (xk − x′k)) dω1 · · · dωd

∣∣∣∣∣. (94)

We can now similarly bound with respect to the summations over j2, . . . , jd which leads to a
bound of the form

D1,1

L1
+ · · ·+ D1,d

Ld
. Taking D1 = maxkD1,k leads to the desired result.
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Now we can consider what happens in the finite truncation of the series. That is, we
analyze the following residual sum

k̃∞(x,x′)− k̃m(x,x′)

=

∞∑
j1,...,jd=m̂+1

S

(
π j1
2L1

, . . . ,
π jd
2Ld

) d∏
k=1

1

Lk
sin

(
π jk (xk + Lk)

2Lk

)
sin

(
π jk (x′k + Lk)

2Lk

)
.

(95)

Lemma A.4. The exists a constant D2 such that for all x,x′ ∈ [−L̃, L̃]d we have∣∣∣k̃∞(x,x′)− k̃m(x,x′)
∣∣∣ ≤ D2

L
+

1

πd

∫
‖ω‖≥π m̂

2L

S(ω) dω, (96)

where L = mink Lk.

Proof. We can write the following bound∣∣∣∣∣
∞∑

j1,...,jd=m̂+1

S

(
π j1
2L1

, . . . ,
π jd
2Ld

) d∏
k=1

1

Lk
sin

(
π jk (xk + Lk)

2Lk

)
sin

(
π jk (x′k + Lk)

2Lk

) ∣∣∣∣∣
≤

∣∣∣∣∣
∞∑

j1,...,jd=m̂+1

S

(
π j1
2L1

, . . . ,
π jd
2Ld

) d∏
k=1

1

Lk

∣∣∣∣∣. (97)

The summation over the index j1 can now be interpreted as a Riemann integral approxi-
mation with ∆ = π

2L1
giving∣∣∣∣∣

∞∑
j1,...,jd=m̂+1

S

(
π j1
2L1

, . . . ,
π jd
2Ld

) d∏
k=1

1

Lk

− 2

π

∞∑
j2,...,jd=m̂+1

∫ ∞
π m̂
2L1

S

(
ω1,

π j2
2L2

, . . . ,
π jd
2Ld

)
dω1

d∏
k=2

1

Lk

∣∣∣∣∣ ≤ D2,1

L1
. (98)

Using a similar argument again, we get∣∣∣∣∣ 2π
∞∑

j2,...,jd=m̂+1

∫ ∞
π m̂
2L1

S

(
ω1,

π j2
2L2

, . . . ,
π jd
2Ld

)
dω1

d∏
k=2

1

Lk

− 22

π2

∞∑
j3,...,jd=m̂+1

∫ ∞
π m̂
2L1

∫ ∞
π m̂
2L2

S

(
ω1, ω2,

π j3
2L3

, . . . ,
π jd
2Ld

)
dω1 dω2

d∏
k=3

1

Lk

∣∣∣∣∣ ≤ D2,2

L2
. (99)

After repeating this for all the indexes, by forming a telescoping sum of the terms and
applying the triangle inequality then gives∣∣∣∣∣

∞∑
j1,...,jd=m̂+1

S

(
π j1
2L1

, . . . ,
π jd
2Ld

) d∏
k=1

1

Lk

−
(

2

π

)d ∫ ∞
π m̂
2L1

· · ·
∫ ∞
π m̂
2Ld

S(ω1, . . . , ωd) dω1 · · · dωd

∣∣∣∣∣ ≤
d∑

k=1

D2,k

Lk
. (100)
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Applying the triangle inequality again gives∣∣∣∣∣
∞∑

j1,...,jd=m̂+1

S

(
π j1
2L1

, . . . ,
π jd
2Ld

) d∏
k=1

1

Lk

∣∣∣∣∣
≤

d∑
k=1

D2,k

Lk
+

(
2

π

)d ∫ ∞
π m̂
2L1

· · ·
∫ ∞
π m̂
2Ld

S(ω1, . . . , ωd) dω1 · · · dωd. (101)

By interpreting the latter integral as being over the positive exterior of a rectangular hy-
percuboid and bounding it by a integral over exterior of a hypersphere which fits inside the
cuboid, we can bound the expression by

d∑
k=1

D2,k

Lk
+

1

πd

∫
‖ω‖≥π m̂

2L

S(ω) dω. (102)

The first term can be further bounded by replacing Lks with their minimum L and by
defining a new constant D2 which is d times the maximum of D2,k. This leads to the final
form of the result.

Proof of Theorem 4.4. Analogous to the one-dimensional case. That is, we combine the
results of the above lemmas using the triangle inequality.
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