CDS 101/110: Lecture 7.2
Loop Analysis of Feedback Systems

November 11 2016

Goals:
• Why Nyquist Diagrams?
• Gain margin and phase margin
• Examples!

Reading:
• Åström and Murray, Feedback Systems, Chapter 10, Sections 10.1-10.4,
What can you do with a Nyquist Analysis?

Set Up (somewhat artificial):

- **Given:** $P(s)$
 - (any unstable roots known)
- **Given:** $C(s)$
 - (any unstable roots known)
- **Q:** can negative output feedback stabilize the system (stable $G_{yr}(s)$)?

Possible Solutions:

$$G_{yr}(s) = \frac{PC}{1+PC} = \frac{n_p(s)n_c(s)}{d_p(s)d_c(s)+n_p(s)n_c(s)}$$

- Compute and check poles of G_{yr}
- Find another way to determine existence of unstable poles without computing roots of $d_p(s)d_c(s) + n_p(s)n_c(s)$

The Nyquist plot logic

- Poles of $G_{yr}(s)$ are zeros of
 $$1 + P(s)C(s) = \frac{d_p(s)d_c(s) + n_p(s)n_c(s)}{d_p(s)d_c(s)}$$
- If $G_{yr}(s)$ is unstable, then it has at least one pole in RHP
- An unstable pole of $G_{yr}(s)$ implies and unstable (RHP) zero of $1 + P(s)C(s)$
- Nyquist plot and Nyquist Criterion allow us to determine if $1 + PC$ has RHP zeros without polynomial solving.
Argument Principle
(underlying Nyquist Criterion)

As \(s \) moves clockwise around \(\Gamma \), \(L(s) \) must rotate around the origin by \(2\pi \) for each pole inside the contour, and by \(-2\pi \) for each zero inside the contour

\[
\alpha(s) = \sum_{i=1}^{m} \psi_i(s) - \sum_{j=1}^{n} \phi_j(s)
\]

As \(s \) moves clockwise around \(\Gamma \), \(L(s) \) must rotate around the origin by \(2\pi \) for each pole inside the contour, and by \(-2\pi \) for each zero inside the contour

\[
f(s) = \frac{(s - z_1)(s - z_2) \cdots (s - z_m)}{(s - p_1)(s - p_2) \cdots (s - p_n)} = \frac{r_1(s)e^{i\psi_1(s)} r_2(s)e^{i\psi_2(s)} \cdots r_m(s)e^{i\psi_m(s)}}{l_1(s)e^{i\phi_1(s)} l_2(s)e^{i\phi_2(s)} \cdots l_n(s)e^{i\phi_n(s)}}
\]

\[
= M(s)e^{i\alpha}
\]

\[
P \# \text{RHP poles of open loop } L(s) \quad (\text{from } P(s), C(s)\text{poles})
\]

\[
N \# \text{clockwise encirclements of -1} \quad (\text{from Nyquist plot})
\]

\[
Z \# \text{RHP zeros of } 1 + L(s)
\]

Then \(Z_{RHP} = N + P \)
Robust stability: gain and phase margins

Nyquist plot tells us if closed loop is stable, but not how stable

Gain margin
- How much we can modify the loop gain and still have the system be stable
- Determined by the location where the loop transfer function crosses 180° phase

Phase margin
- How much “phase delay” can be added while system remains stable
- Determined by the phase at which the loop transfer function has unity gain

Bode plot interpretation
- Look for gain = 1, 180° phase crossings
- MATLAB: margin(sys)
Nyquist Plot Example #1

\[C(s) = k \frac{s + a}{s + b} \]

\[P(s) = \frac{1}{(s+1)^3} \quad C(s) = k \frac{s+a}{s+b} \quad 1 < a < b \]

Goal #1: Is closed loop system stable?
Goal #2: Does stability vary with gain?

\[L(s) = \frac{k(s + a)}{(s + 1)^3(s + b)} \]

\[k = 5, a = 2, b = 3 \]
Nyquist Plot Example #1

\[P(s) = \frac{1}{(s+1)^3} \]

\[C(s) = k \frac{s + a}{s + b} \]

\[1 < a < b \]

Nyquist:
- \(P = 0 \)
- \(N = +2 \)
- \(Z_{RHP} = 2 \)

2 Encirclements of -1 point

Unstable!
Nyquist Plot Example #1
(alternative analysis without Nyquist)

\[L(s) = \frac{n_P(s)n_C(s)}{d_P(s)d_C(s)} = k \frac{n_P(s)n_C'(s)}{d_P(s)d_C'(s)} = k \frac{1}{(s + 1)^3} \frac{s + a}{s + b} \]

\[G_{yr}(s) = \frac{P(s)C(s)}{1 + P(s)C(s)} = k \frac{kP(s)C'(s)}{1 + kP(s)C'(s)} = \frac{k n_P(s)n_C'(s)}{d_P(s)d_C' + k n_P(s)n_C'(s)} \]

The **Root Locus** studies how the poles of \(G_{yr}(s) \) vary with \(k \)

- When \(k \to 0 \), the poles of \(G_{yr}(s) \) approach the poles of \(L(s) \)
- As \(k \to \infty \), the poles of \(G_{yr}(s) \) approach the zeros of \(L(s) \) (or infinity)

For this problem, as \(k \) increases, two of the poles of \(G_{yr}(s) \) become unstable.
Example: Proportional + Integral* speed controller

\[C(s) = K_p + \frac{K_i}{s + 0.01} \]

\[P(s) = \frac{1/m}{s + b/m} \times \frac{r}{s + a} \]

Remarks
- \(N = 0, P = 0 \Rightarrow Z = 0 \) (stable)
- Need to zoom in to make sure there are no net encirclements
- Note that we don’t have to compute closed loop response
Example: cruise control

Effect of additional sensor dynamics
- New speedometer has pole at $s = 10$ (very fast); problems develop in the field
- What’s the problem? A: insufficient phase margin in original design (not robust)

$$P(s) = \frac{1/m}{s + b/m} \times \frac{r}{s + a}$$

$$C(s) = K_p + \frac{K_i}{s + 0.01}$$

$$G(s) = \frac{10}{s + 10}$$
Preview: control design

Approach: Increase phase margin
- Increase phase margin by reducing gain ⇒ can accommodate new sensor dynamics
- Tradeoff: lower gain at low frequencies ⇒ less bandwidth, larger steady state error

\[P(s) = \frac{1}{m} \times \frac{r}{s + b/m} \times \frac{s + a}{s + c/m} \]

\[C(s) = \alpha \left(K_p + \frac{K_i}{s + 0.01} \right) \]

\[G(s) = \frac{10}{s + 10} \]