1 Groups

Definition 1.1: A Group is a non-empty set \(\mathcal{G} \), along with a binary operation, \(* \), such that for \(a, b, c \in \mathcal{G} \),

G-1) \(a * b \in \mathcal{G} \) (closure)

G-2) \((a * b) * c = a * (b * c) \) (associative)

G-3) There exists a unique element \(e \in \mathcal{G} \) such that \(a * e = e * a = a \), for every \(a \in \mathcal{G} \). (identity)

G-4) For every \(a \in \mathcal{G} \), there exists a unique element \(a^{-1} \in \mathcal{G} \) such that \(a * a^{-1} = a^{-1} * a = e \). (inverse)

Definition 1.2: A group \(\mathcal{G} \) is said to be abelian or (commutative) if \(a * b = b * a \), for all \(a, b \in \mathcal{G} \).

Remark 1.1: A non-empty set \(S \) is called a semi-group if the binary operation “*” satisfies axioms G-1 and G-2 only.

2 Rings

Definition 2.1 A Ring is a non-empty set \(\mathcal{R} \) with two binary operations: “+” and “*”, such that

R-1) \(\mathcal{R} \) forms an abelian group under the operation +, i.e., for all \(a, b, c \in \mathcal{R} \),

i) \(a + b \in \mathcal{R} \)
ii) \(a + b = b + a \)
iii) \((a + b) + c = a + (b + c) \)
iv) There is a unique identity element \(0 \in \mathcal{R} \) such that \(a + 0 = a \) for every \(a \in \mathcal{R} \).
v) There exists a unique \(-a \in \mathcal{R} \) such that \(a + (-a) = 0 \) for every \(a \in \mathcal{R} \).

R-2) \(\mathcal{R} \) forms a semi-group under the operation *, i.e.,

i) \(a * b \in \mathcal{R} \)
ii) \((a * b) * c = a * (b * c) \)
R-3) The operation $*$ is distributive with respect to $+$, i.e., for $a, b, c \in \mathbb{R}$,

$$a \ast (b + c) = a \ast b + a \ast c$$

$$(b + c) \ast a = b \ast a + c \ast a.$$

Definition 2.2

- A **Commutative Ring** is a ring \mathcal{R} that satisfies the commutative law with respect to the operation “$*$”.

- A **Ring with Unity** is a ring \mathcal{R} that has an identity element e with respect to the operation “$*$”.

- A **Division Ring** or (Skew Field) is a ring with all its non-zero elements forming a group under “$*$” operation, i.e., there exists an inverse $a^{-1} \in \mathcal{R}$ for all $a \neq 0, a \in \mathcal{R}$.

3 Fields

Definition 3.1: A **Field** \mathcal{K} is a commutative ring in which set of non-zero elements form a group under “$*$” operation.

In other words, a field \mathcal{K} is an abelian group with 0 as its identity under “$+$” operation, and $\mathcal{K} - \{0\}$ forms an abelian group with e as its identity under the “$*$” operation satisfying the distributive law: $a \ast (b + c) = a \ast b + a \ast c$ and $(a + b) \ast c = a \ast c + b \ast c$ for all $a, b, c \in \mathcal{K}$.

4 Vector Spaces

Definition 4.1: A non-empty set \mathcal{V} is said to be a **Vector Space** over a field \mathcal{K} if it consists of a set of elements termed “vectors” and two binary operations: “\oplus”, a vector addition, and “\cdot”, a scalar multiplication, such that for $\vec{u}, \vec{v}, \vec{w} \in \mathcal{V}$ and $\alpha, \beta \in \mathcal{K}$,

V-1) $\vec{u} \oplus \vec{v} \in \mathcal{V}$ (closure)

V-2) $\vec{u} \oplus \vec{v} = \vec{v} \oplus \vec{u}$ (commutative)

V-3) For all $\vec{u} \in \mathcal{V}$, there exists a unique $\vec{0} \in \mathcal{V}$ such that $\vec{u} \oplus \vec{0} = \vec{u}$.

V-4) $\vec{u} \oplus (-\vec{u}) = \vec{0}$ for every $\vec{u} \in \mathcal{V}$.

V-5) $(\vec{u} \oplus \vec{v}) \oplus \vec{w} = \vec{u} \oplus (\vec{v} \oplus \vec{w})$ (associative)

V-6) $\alpha \cdot \vec{u} \in \mathcal{V}$

V-7) $\alpha \cdot (\beta \cdot \vec{u}) = (\alpha \cdot \beta) \cdot \vec{u}$ (“\cdot” is associative).

V-8) $e \cdot \vec{u} = \vec{u}$ for all $\vec{u} \in \mathcal{V}$, where e is the identity element of \mathcal{K} under “$*$”.

2
\[V-9 \] \(\alpha \cdot (\vec{u} \oplus \vec{v}) = \alpha \cdot \vec{u} + \alpha \cdot \vec{v} \)

\[V-10 \] \((\alpha + \beta) \cdot \vec{u} = \alpha \cdot \vec{u} + \beta \cdot \vec{u} \)

Remark 4.1: The vector space \(V \) forms an abelian group under the vector addition \(\oplus \).

Remark 4.2 An \(n \)-dimensional vector space \(V \) over a field \(K \) consists of \(n \)-tuples of elements in the field \(K \), which can be written as

\[\vec{u} = (u_1, u_2, \ldots, u_n)^T \]
\[\vec{v} = (v_1, v_2, \ldots, v_n)^T, \quad \forall \vec{u}, \vec{v} \in V \]

where \(u_1, \ldots, u_n, v_1, \ldots, v_n \in K \).

The vector addition, “\(\oplus \)”, is defined by

\[\vec{u} \oplus \vec{v} = (u_1, u_2, \ldots, u_n) \oplus (v_1, v_2, \ldots, v_n) = (u_1 + v_1, u_2 + v_2, \ldots, u_n + v_n) \]

where the “\(+ \)” operator is the “\(+ \)” operator in \(K \).

And the identity for vector addition \(\oplus \) is \(\vec{0} = (0, \ldots, 0)^T \). The scalar multiplication, “\(\cdot \)”, is defined by

\[\alpha \cdot \vec{u} = (\alpha \ast u_1, \alpha \ast u_2, \ldots, \alpha \ast u_n)^T, \quad \text{for } \alpha \in K \]

where the “\(\ast \)” operator is the “\(\ast \)” operator in \(K \). One can verify that the vector addition and scalar multiplication defined above satisfy axioms V-1) to V-10). We usually write \(V = K^n \) for this case, where \(K \) is usually \(\mathbb{R} \) or \(\mathbb{C} \).

5 Algebras

Definition 5.1: An Algebra over a field \(K \), is a set \(A \), which is a vector space over \(K \) along with a vector multiplication, \(\otimes \), such that for \(a, b, c \in A \) and \(\lambda \in K \),

A-1) \(a \otimes b \in A \)
A-2) \(\lambda \cdot (a \otimes b) = (\lambda \cdot a) \otimes b = a \otimes (\lambda \cdot b) \)
A-3) \(a \otimes (b \oplus c) = a \otimes b \oplus a \otimes c \) and \((a \oplus b) \otimes c = a \otimes c \oplus b \otimes c \)

Remark 5.1: If \((a \otimes b) \otimes c = a \otimes (b \otimes c) \) holds for all \(a, b \in A \), then \(A \) is called an associative algebra.

6 References: