CS/EE/ME 75(c): Organization

- Meeting Time?
 - **General Class Meeting:** Evening, or day time?
 - Once-per-week team meeting with Joel/Grad students.
- Documentation:
 - Need to keep weekly presentations on GitLab page.
 - Need to document all results for end-of-quarter
 - Gant/Pert charts & Schedules

CS/EE/ME 75(c): Key Issues and Questions

- Time to complete and integrate!
- Teaming Structure. Keep or change?
 - Battery Swap:
 - Drive-o-Copter
 - Clutch-o-copter
 - Ground Vehicles
- Refine/Update goals

CS/EE/ME 75(c): Needs

- Battery Team:
 - Mechanical Prototype of Battery Swap Robot Mechanism
 - Mechanical Prototype of Battery Swap Structure
 - ConOps—Concept of Operations
- Drive-o-Copter
 - Complete flying control
 - "Tune" flight control system
 - Characterize flight performance and flight time
 - Weight Reduction Analysis
 - Complete "Tread-o-copter"
 - Characterize ground performance with different chasees:
 - 4-wheel skids steer, 6-motor Ackerman, swerve steer, treads/tracks

CS/EE/ME 75(c): Needs

- Clutch-o-copter:
 - Bench-top mechanical Prototype of Clutch/shift Mechanism
 - Characterize device
 - Decision Point: build prototype, or join another effort
- Ground Vehicle: hardware
 - Next generation of "Automation tower"
 - Automate RC Car (mechanical and control system)
 - Connection servos and ESC to NUC.
 - "tune" the steering and speed control systems
- Ground Vehicle: Algorithms/Software
 - Efficient planning of dynamic vehicle motions in rough terrain

- Efficient planning of dynamic vehicle motions in rough terrain
 - Efficient ways to create a model of the terrain from Lidar/Real Sense point cloud data—survey and test ideas of others
 - GP occupancy grids, elevation maps, better cost maps
 - None of them are very efficient......
 - We still haven't gotten to the core of the problem:
 - how to plan a vehicle trajectory that most rapidly moves toward a goal, or covers a given area
 - Dynamic optimization methods
 - New idea: only focus on the data you need, and therefore only convert a small portion of sensor data to a detailed map. Even
 - Wedgebug?!

Wedgebug (Laubach & Burdick 1999)

- Based on Tangent Bug
- Minimizes local path length of robot travel
- Minimizes (locally) the amount of sensing

Assumes:

goal

Sample single-view data

The "jogs" in the path after each wedge are not rover motions, but are the results of the visual localization procedure.