CS/EE/ME 75(a) Nov. 26, 2019

Today:

- Dec. 4 Class: Brett Lopez & "flight control stack"
- Tonight: Brief review of
 - estimation,
 - odometry,
 - inertial navigation,
 - SLAM, pose graph

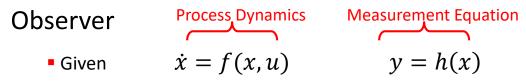
State Estimation & Mapping

Some Important questions for robot operation and SubT

- Where am I? How am I oriented?
- How fast am I moving?
- Where can I move: obstacles, or unobstructed directions of motion?
- What is the local geometry of my environment?
- What is the *global* geometry of my environment?
- How do I store information about the environment that I'm working in?
- Have I been here before?
- How do I best localize the "targets"?

State Estimation & Mapping subsystems address these questions, but not always perfectly.

Estimation & Optimal (Kalman) Filtering



Calculate, infer, deduce the state x from measurements y

• E.g. the Luenberger Observer $\dot{x} = Ax + Bu + L(y - Cx)$

Estimator

- Given $\dot{x} = f(x, u) + \xi$ $y = h(x) + \omega$
 - ξ represents *process noise/uncertainty* (e.g., gust or unmodeled effects)
 - *w* represents *measurement noise/uncertainty*
- Estimate (in an optimal) way the state x based on
 - measurements y
 - dynamic and measurement models
 - noise model(s).

Estimation Overview (continued)

Noise & Uncertainty Models for Estimation $\dot{x} = f(x, u) + \xi$ $y = h(x) + \omega(t)$ • Set-based : $\xi \in \Xi$ $\omega \in \Omega$ • Stochastic ξ and ω are random processes governed by $p(\xi)$ and $p(\omega)$

Why Estimation ?

- MANY important problems can be posed as estimation problems. E.g.:
 - Inertial Navigation
 - Localization, Mapping, SLAM
 - Sensor Processing and Fusion
 - Tracking and Prediction
 - Parameter Estimation

Specialized estimation techniques & literatures

Landmark–based Localization & Mapping

Localization: A robot explores an static environment where there are known *landmarks*.

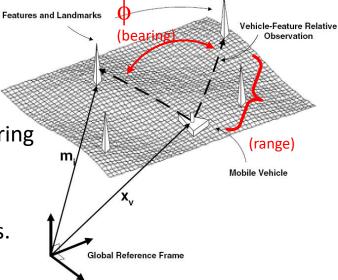
- radio beacons (Lojack)
- UWB ranging
- bar-code decals

Goal: Estimate the robot's position given range/bearing measurements

Mapping: A robot explores an unknown static environment where there are identifiable landmarks.

- doors, windows, light fixtures
- Inoleum floor patterns

Build a *map* (estimate all landmark positions), assuming robot has GPS-like localization



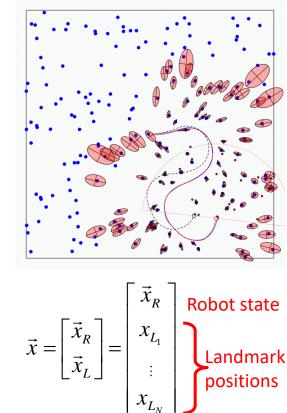
SLAM: Simultaneous Localization & Mapping

Given:

- Robot motion model: $\dot{x} = f(x, u) + \xi$
- The robot's controls, u
- Measurements (e.g., range, bearing) of nearby features: y=h(x)+ω

Estimate:

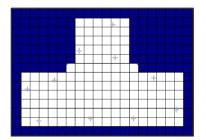
- Map of landmarks (x_L)
- Robot's current *pose*, x_R , & its path
- Uncertainties in estimated quantities



Three Major Map Models

Grid-Based:

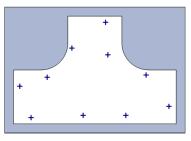
Collection of discretized obstacle/free-space pixels



Elfes, Moravec, Thrun, Burgard, Fox, Simmons, Koenig, Konolige, etc.

Feature-Based:

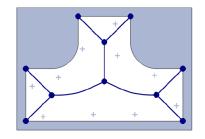
Collection of landmark locations and correlated uncertainty



Smith/Self/Cheeseman, Durrant–Whyte, Leonard, Nebot, Christensen, etc.

Topological:

Collection of nodes and their interconnections



Kuipers/Byun, Chong/Kleeman, Dudek, Choset, Howard, Mataric, etc.

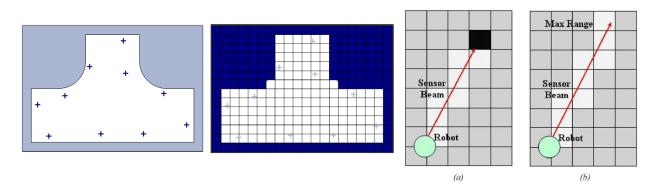
Three Major Map Models

	Grid-Based	Feature-Based	Topological
Resolution vs. Scale	Discrete localization	Arbitrary localization	Localize to nodes
Computational Complexity	Grid size and resolution	Landmark covariance (N ²)	Minimal complexity
Exploration Strategies	Frontier-based exploration	No inherent exploration	Graph exploration
			lized estimation ques & literatures

Gmapping

Occupancy Grid: "map" is a grid of "cells": $\{x_{i,j}^m\}$

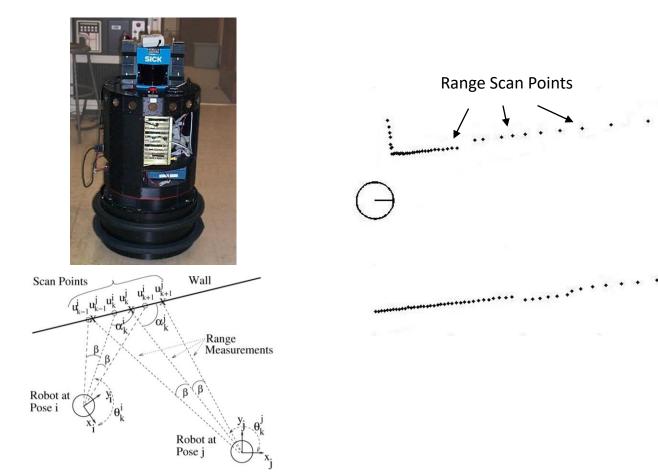
- $x_{i,j}^m = 0$ if cell (i,j) is empty; $x_{i,j}^m = 1$ if cell (i,j) is occupied
- $p\left(x_{k+1}^{r}, \{\mathbf{x}_{i,j}^{m}\}_{k+1} \middle| \mathbf{x}_{1:k}^{r}, \{\mathbf{x}_{i,j}^{m}\}_{k}, \mathbf{y}_{1:k+1}\right)$ (estimate cell occupancy probability)



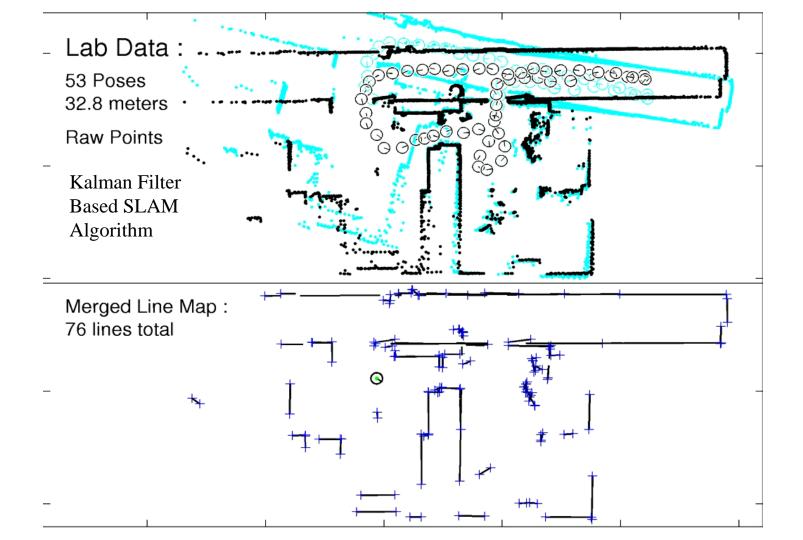
Gmapping:

- Uses a Rao-Blackwellized particle filter for estimator
- Actually computes $p\left(x_{1:T}^r, \{x_{i,j}^m\} \middle| x_{1:k}^r, x_k^m, y_{1:k+1}\right)$

Line-Based SLAM: LADAR



- O _ ____

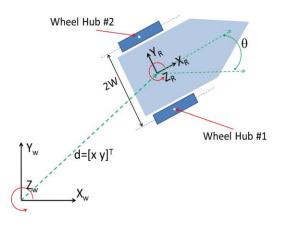


Odometry & "Wheel Odometry"

Definition: Use of on-board sensors to estimate the change in a moving vehicle's position/orientation over time.

- Wheel Odometry: use motion of the robot wheels to estimate robot displacement. Need a "kinematic model"
- Inertial Odometry: use sensors that measure inertial data (acceleration and rates of rotation) to estimate robot displacement.
- Visual odometry: use vision information to estimate robot displacement
 - Monocular & stereo cameras
 - Lidar
 - RGB-D
- Visual/Inertial Odometry (VIO): "Fuse" data from a vision sensor and the inertial sensors to get better estimates of displacement

Example: differential drive robot

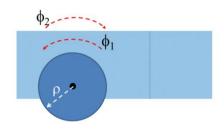


We can derive (see notes on syllabus)

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \frac{\rho}{2} \begin{bmatrix} (\dot{\phi}_2 - \dot{\phi}_1) \cos \theta \\ (\dot{\phi}_2 - \dot{\phi}_1) \sin \theta \\ -(\dot{\phi}_2 + \dot{\phi}_1)/W \end{bmatrix}$$

Which is equivalent to:

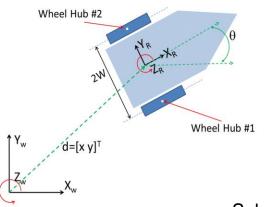
$$\begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x}\\ \dot{y}\\ \dot{\theta} \end{bmatrix} = \frac{\rho}{2} \begin{bmatrix} (\dot{\phi}_2 - \dot{\phi}_1)\\ 0\\ -(\dot{\phi}_2 + \dot{\phi}_1)/W \end{bmatrix}$$



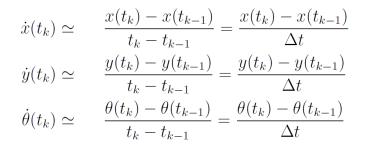
"Integrate" the kinematic equations w.r.t. time:

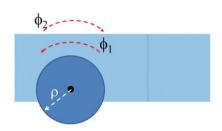
$$\begin{bmatrix} x(t) \\ y(t) \\ \theta(t) \end{bmatrix} = \begin{bmatrix} x(0) \\ y(0) \\ \theta(0) \end{bmatrix} + \int_0^t \begin{bmatrix} \dot{x}(t) \\ \dot{y}(t) \\ \dot{\theta}(t) \end{bmatrix} dt = \begin{bmatrix} x(0) \\ y(0) \\ \theta(0) \end{bmatrix} + \frac{\rho}{2} \int_0^t \begin{bmatrix} (\dot{\phi}_2(t) - \dot{\phi}_1(t)) \cos \theta(t) \\ (\dot{\phi}_2(t) - \dot{\phi}_1(t)) \sin \theta(t) \\ -(\dot{\phi}_2(t) + \dot{\phi}_1(t))/W \end{bmatrix} dt$$

Example: differential drive robot



To practically integrate these equations, we can use a *backward difference* approximation scheme:



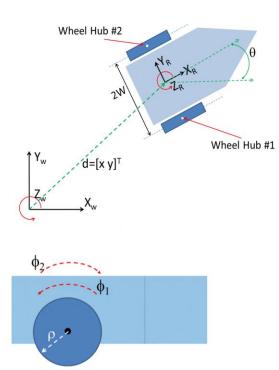


Substituting into the integration and rearranging yields:

$$\begin{bmatrix} x(t_k) \\ y(t_k) \\ \theta(t_k) \end{bmatrix} = \begin{bmatrix} x(t_{k-1}) \\ y(t_{k-1}) \\ \theta(t_{k-1}) \end{bmatrix} + \frac{\rho}{2} \begin{bmatrix} (\Delta\phi_2 - \Delta\phi_1)\cos\theta(t_{k-1}) \\ (\Delta\phi_2 - \Delta\phi_1)\sin\theta(t_{k-1}) \\ -(\Delta\phi_2 + \Delta\phi_1)/W \end{bmatrix}$$

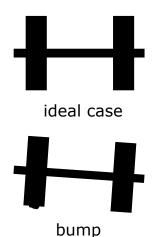
Where $\Delta \phi_i = \phi_i(t_k) - \phi_i(t_{k-1})$

Example: differential drive robot



Sources of Error:

- Wheels slip on the ground (violating assumption of derivation)
- Equations of motion are an approximation (wheels don't have zero thickness)
- Backwards-difference is an approximation
- Quantization/noise error in wheel sensor measurements



different wheel diameters

carpet

Inertial Navigation

Definition: Given the vehicle's initial position and velocity, estimate the vehicle's current position and velocity relative to the starting point, using only *proprioceptors* that measure rigid body inertial properties (e.g., accelerometers and gyroscopes).

Inertial Measurement Unit (IMU): Contains a cluster of sensors attached to a common base.

- accelerometers (typically 3 or more along orthogonal axes) measure accelerations of the sensor's body-fixed reference frame,
- gyroscopes measure the rates of sensor rotation about three orthogonal axes.
- An optional *magnetometer* measure's the earth's magnetic field (i.e., a compass)

Basic Concept: Integrate accelerometer twice to obtain velocity and position. Integrate gyro readings to estimate orientation.

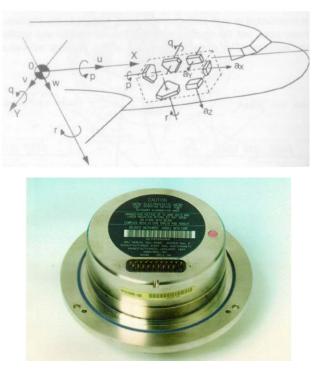
Older types of IMUs

Gimbaled: The sensor suite is mounted on a platform in a gimbal.

Mechanical Gyro: A spinning wheel will resist any change to its angular momentum vector. Maintains constant orientation if in a frictionless gimbal

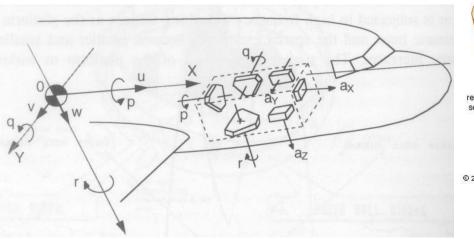
Modern IMUs

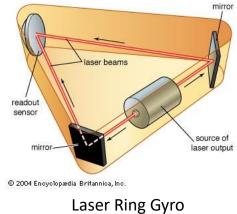
Strapdown: Mount sensor suite rigidly to the moving object of interest.



Inertial Navigation

. φ_





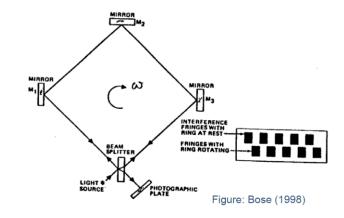
Uses Doppler effect to measure rotation rate

$$\mathbf{x} = \begin{bmatrix} p \\ \phi \\ \dot{p} \\ \dot{\phi} \\ \dot{p} \end{bmatrix} \qquad \qquad \mathbf{y} = \begin{bmatrix} \dot{\phi} \\ \dot{p} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix} \mathbf{x} = H\mathbf{x}$$

Strapdown Gyros (1)

The Sagnac-effect. The inertial characteristics of light can also be utilized, by letting two beams of light travel in a loop in opposite directions. If the loop rotates clockwise, the clockwise beam must travel a longer distance before finishing the loop. The opposite is true for the counter-clockwise beam. Combining the two rays in a detector, an interference pattern is formed, which will depend on the angular velocity.

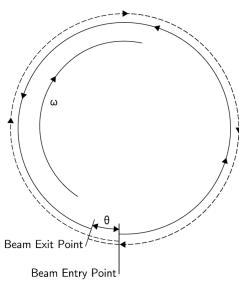
The loop can be implemented with 3 or 4 mirrors (*Ring Laser Gyro*), or with optical fibers (*Fiber Optic Gyro*).



Strapdown Gyros (2)

The Sagnac-effect. The inertial characteristics of light can also be utilized, by letting two beams of light travel in a loop in opposite directions. If the loop rotates clockwise, the clockwise beam must travel a longer distance before finishing the loop. The opposite is true for the counter-clockwise beam. Combining the two rays in a detector, an interference pattern is formed, which will depend on the angular velocity.

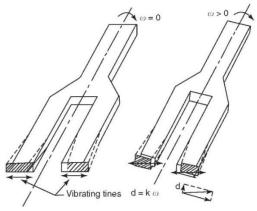
The loop can be implemented with 3 or 4 mirrors (*Ring Laser Gyro*), or with optical fibers (*Fiber Optic Gyro*).

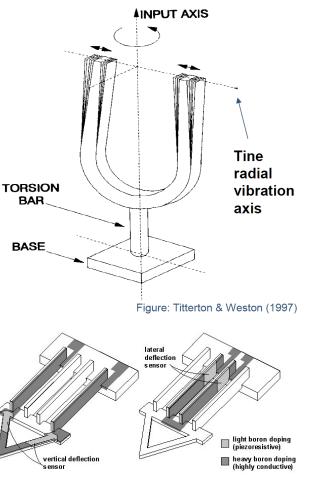


Strapdown Gyros (3)

Coriolis Effect: When a mass vibrating in a radial direction is rotated, the Coriolis effect will cause new vibrations perpendicular to the original vibration axis.

- Cheaper MEMS gyros use this principle ("tuning fork" or "wineglass")
- Less accurate than ring or fiber gyro

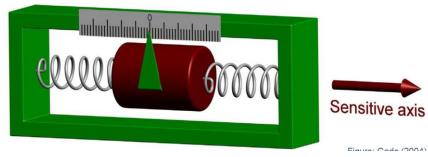


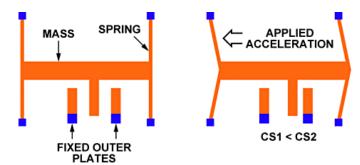


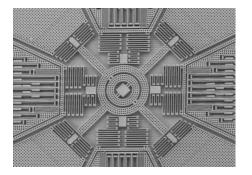
Accelerometers

Vibration: deflection of a mass on a spring yields simple acceleration signal

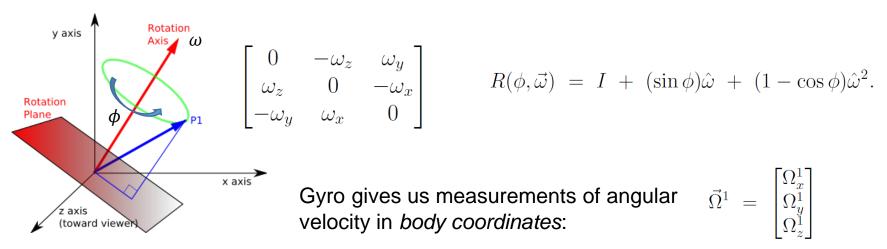
 Greater accuracy, dynamic range, and linearity can be realized by keeping mass close to nominal position—control forces are proportional to acceleration.







Summary of Inertial Odometry Equations



$$R_{WB}(t_{k+1}) = R_{WB}(t_k)e^{\Delta\phi(t_{k+1})\hat{\omega}(t_{k+1})}$$

= $R_{WB}(t_k) \left[I + \sin(\Delta\phi(t_{k+1}))\hat{\omega}(t_{k+1}) + (1 - \cos(\Delta\phi(t_{k+1})))\hat{\omega}^2(t_{k+1})\right]$
$$\Delta\phi(t_{k+1}) = ||\vec{\Omega}(t_{k+1})||^{-1} \vec{\Omega}(t_{k+1})$$

Summary of Inertial Odometry Equations

Convert acceleration measured in body frame to "world" frame

 $\vec{a}^W(t) = R_{WB}(t) \, \vec{a}^B(t)$

Calculate velocity of body holding the accelerometer (theory, practice)

$$\vec{v}_{WB}^{W} = \vec{v}_{WB}^{W}(t=0) + \int_{0}^{t} \vec{a}^{W}(\tau)d\tau \qquad \vec{v}_{WB}^{W}(t_{k+1}) = \vec{v}_{WB}^{W}(t_{k}) + R_{WB}(t_{k+1})\vec{a}^{B}(t_{k+1})\Delta t$$

Calculate the position of the body holding the accelerometer (theory, practice)

$$\vec{p}_{WB}^{W} = \vec{p}_{WB}^{W}(t=0) + \int_{0}^{t} \vec{v}_{WB}^{W}(\tau)d\tau \qquad \qquad \vec{p}_{WB}^{W}(t_{k+1}) = \vec{p}_{WB}^{W}(t_{k}) + \vec{v}_{WB}^{W}(t_{k+1}) \Delta t$$

Terrestrial Navigation

Corrections need to be added to inertial navigation when the vehicle is operating or navigation on earth, since *earth is not an inertial system*

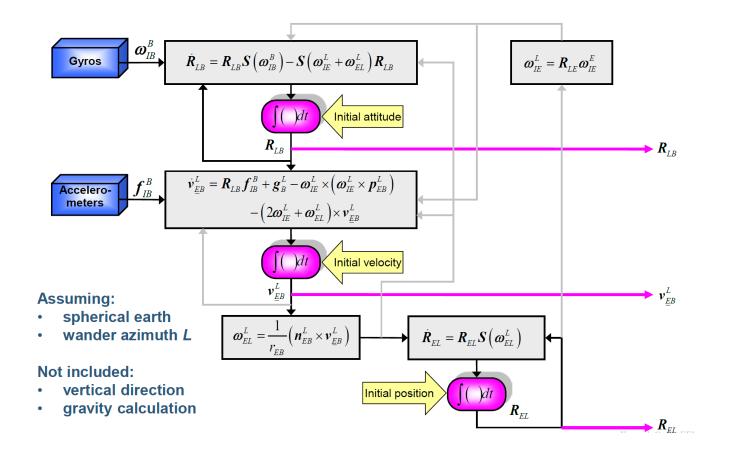
Gyros:

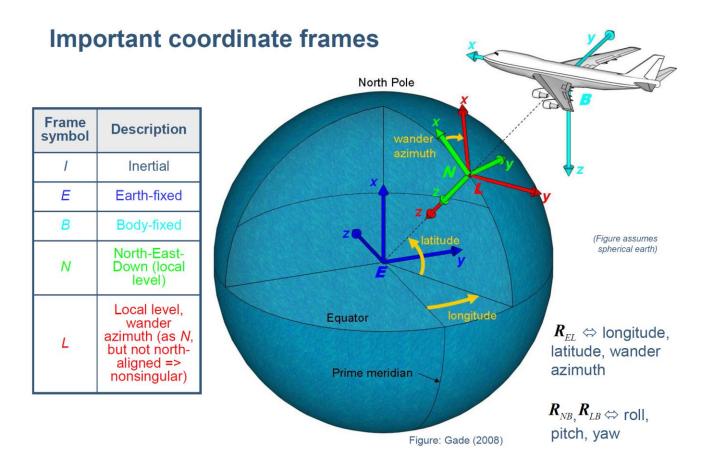
• The earth rotates: $\omega_{EB} = \omega_{IB} - \omega_{IE}$ (ω_{IE} = earth's rotation in space)

Accelerometers

- also measure gravitational acceleration
 - Let *a*_{*IB*} denote the acceleration of the body measured relative to an inertial frame.
 - Let g_B denote the gravitational acceleration
 - The *specific force*, f_{IB} , measures the acceleration in an inertial frame: $f_{IB} = a_{IB} g$
- Also measure centrifugal and Coriolis forces due to movement in earth's rotating frame.

Terrestrial Navigation





Homework

Team Tasks: (all unit levels)

• Skim through the notes on the course website