Kinematics of Motion Capture based on Quaternions

This set of notes derives a technique to estimate the displacement of a rigid body using markers placed on the body, and a camera system to track the marker positions.

1 Least Squares Solution

Assume that a rigid body lies in position \#1. A body-fixed reference frame aligns with a fixed observing reference frame in this position. Then body then displaces by a translation \vec{d}_{12} and a rotation $R_{12} \in S O(3)$ to a position $\# 2$. Assume that at least three noncolinear marker points can be identified in the body at the first position: $\left(P_{1}, P_{2}, \ldots, P_{N}\right)$. After displacements, the three points are located at $\left(Q_{1}, Q_{2}, \ldots, Q_{N}\right)$. Clearly,

$$
Q_{i}=\vec{d}_{12}+R_{12} P_{i} \quad i=1,2,3 .
$$

In a motion capture context, the points are associated with body-fixed markers, whose positions are readily measured with a camera system. However, we must expect some error in the measurement of the marker locations, which we will model as zero mean noise. Our goal is to estimate \vec{d}_{12} and R_{12} from these measurements. We will use a least squares approach to finding the displacement estimates from the noisy measurements.

Let an error, e_{i}, in the $i^{\text {th }}$ point coordinate be defined as follows:

$$
e_{i}=Q_{i}-\vec{d}_{12}-R_{12} P_{i}
$$

That is, if the location of points P_{i} and Q_{i} where measured by the camera system with no errors, and if we knew \vec{d}_{12} and R_{12} exactly, then the error e_{i} would be zero. Since measurement errors must be expected, the best estimate of the displacement is found by minimizing the following error:

$$
E=\sum_{i=1}^{N}\left\|e_{i}\right\|^{2}=\sum_{i=1}^{N}\left\|Q_{i}-\vec{d}_{12}-R_{12} P_{i}\right\|^{2}
$$

That is, the best estimate of \vec{d}_{12} and R_{12} are the ones whic minimize this error function. To simplify the evaluation of this expression, let us introduce the following centroids of the body-fixed points:

$$
\begin{equation*}
\bar{P}=\frac{1}{N} \sum_{i=1}^{N} P_{i} \quad \bar{Q}=\frac{1}{N} \sum_{i=1}^{N} Q_{i} \tag{1}
\end{equation*}
$$

and express the marker point coordinates with respect to these centroids:

$$
P_{i}^{\prime}=P_{i}-\bar{P}_{i} \quad Q_{i}^{\prime}=Q_{i}-\bar{Q}_{i}
$$

The error term e_{i} can be expressed in these adjusted coordinates as follows:

$$
e_{i}=Q_{i}-\vec{d}_{12}-R_{12} P_{i}=Q_{i}^{\prime}+\bar{Q}-\vec{d}_{12}-R_{12}\left(P_{i}^{\prime}+\bar{P}_{i}\right)=Q_{i}^{\prime}-R_{12} P_{i}^{\prime}-z
$$

where $z=-\vec{d}_{12}+\bar{Q}-R_{12} \bar{P}$. In these adjusted coordinates, the total error takes the form:

$$
\begin{equation*}
E=\sum_{i=1}^{N}\left\|Q_{i}^{\prime}-R_{12} P_{i}^{\prime}-z\right\|^{2}=\sum_{i=1}^{N}\left\|Q_{i}^{\prime}-R_{12} P_{i}^{\prime}\right\|^{2}-2 z \cdot\left(Q_{i}^{\prime}-R_{12} P_{i}^{\prime}\right)+z^{2} \tag{2}
\end{equation*}
$$

Note that the third term, z^{2}, can only be minimized if $z=0$, which implies that:

$$
\begin{equation*}
\vec{d}_{12}=\bar{Q}-R_{12} \bar{P} . \tag{3}
\end{equation*}
$$

That is, once R_{12} is known, \vec{d}_{12} can be found from Equation (3), and the expression only depends upon the centroids of the marker points.

The second term of Equation (2) vanishes since $\sum_{i=1}^{N} Q_{i}^{\prime}=\sum_{i=1}^{N} P_{i}^{\prime}=0$ by the definition of centroid.

$$
2 z \cdot \sum_{i=1}^{N}\left(Q_{i}^{\prime}-R_{12} P_{i}^{\prime}\right)=2 z \cdot\left[\sum_{i=1}^{N} Q_{i}^{\prime}-R_{12} \sum_{i=1}^{N} P_{i}^{\prime}\right]=0 .
$$

Thus, R_{12} is found by minimizing the first term of Equation (2)

$$
\begin{equation*}
R_{12}=\arg \min \sum_{i=1}^{N}\left\|Q_{i}^{\prime}-R_{12} P_{i}^{\prime}\right\|^{2} \tag{4}
\end{equation*}
$$

Note that because rotation matrices preserve the lengths of vectors, each term $Q_{i}^{\prime}-R_{12} P_{i}^{\prime}$ is minimized by aligning vector $R_{12} P_{i}^{\prime}$ with vector Q_{i}^{\prime} as closely as possible. Hence, Equation (4) is equivalent to:

$$
\begin{equation*}
R_{12}=\arg \max \sum_{i=1}^{N} Q_{i}^{\prime} \cdot\left(R_{12} P_{i}^{\prime}\right) \tag{5}
\end{equation*}
$$

As will be shown below, it is easiest to solve this optimization problem by converting it to use a quaternion representation of the rotation R_{12}.

2 Quaternion Review

Recall that a quarterion, q, takes the form

$$
q=q_{0}+q_{x} i+q_{y} j+q_{z} k
$$

where basis elements i, j, and k obey the rules:

$$
\begin{aligned}
& i^{2}=j^{2}=k^{2}=-1 \\
& i j=-j i=k \\
& i k=-k i=-j \\
& j k=-k j=i
\end{aligned}
$$

The quaternion can also be simply represented as a 4-tuple, $q=\left(q_{0}, q_{x}, q_{y}, q_{z}\right)$, with the basis elements implicit. When the context is clear we can interpret the 4 -tuple as a 4×1 vector.

If two quarternions, q and r, take the form:

$$
q=q_{0}+q_{x} i+q_{y} j+q_{z} k \quad r=r_{0}+r_{x} i+r_{y} j+r_{z} k
$$

then the product of the two quarternions takes the form:

$$
\begin{aligned}
r \cdot q= & \left(r_{0} q_{0}-r_{x} q_{x}-r_{y} q_{y}-r_{z} q_{z}\right)+\left(r_{0} q_{x}+r_{x} q_{0}+r_{y} q_{z}-r_{z} q_{y}\right) i \\
& +\left(r_{o} q_{y}-r_{x} q_{z}+r_{y} q_{0}+r_{z} q_{x}\right) j+\left(r_{0} q_{z}+r_{x} q_{y}-r_{y} q_{x}+r_{z} q_{0}\right) k
\end{aligned}
$$

Note that this product can also be represented in the following way

$$
r q=\left[\begin{array}{cccc}
r_{0} & -r_{x} & -r_{y} & -r_{z} \tag{6}\\
r_{x} & r_{0} & -r_{z} & r_{y} \\
r_{y} & r_{z} & r_{0} & -r_{x} \\
r_{z} & -r_{y} & r_{x} & r_{0}
\end{array}\right] q \triangleq \mathcal{R} q
$$

where quarternion q is treated as a 4×1 vector. In a similar way

$$
q r=\left[\begin{array}{cccc}
r_{0} & -r_{x} & -r_{y} & -r_{z} \tag{7}\\
r_{x} & r_{0} & r_{z} & -r_{y} \\
r_{y} & -r_{z} & r_{0} & r_{x} \\
r_{z} & r_{y} & -r_{x} & r_{0}
\end{array}\right] q \triangleq \overline{\mathcal{R}} q
$$

Also note that $r^{*} q=\mathcal{R}^{T} q$ and $q r^{*}=\overline{\mathcal{R}}^{T} q$, where r^{*} denotes the conjugate of $r: r^{*}=$ $\left(r_{0},-r_{x},-r_{y},-r_{z}\right)$.

Finally, let \odot denote a dot product operator between two quaternions. That is, if we interpret quaternion r as a 4×1 vector $r=\left[\begin{array}{llll}r_{0} & r_{x} & r_{y} & r_{z}\end{array}\right]$ and quaternion q as the 4×1 vector $q=\left[\begin{array}{llll}q_{0} & q_{x} & q_{y} & q_{z}\end{array}\right]$, then

$$
r \odot q=\left[\begin{array}{l}
r_{0} \\
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right] \cdot\left[\begin{array}{l}
q_{0} \\
q_{x} \\
q_{y} \\
q_{z}
\end{array}\right]=r_{0} q_{0}+r_{x} q_{x}+r_{y} q_{y}+r_{z} q_{z}
$$

3 Estimating Displacements using Quaternions

Let q_{12} be the unit quaternion which represents the same rotation as $R_{12} \in S O(3)$. Let p_{i}^{\prime} be the pure or vector quaternion that represents the vector P_{i}^{\prime}. That is,

$$
P_{i}^{\prime}=\left[\begin{array}{c}
P_{i, x}^{\prime} \\
P_{i, y}^{\prime} \\
P_{i, z}^{\prime}
\end{array}\right] \quad \Rightarrow \quad p_{i}^{\prime}=\left(0, P_{i, x}^{\prime}, P_{i, y}^{\prime}, P_{i, z}^{\prime}\right)
$$

Similarly, let $q_{i}^{\prime}=\left(0, Q_{i, x}^{\prime}, Q_{i, y}^{\prime}, Q_{i, x}^{\prime}\right)$ be the vector quaternion that represents the vector Q_{i}^{\prime}. Recall that the product of the rotation matrix $R_{12} \in S O(3)$ and the vector $P_{i}^{\prime} \in \mathbb{R}^{3}, R_{12} P_{i}^{\prime}$, can be represented in terms of quaternions as:

$$
q_{12} p_{i}^{\prime} q_{12}^{*}
$$

Hence, the least squares estimate of R_{12} in Equation (5) can be expressed as

$$
\begin{equation*}
q_{12}=\arg \max \sum_{i=1}^{N} q_{i}^{\prime} \odot\left(q_{12} p_{i}^{\prime} q_{12}^{*}\right) \tag{8}
\end{equation*}
$$

To solve Equation (8), note that (using Equation (7)) $q_{12} p_{i}^{\prime} q_{12}^{*}$ can be expressed as $\overline{\mathcal{Q}}_{12}^{T}\left(q_{12} p_{i}^{\prime}\right)$. Hence,

$$
\begin{aligned}
q_{12} & =\arg \max \sum_{i=1}^{N} q_{i}^{\prime} \odot\left(q_{12} p_{i}^{\prime} q_{12}^{*}\right)=\arg \max \sum_{i=1}^{N} q_{i}^{\prime} \odot\left(\overline{\mathcal{Q}}_{12}^{T} q_{12} p_{i}^{\prime}\right) \\
& =\arg \max \sum_{i=1}^{N}\left(\overline{\mathcal{Q}}_{12} q_{i}^{\prime}\right) \odot\left(q_{12} p_{i}^{\prime}\right)=\arg \max \sum_{i=1}^{N}\left(q_{i}^{\prime} q_{12}\right) \odot\left(q_{12} p_{i}^{\prime}\right) \\
& =\arg \max \sum_{i=1}^{N}\left(\mathcal{Q}_{i}^{\prime} q_{12}\right) \odot\left(\overline{\mathcal{P}}_{i}^{\prime} q_{12}\right)=\arg \max q_{12}^{T}\left[\sum_{i=1}^{N}\left(\mathcal{Q}_{i}^{\prime}\right)^{T} \overline{\mathcal{P}}_{i}^{\prime}\right] q_{12} \\
& \triangleq q_{12}^{T}\left[\sum_{i=1}^{n} N_{i}\right] q_{12} \triangleq q_{12}^{T} N q_{12}
\end{aligned}
$$

where matrices $\overline{\mathcal{Q}}_{i}^{\prime}$ and \mathcal{P}_{i} are patterned after Equations (6) and (7):

$$
\overline{\mathcal{P}}_{i}^{\prime}=\left[\begin{array}{cccc}
0 & -P_{i, x}^{\prime} & -P_{i, y}^{\prime} & P_{i, z}^{\prime} \tag{9}\\
P_{i, x}^{\prime} & 0 & P_{i, z}^{\prime} & -P_{i, y}^{\prime} \\
P_{i, y}^{\prime} & -P_{i, z}^{\prime} & 0 & P_{i, x}^{\prime} \\
P_{i, z}^{\prime} & P_{i, y}^{\prime,} & -P_{i, x}^{\prime} & 0
\end{array}\right] \quad \mathcal{Q}_{i}^{\prime}=\left[\begin{array}{cccc}
0 & -Q_{i, x}^{\prime} & -Q_{i, y}^{\prime} & -Q_{i, z}^{\prime} \\
Q_{i, x}^{\prime} & 0 & -Q_{i, z}^{\prime} & Q_{i, y}^{\prime} \\
Q_{i, y}^{\prime} & Q_{i, z}^{\prime} & 0 & -Q_{i, x}^{\prime} \\
Q_{i, z}^{\prime} & -Q_{i, y}^{\prime} & Q_{i, x}^{\prime} & 0
\end{array}\right]
$$

and

$$
N=\left[\begin{array}{cccc}
\left(S_{x x}+S_{y y}+S_{z z}\right) & S_{y z}-S_{z y} & S_{z x}-S_{x z} & S_{x y}-S y x \tag{10}\\
S_{y z}-S_{y z} & \left(S_{x x}-S_{y y}-S_{z z}\right) & S_{x y}+S_{y x} & S_{z x}+S_{x z} \\
S_{z x}-S_{x z} & S_{x y}+S_{y x} & \left(-S_{x x}+S_{y y}-S_{z z}\right) & S_{y z}+S_{z y} \\
S_{x y}-S_{y x} & S_{z x}+S_{x z} & S_{y z}+S_{z y} & \left(-S_{x x}-S_{y y}+S_{z z}\right)
\end{array}\right]
$$

where the 3×3 matrix S has the form:

$$
S=\left[\begin{array}{ccc}
S_{x x} & S_{x y} & S_{x z} \tag{11}\\
S_{y x} & S_{y y} & S_{y z} \\
S_{z x} & S_{z y} & S_{z z}
\end{array}\right]=\sum_{i=1}^{N} Q_{i}^{\prime}\left(P_{i}^{\prime}\right)^{T}
$$

Note that $q_{12}^{T} N q_{12}$ will be maximized with respect to q_{12} when the 4×1 vector q_{12} aligns with the eigenvector associated with the maximum eigenvalue of N.

4 Summary

Let $\left(P_{1}, P_{2}, \ldots, P_{N}\right)$ denote the positions of a set of markers attached to a rigid body in the first position (before a displacement). After the rigid body displaces to a second position, the marker locations are described by positions $\left(Q_{1}, Q_{2}, \ldots, Q_{N}\right)$. The goal is to estimate the rigid body displacement $\left(\vec{d}_{12}, R_{12}\right)$, where \vec{d}_{12} is the translation of the rigid body between the two positions, and R_{12} denotes the relative orientation of the body in the second position with respect to the first position.

Here is a brief summary of an approach that uses the derivations above:

- Compute the centroids of the points in the first and second positions from Equation (1): \bar{P} and \bar{Q}.
- Compute the coordinates of the points with respect to the centroids: $P_{i}^{\prime}=P_{i}-\bar{P}$, $Q_{i}^{\prime}=Q_{i}-\bar{Q}$, for $i=1, \ldots, N$.
- Compute the S-matrix in Equation (11)
- Compute the N-matrix, Equation (10)
- Find the eigenvector of N associated with the largest eigenvalue of N. Normalize the eigenvector to ensure that it is a unit quaternion.
- Find the equivalent rotation matrix R_{12} to the unit quaternion found in the last step.
- Find the displacement, \vec{d}_{12}, using R_{12} found in the last step and Equation (3).

