ME/CS 133(a): Homework \#3

(Due Monday Oct. 30. 2017)

Problem 1: (20 points) Do Problem 6(a,b,d,e) in Chapter 2 of the MLS text. For part (d), only carry out the problem for sub-parts (iii) and (iv).

Problem 2: (5 points) Prove, using the definition of a rigid body as a set of points, that a rigid body moving in a 3 -dimensional Euclidean space has 6 degrees-of-freedom (DOF).

Problem 3: (15 points) Do Problem 11(a,b,d) in Chapter 2 of the MLS text.

Problem 4: (15 points) Consider 2×2 complex matrices of the form:

$$
M=\left[\begin{array}{cc}
z & w \\
-w^{*} & z^{*}
\end{array}\right]=\left[\begin{array}{cc}
(a+i b) & (c+i d) \\
-(c-i d) & (a-i b)
\end{array}\right]
$$

where:

$$
\operatorname{det}(M)=z z^{*}+w w^{*}=1
$$

and $z, w \in \mathbb{C}$, and $*$ denotes complex conjugation. Such matrices form a matrix group termed the "special unitary matrices" of dimension $2, S U(2)$.

- Part (a): Show that matrices:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] \quad\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right]
$$

form a basis for $S U(2)$. The element i is $\sqrt{-1}$. I.e., all elements of $S U(2)$ can be expressed as some combination of these elements. Next show that elements of $S U(2)$ are isomorphic to the unit quaternions. That is, there is a one-to-one correspondence between each element of $S U(2)$ and a unit quaternion.

- Part (b): Show that the special unitary representation of a rotation in terms of $z-y-x$ Euler Angles can be computed as :

$$
\left[\begin{array}{cc}
\cos \frac{\psi}{2} & i \sin \frac{\psi}{2} \\
i \sin \frac{\psi}{2} & \cos \frac{\psi}{2}
\end{array}\right]\left[\begin{array}{cc}
\cos \frac{\phi}{2} & \sin \frac{\phi}{2} \\
-\sin \frac{\phi}{2} & \cos \frac{\phi}{2}
\end{array}\right]\left[\begin{array}{cc}
e^{i \frac{\gamma}{2}} & 0 \\
0 & e^{-i \frac{\gamma}{2}}
\end{array}\right]
$$

where ψ, ϕ, and γ are respectively the rotations about the z, y, and x axes.

Problem 5: (15 points) Read the instructions on how to download the ME/CS 133 Virtual Machine Environment (see the download link right below the link to this homework). Follow the instructions, and then (as detailed in the instructions) include a screenshot that demonstrates the successful completion of the download and installation.

