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Goals:
• Conclude hands-on investigation of Feedback Characteristics 
• Review basic concepts on systems modeling (Chapter 3) 
• Define a “model” and use it to answer questions about a system
• Introduce concepts of state, dynamics, inputs, and outputs

Reading: 
• Åström and Murray, Feedback Systems (2nd ed. Beta)

- Sections 2.1-2.4                       (feedback characteristics) 
- Sections 3.1-3.2,                      (review of modeling for control)
- Optional: Sections. 3.3-3.4       (more advanced modeling topics)
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Some Characteristics of Feedback

To get a “first look” at some of the issues in feedback control, last
time we looked at a simple inverted pendulum example

• Dynamical Equation:

sin
1

				 → 							

• Where α , ,

• Our feedback analysis from last time:
• Proportional feedback stabilizes, but slow response
• Proportional + Derivative allows arbitrary pole placement

What can go wrong? Unmodeled dynamics

≡
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Unmodeled Dynamics

What happens with proportional feedback?

• At equilibrium, not possible for , , 0

• There is a solution , 0, and

• Note: 	 0				 → base is always moving

Solution: Feedforward
•
• not robust, since , , , must be known

Solutions: Integral Feedback
•
• Key Idea: integrator will estimate the required bias
• System can stabilize to , , 0, even though 0
• Value of integral will converge to / without knowing , , ,
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Feedback Characteristics: Take-away

Feedback is used for
• Regulation: maintain an output variable at a fixed value
• Disturbance Rejection:
• Trajectory (Command) Tracking: (see FBS-2e, Section 2.3)

Feedback characteristics
• Feedback one or more dynamical states
• Can set behavior of feedback controlled system

• possibly set poles of closed loop system
• Can overcome unmodeled dynamics or imprecisely known system 

parameters
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Model-Based Analysis of Feedback Systems

Analysis and design based on models
• A model can predict how a system will behave
• Feedback can give counter-intuitive behavior; 

models help sort out what is going on
• For control design, models don’t have to be 

exact: feedback provides robustness

Control-oriented models: inputs and outputs

The model you use depends on the questions 
you want to answer
• A single system may have many models
• Time and spatial scale must be chosen to suit 

the questions you want to answer
• Formulate questions before building a model

Weather Forecasting

• Question 1: how much will it rain 
tomorrow?

• Question 2: will it rain in the next 
5-10 days?

• Question 3: will we have a 
drought next summer?

Different questions 
different models
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Example #1: Spring Mass System
Applications
• Flexible structures (many apps)
• Suspension systems (eg, “Bob”)
• Molecular and quantum dynamics

Questions we want to answer
• How much do masses move as a 

function of the forcing frequency?
• What happens if I change the values 

of the masses?
• Will Bob fly into the air if I take that 

speed bump at 25 mph?

Modeling assumptions
• Mass, spring, and damper constants 

are fixed and known
• Springs satisfy Hooke’s law 
• Damper is (linear) viscous force, 

proportional to  velocity

c

k3

m1 m2

q1

u(t)

q2

k2k1



Model: rigid body physics
• Sum of forces = mass * 

acceleration
• Hooke’s law: F = k(x – xrest)
• Viscous friction: F = c v
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Modeling a Spring Mass System

Convert to state space form
Construct a vector of variables that 
specify the system’s evolution
Write dynamics as a system of first order 
differential equations:

“State space form”

c

k3

m1 m2

q1

u(t)

q2

k2k1

0															 0
0															 0

1		 0
0		 1

0 0

0 0

0
0
0

1 1 0 0
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Simulation of a Mass Spring System
Steady state frequency response
• Force the system with a sinusoid
• Plot the “steady state” response, after 

transients have died out
• Plot relative magnitude and phase of 

output versus input (more later)

Matlab simulation (see handout)
function dydt = f(t, y, ...)

u = 0.00315*cos(omega*t);

dydt = [ 

y(3); 
y(4);

-(k1+k2)/m1*y(1) + k2/m1*y(2);

k2/m2*y(1) - (k2+k3)/m2*y(2)

- c/m2*y(4) + k3/m2*u ];

[t,y] = ode45(dydt,tspan,y0,[], 
k1, k2, k3, m1, m2, c, omega);

Frequency Response
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More General Forms of Differential Equations
State space form

Higher order, linear ODE

•x = state; nth order
•u = input; will usually set p = 1
•y = output; will usually set q = 1

General form Linear system
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Modeling Terminology
State captures effects of the past
• independent physical quantities that  

determines future evolution (absent 
external excitation)

Inputs describe external excitation 
• Inputs are extrinsic to the system 

(externally specified)

Dynamics describes state evolution
• update rule for system state 
• function of current state and any 

external inputs

Outputs describe measured quantities
• Outputs are function of state and 

inputs ⇒ not independent variables
• Outputs are often subset or mixture of 

state

Example: spring mass system
 State: position and velocities of each 

mass: 
Input: position of spring at right end of 
chain: u(t)
Dynamics: basic mechanics
Output: measured positions of the 

masses: 

c
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Modeling Properties
Choice of state is not unique
• There may be many choices of 

variables that can act as the state
• Trivial example: different choices 

of units (scaling factor)
• Less trivial example: sums and 

differences of the mass positions

Choice of inputs, outputs depends on point of view
• Inputs: what factors are external to the model that 

you are building
- Inputs in one model might be outputs of another 

model (eg, the output of a cruise controller 
provides the input to the vehicle model)

• Outputs: what physical variables (often states) 
can you measure

- Choice of outputs depends on what you can sense 
and what parts of the component model interact 
with other component models

Can also have different 
types of models
• Ordinary differential 

equations for rigid body 
mechanics

• Finite state machines for 
manufacturing, Internet, 
information flow

• Partial differential 
equations for fluid flow, 
solid mechanics, etc
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Differential Equations
Differential equations model continuous evolution of state variables 
• Describe the rate of change of the state variables
• Both state and time are continuous variables

Example: electrical power grid

State:
Inputs:

Outputs:

rotor angles, velocities (         )

Swing equations

Describe how generator rotor angles (i) interact 
through the transmission line (G, B) and power 
load Pi
 Stability of these equations determines how 

loads on the grid are accommodated

power loading on the grid ( Pi )
voltage levels and frequency (based on rotor speed)

Parameters: additional constants required to describe dynamics (B, G, ω0)
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Difference Equations
Difference equations model discrete transitions between continuous variables
• “Discrete time” description (clocked transitions)
• New state is function of current state + inputs
• State is represented as a continuous variable

Example: predator prey dynamics Questions we want to answer
• Given the current population of hares and 

lynxes, what will it be next year?
• If we hunt down lots of lynx in a given 

year, how will the populations be affected?
• How do long term changes in the amount 

of food available affect the populations?

Modeling assumptions
• Track population annually (discrete time)
• The predator species is totally dependent 

on the prey species as its only food supply 
• The prey species has an external food 

supply and no threat to its growth other 
than the predator. 
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Example #2: Predator Prey Modeling
Discrete Lotka-Volterra model
• State

- H[k] # of rabbits in period k
- L[k] # of foxes in period k

• Inputs (optional)
- u[k] amount of rabbit food

• Outputs: # of rabbits and foxes
• Dynamics: Lotka-Volterra eqs

• Parameters/functions
- br(u) hare birth rate (per period);

depends on food supply
- df lynx mortality rate (per period)
- a, c interaction terms

MATLAB simulation
 Discrete time model, “simulated” 

through repeated addition

Comparison with data


