
ME/CS 133(a): Solution to Homework #1
(Fall 2018/2019)

Solution to Problem 1:

Let the 2× 1 vectors 1~v =
[
1v1

1v2
]T

and 2~v =
[
2v1

2v2
]T

have associated complex repre-
sentations 1ṽ = 1v1 + i 1v2 and 2ṽ = 2v1 + i 2v2 respectively (where i2 = −1). Recall that
the goal of this problem is to show that the complex number formula:

1ṽ = d̃12 + eiθ12 2ṽ . (1)

is equivalent to the planar coordinate transformation:

1~v = ~d12 +R(θ12)
2~v . (2)

Let’s evaluate the right hand side of expression (1) using the standard rules for multiplication
of complex numbers1:

d̃12 + eiθ12 2ṽ = (x+ iy) + (cos θ12 + i sin θ12)(
2v1 + i 2v2)

= (x+ 2v1 cos θ12 − 2v2 sin θ12) + i(y + 2v1 sin θ12 + 2v2 cos θ12) (3)

where we have used Euler’s formula (eiθ = cos θ + i sin θ). Matching the real and complex
portions of Equation (3) with the real and complex parts of 1ṽ in the left hand side of
Equation (1), we see that

1v1 = x+ 2v1 cos θ − 2v2 sin θ (4)
1v2 = y + 2v1 sin θ + 2v2 cos θ . (5)

These equations are equivalent to

1~v = ~d12 +

[
cos θ12 − sin θ12
sin θ12 cos θ12

]
2~v (6)

Solution to Problem 2: Recall that the location of the pole is fixed in both the moving and
observer reference frames. Hence, before displacement, the pole is located at some position
B~p as seen by an observer in the fixed B frame. After displacement, the observer in the body
fixed C frame also sees the pole in his/her coordinates at point B~p. However, the moving

body has displaced relative to the fixed observer by amount D12 = (~d12, R12). But points in
the observer and displaced reference frames are related by a coodinate transform. Since the
pole is at the same location in both the fixed and moving frames, it must be true that:

B~p = ~d12 +R12
B~p.

This equation can be solved to find the pole location:

B~p = (I −R12)
−1~d12

1If ã = a1 + ia2 and b̃ = b1 + ib2, then ãb̃ = (a1b2 − a2b2) + i(a1b2 + a2b1).
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Of course, the matrix (I − R12) must be invertible,which will alwas be true except when
R12 = I. In this case, the motion is a pure translation, which is viewed as a rotation about
the “pole at infinity.”

B) In Frame B, the pole is located at: B~p = (I −R12)
−1~d12

C) In Frame C, the vector describing the pole has exactly the same value as seen by the

observer in Frame B: C~p = (I −R12)
−1~d12

A) In Frame A, the expression for the pole vector is obtained by a simple coordinate trans-

formation of the expression in Frame B: A~p = ~d01 +R01
B~p = ~d01 +R01(I −R12)

−1~d12

Problem 3: To find the pole of the displacement: D2 = (x, y, θ) = (3.0, 2.0, 45.0o), substi-
tute into the above results:

B~p = (I −R12)
−1~d12 =

[(
1 0
0 1

)
−
(

cos(45o) − sin(45o)
sin(45o) cos(45o)

)]−1 [
3.0
2.0

]
=

[
1−

√
2
2

√
2
2

−
√
2
2

1−
√
2
2

]−1 [
3.0
2.0

]
=

[
?
?

]
(7)

You could report this result in Frame B, or transform the results to frame A.

A~p = ~d01 +R01
B~p =

[
2.0
2.0

]
+

(
cos(20o) − sin(20o)
sin(20o) cos(20o)

)[
?
?

]
(8)

=

[
?
?

]
(9)

Problem 4: To show that a transformation is a pure rotation when viewed in a reference
frame at the pole, select a new reference frame, denoted by D, whose basis vectors are parallel
to Frame B and whose origin lies at the pole of the displacement. Let ~p denote the location
of the pole, as seen by an observer in Frame B. The location of Frame B relative to Frame
D is a pure translation of amount −1~p, and therefore, DDB = (−~p, I). The displacement
of the body from the first position to the second position, as now observed in Frame D, is
obtained by a similarity transform DDBD12D

−1
DB:

DDBD12D
−1
DB = (−~p, I)(~d12, R12)(−~p, I)−1 (10)

= (−~p, I)(~d12, R12)(+~p, I) (11)

= (−~p, I)((~d12 +R12~p), R12) (12)

= ((~d12 + (R12 − I)~p), R12) (13)

Hence, if ~p = −(R12−I)−1~d12 = (I−R12)
−1~d12, then DDBD12D

−1
DB = (~0, R12). I.e., as viewed

in reference Frame D, the displacement is a pure rotation by amount R12.
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Problem 5:

Part (a): There are many ways that one can prove that reflections preserve length. Here
is one approach (see Figure 1).

Figure 1: Geometry of Planar Rigid Body Reflection

Select any two non-identical points, A and B, in a rigid body. After reflection, those points
become A

′
and B

′
. Form the right triangle ABD, where the line BD is chosen to be

perpendicular to the line AA
′
. Similary, in the reflected body, form the right triangle A

′
B

′
D

′
.

Simple geometric arguments show that since the distance |BD| and |B′
D

′ | are equal, and
the distances |AD| and |A′

D
′ | are equal, then |AB| = |A′

B
′|. Hence, the distance between

A and B is preserved under reflection. Since A and B were chosen randomly, the result will
hold for any non-identical pair of points in the body. Thus, distance is always preserved
under reflection.

Part (b): Generally, physically meaningful planar displacements are not equivalent to a
single reflection. To see this, define three points (A,B,C) in the body of Figure 1. Because
the body is rigid, one can think of points (A,B,C) as forming a rigid triangle. Consider the
triangle formed from the reflected points (A

′
, B

′
, C

′
). Note that it is impossible physically

translate (A,B,C) to (A
′
, B

′
, C

′
). Finally, note that any rigid body planar displacement can

generally be realized as the result of two sequential reflections.

Problem 6: (Problem 2.10(a,b,c) in MLS)

Part (b): If ω ∈ R, then let:

ω̂ =

[
0 −ω
ω 0

]
= ωJ where J =

[
0 −1
1 0

]
.

Note that:
ω̂2 = −ω2I; ω̂3 = ω3J

3



Hence:
eω̂θ = I + ωθJ + (ωθ)2

2!
J2 + (ωθ)3

3!
J3 + · · ·

= I + (ωθ)J − (ωθ)2

2!
I − (ωθ)3

3!
J + · · ·

= (1 + (ωθ)2

2!
+ (ωθ)4

4!
+ · · · )I + (ωθ − (ωθ)3

3!
+ · · · )J

= cos(ωθ)I + sin(ωθ)J

=

[
cos(ωθ) − sin(ωθ)
sin(ωθ) cos(ωθ)

]
We can think of the map exp : so(2) → SO(3) as embedding a planar rotation into SO(3),
where we have chosen the axis of rotation to be perpendicular to the x-y plane:cos(ωθ) − sin(ωθ) 0

sin(ωθ) cos(ωθ) 0
0 0 1

 .
Clearly this map can not be surjective, since there are many rotations in SO(3) which can
not be expressed as the exponential of an element in so(2). If we assume that the product
ωθ is nonzero except at θ = 0 (i.e., assume that ω 6= 0 and θ ∈ [−π, π]), then the map is not
injective since exp(ωθ) = exp(ωθ + 2π).

Part (c): This can be shown by brute-force calculation. If R ∈ SO(2) then:

Rω̂RT =

[
cos θ − sin θ
sin θ cos θ

] [
0 −ω
ω 0

] [
cos θ sin θ
− sin θ cos θ

]
= ω

[
cos θ − sin θ
sin θ cos θ

] [
sin θ − cos θ
cos θ sin θ

]
= ω

[
0 −(cos2 θ + sin2 θ)

(sin2 θ + cos2 θ) 0

]
= ω

[
0 −1
1 0

]
= ω̂
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