

CDS 101/110: Lecture 9.1 Frequency DomainLoop Shaping

November 23, 2016

Goals:

- Review Basic Loop Shaping Concepts
- Work through example(s)

Reading:

- Åström and Murray, Feedback Systems 2-e, Section 12.1, 12.2-12.4, 12.6
- I.e., we are not going to cover Section 12.2 (feedforward design) and 12.5 (root locus).
- Section 12.6 will be mainly discussed next week.

General Loop Transfer Functions

2

Key Loop Transfer Functions

F(*s*) = 1: Four unique transfer functions define performance ("Gang of Four")

Sensitivity: Function	$G_{er} = S(s) = \frac{1}{1 + L(s)}$	L(s) = P(s)C(s)
Complementary Sensitivity Function:	$G_{yr} = T(s) = \frac{L(s)}{1+L(s)}$	"Gang of Four"
Load Sensitivity Function:	$G_{yd} = PS(s) = \frac{P(s)}{1+L(s)}$	(the "sensitivity" functions)
Noise Sensitivity Function:	$G_{yn} = CS(s) = \frac{C(s)}{1+L(s)}$	Characterize most performance criteria of interest

Rough Loop Shaping Design Process

A Process: sequence of (nonunique) steps

- **1. Start with plant and performance specifications**
- 2. If plant not stable, first stabilize it (e.g., PID)
- 3. Adjust/increase simple gains
 - Increase proportional gain for tracking error
 - Introduce integral term for steady-state error
 - Will derivative term improve overshoot?

4. Analyze/adjust for stability and/or phase margin

- Adjust gains for margin
- Introduce Lead or Lag Compensators to adjust phase margin at crossover and other critical frequencies
- Consider PID if you haven't already

Summary of Specifications

Key Idea: convert closed loop specifications on

$$G_{yr}(s) = \frac{P(s)C(s)}{1 + P(s)C(s)} = \frac{L(s)}{1 + L(s)}$$

to equivalent specifications on *loop* system L(s)

• Time domain spec.s can often be converted to frequency domain spec.s

Steady-state tracking error < *X*%

Tracking error < Y% up to frequency f_t Hz

Bandwidth of ω_b rad/sec

Usually needed for rise/settling time spec.

- $\Rightarrow |L(0)| > 1/X$
- $\Rightarrow |L(i\omega)| > 1/Y \text{ for } \omega < 2\pi f_t$

$$\Rightarrow |L(i\omega_b)| = 1$$

Summary of Specifications

Overshoot < Z%

Phase/Gain margins (Specified Directly)

- For robustness
- Typically, at least gain margin of 2 (6 dB)
- Usually, phase margin of 30-60 degrees

"Loop Shaping": Design Loop Transfer Function

Translate specs to "loop shape" L(s) = P(s)C(s)

Design L(s) to obey constraints

- High gain at low frequency
 - Good Steady-state error
 - Good disturbance rejection at low freqs.
 - Decent tracking in bandwidth

Low gain at high frequency

- Avoid amplifying noise
 Sufficiently high bandwidth
 - Good rise/settling time

Shallow slope at crossover

Sufficient phase margin for robustness, low overshoot

Loop shaping is *trial and error*

Additional Loop Shaping Concepts

- Want to make sure that H_{un} is small (avoid amplifying noise)
- Typically generates constraints in high frequency range

Robustness: gain and phase margin

- Focus on gain crossover region: make sure the slope is "gentle" at gain crossover
- Fundamental tradeoff: transition from high gain to low gain through crossover

Design Method #1: Process Inversion

Simple trick: invert out process

- Write performance specs in terms of desired loop transfer function
- Choose L(s) to satisfy specifications
- Choose controller by inverting P(s)

C(s) = L(s)/P(s)

Pros

- Simple design process
- L(s) = k/s often works very well
- Can be used as a first cut, with additional tuning

Cons

- High order controllers (at least same order as plant)
- Requires "perfect" process model (due to inversion)
- Can generate non-proper controllers (order(num) > order(den))
 - Difficult to implement, plus amplifies noise at high frequency ($C(\infty) = \infty$)
 - Fix by adding high frequency poles to roll off control response at high frequency
- Does not work if right half plane poles or zeros (internal instability)

Lead & Lag Compensators

Lead: K > 0, a < b

- Add phase near crossover
- Improve gain & phase margins, increase bandwidth (better transient response).

Lag: K > 0, a> b

- Add gain in low frequencies
- Improves steady state error

Lead/Lag:

• Better transient and steady state response

Lead & Lag Compensators

Lead: adds phase, ϕ_m at:

- $\omega = \sqrt{ab}$
- $\phi_m = 90^o 2 \tan^{-1} \sqrt{\frac{a}{b}}$

Lag: reduces steady state error by factor of a/b

Design Method #2: Add Lead, Lag, Lead/Lag compensation

Lead: increases phase in frequency band

- Effect: lifts phase by increasing gain at high frequency
- Increases PM
- Bode: add phase between zero and pole
- Nyquist: increase phase margin

 $a < b \qquad K > 0$

Example: Lead Compensation for Second Order System

System description

$$P(s) = rac{p_1 p_2}{(s+p_1)(s+p_2)}$$

• Poles: $p_1 = 1, p_2 = 5$

Control specs

- Track constant reference with error < 1%
- Good tracking up to 100 rad/s (less than 10% error)
- Overshoot less than 10%
 - Gives PM of ~60 deg

Try a lead compensator

$$C(s) = K \frac{s+a}{s+b}$$

- Want gain cross over at approximately 100 rad/sec => center phase gain there
- Set zero frequency gain of controller to give small error $\Rightarrow |L(0)| > 100$
- a = 20, b = 500, K = 10,000 (gives |C(0)| = |L(0)| = 400)

Example: Third Order System

System description

$$P(s) = \frac{1}{(s+1)^3}$$

• Poles: *p*_{1,2,3} = -1

Control specs

- Steady state error < 1%
- <10% tracking error up to 10 rad/s</p>
- 0.8 sec settling time
- Overshoot less than 10%
 - Gives PM of ~60 deg

First Cut:

- Need to boost low frequency gain
- Need to increase bandwidth
- Need to increase phase at higher frequency

Example: Third Order System (2)

Start with"P" of PID control

- $k_p = 100$
- Closed loop system is unstable
- Bandwidth too low

Next: PD Control

- $k_p = 100, k_d = 70$
- Closed loop system is stable
- Phase margin 10^o at 8.3 rad/sec
 - Oscillatory step response
- Tracking requirement not met

Can "I" in PID help?

• adds -90° phase!

= -21.9 dB (at 1.73 rad/s) Pm = -52.7 deg (at 4.53 rad

Example: Third Order System (3)

Can "I" in PID help?

Can create stable system which meets steady-state spec., but not phase margin (and overshoot) & bandwidth

PD + *Lead* compensator?

•
$$k_p = 100, \ k_d = 70$$

• Lead compensator reduces low frequency gain (& bandwidth) $C_{lead}(s) = \frac{s+a}{s+b}$ a = 2.5, b = 17.5

Bode plot for Lead

Bode plot for L(s)

Example: Third Order System (4)

PD + Lead compensator

- Increase proportional gain to compensate for Lead at low frequency.
- Not enough bandwidth to meet tracking spec.
- Live with it, or keep searching

Bode plot for L(s)

Almost meets spec.s

Example: Third Order System (5)

Summary: Loop Shaping

Loop Shaping for Stability & Performance

- Steady state error, bandwidth, tracking response
- Specs can be on any input/output response pair

Things to remember (for homework and exams)

- Always plot Nyquist to verify stability/robustness
- Check gang of 4 to make sure that noise and disturbance responses also look OK

Main ideas

- Performance specs give bounds on loop transfer function
- Use controller to shape response
- Gain/phase relationships constrain design approach
- Standard compensators: proportional, lead, PI

