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Abstract: Gaussian process state-space models (GP-SSMs) are a very flexible family of models
of nonlinear dynamical systems. They comprise a Bayesian nonparametric representation of
the dynamics of the system and additional (hyper-)parameters governing the properties of
this nonparametric representation. The Bayesian formalism enables systematic reasoning about
the uncertainty in the system dynamics. We present an approach to maximum likelihood
identification of the parameters in GP-SSMs, while retaining the full nonparametric description
of the dynamics. The method is based on a stochastic approximation version of the EM
algorithm that employs recent developments in particle Markov chain Monte Carlo for efficient
identification.
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1. INTRODUCTION

Inspired by recent developments in robotics and machine
learning, we aim at constructing models of nonlinear
dynamical systems capable of quantifying the uncertainty
in their predictions. To do so, we use the Bayesian system
identification formalism whereby degrees of uncertainty
and belief are represented using probability distributions
(Peterka, 1981). Our goal is to identify models that provide
error-bars to any prediction. If the data is informative
and the system identification unambiguous, the model
will report high confidence and error-bars will be narrow.
On the other hand, if predictions are made in operating
regimes that were not present in the data used for system
identification, we expect the error-bars to be larger.

Nonlinear state-space models are a very general and widely
used class of dynamical system models. They allow for
modeling of systems based on observed input-output data
through the use of a latent (unobserved) variable, the state

xt ∈ X , Rnx . A discrete-time state-space model (SSM)
can be described by

xt+1 = f(xt,ut) + vt, (1a)

yt = g(xt,ut) + et, (1b)

where yt represents the output signal, ut is the input
signal, and vt and et denote i.i.d. noises. The state tran-
sition dynamics is described by the nonlinear function f
whereas g links the output data at a given time to the
latent state and input at that same time. For convenience,
in the following we will not explicitly represent the inputs
in our formulation. When available, inputs can be straight-
forwardly added as additional arguments to the functions
f and g.

A common approach to system identification with nonlin-
ear state-space models consists in defining a parametric
form for the functions f and g and finding the value of the
parameters that minimizes a cost function, e.g. the neg-
ative likelihood. Those parametric functions are typically
based on detailed prior knowledge about the system, such
as the equations of motion of an aircraft, or belong to a
class of parameterized generic function approximators, e.g.
artificial neural networks (ANNs). In the following, it will
be assumed that no detailed prior knowledge of the system
is available to create a parametric model that adequately
captures the complexity of the dynamical system. As a
consequence, we will turn to generic function approxima-
tors. Parametrized nonlinear functions such as radial basis
functions or other ANNs suffer from both theoretical and
practical problems. For instance, a practitioner needs to
select a parametric structure for the model, such as the
number of layers and the number of neurons per layer in a
neural network, which are difficult to choose when little is
known about the system at hand. On a theoretical level,
fixing the number of parameters effectively bounds the
complexity of the functions that can be fitted to the data
(Ghahramani, 2012). In order to palliate those problems,
we will use Gaussian processes (Rasmussen and Williams,
2006) which provide a practical framework for Bayesian
nonparametric nonlinear system identification.

Gaussian processes (GPs) can be used to identify nonlinear
state-space models by placing GP priors on the unknown
functions. This gives rise to the Gaussian Process State-
Space Model (GP-SSM) (Turner et al., 2010; Frigola et al.,
2013) which will be introduced in Section 2. The GP-
SSM is a nonparametric model, though, the GP is in
general governed by a (typically) small number of hyper-
parameters, effectively rendering the model semiparamet-
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ric. In this work, the hyper-parameters of the model will
be estimated by maximum likelihood, while retaining the
full nonparametric richness of the system model. This is ac-
complished by analytically marginalizing out the nonpara-
metric part of the model and using the particle stochas-
tic approximation EM (PSAEM) algorithm by Lindsten
(2013) for estimating the parameters.

Prior work on GP-SSMs includes (Turner et al., 2010),
which presented an approach to maximum likelihood esti-
mation in GP-SSMs based on analytical approximations
and the parameterization of GPs with a pseudo data
set. Ko and Fox (2011) proposed an algorithm to learn
(i.e. identify) GP-SSMs based on observed data which
also used weak labels of the unobserved state trajectory.
Frigola et al. (2013) proposed the use of particle Markov
chain Monte Carlo to provide a fully Bayesian solution
to the identification of GP-SSMs that did not need a
pseudo data set or weak labels about unobserved states.
However, the fully Bayesian solution requires priors on the
model parameters which are unnecessary when seeking a
maximum likelihood solution. Approaches for filtering and
smoothing using already identified GP-SSMs have also
been developed (Deisenroth et al., 2012; Deisenroth and
Mohamed, 2012).

2. GAUSSIAN PROCESS STATE-SPACE MODELS

2.1 Gaussian Processes

Whenever there is an unknown function, GPs allow us to
perform Bayesian inference directly in the space of func-
tions rather than having to define a parameterized family
of functions and perform inference in its parameter space.
GPs can be used as priors over functions that encode vague
assumptions such as smoothness or stationarity. Those
assumptions are often less restrictive than postulating a
parametric family of functions.

Formally, a GP is defined as a collection of random
variables, any finite number of which have a joint Gaussian
distribution. A GP f(x) ∈ R can be written as

f(x) ∼ GP
(
m(x), k(x,x′)

)
, (2)

where the mean function m(x) and the covariance function
k(x,x′) are defined as

m(x) = E[f(x)], (3a)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (3b)

A finite number of variables from a Gaussian process follow
a jointly Gaussian distributionf(x1)
f(x2)

...

 ∼ N

m(x1)
m(x2)

...

 ,
k(x1,x1) k(x1,x2)
k(x2,x1) k(x2,x2)

. . .


 .

(4)
We refer the reader to (Rasmussen and Williams, 2006)
for a thorough exposition of GPs.

2.2 Gaussian Process State-Space Models

In this article we will focus on problems where there
is very little information about the nature of the state
transition function f(xt) and a GP is used to model

it. However, we will consider that more information is
available about g(xt) and hence it will be modeled by
a parametric function. This is reasonable in many cases
where the mapping from states to observations is known,
at least up to some parameters.

The generative probabilistic model for the GP-SSM is fully
specified by

ft+1 | xt ∼ GP
(
mθx(xt), kθx(xt,x

′
t)
)
, (5a)

xt+1 | ft+1 ∼ N (xt+1 | ft+1,Q), (5b)

yt | xt ∼ p(yt | xt,θy), (5c)

where ft+1 = f(xt) is the value taken by the state
xt+1 after passing through the transition function, but
before the application of process noise vt+1. The Gaussian
process in (5a) describes the prior distribution over the
transition function. The GP is fully specified by its mean
function mθx(x) and its covariance function kθx(xt,x

′
t),

which are parameterized by the vector of hyper-parameters
θx. Equation (5b) describes the addition of process noise
following a zero-mean Gaussian distribution of covari-
ance Q. We will place no restrictions on the likelihood
distribution (5c) which will be parameterized by a finite-
dimensional vector θy. For notational convenience we
group all the (hyper-)parameters into a single vector θ =
{θx,θy,Q}.

3. MAXIMUM LIKELIHOOD IN THE GP-SSM

Maximum likelihood (ML) is a widely used frequentist
estimator of the parameters in a statistical model. The ML

estimator θ̂
ML

is defined as the value of the parameters
that makes the available observations y0:T as likely as
possible according ot,

θ̂
ML

= arg max
θ

p(y0:T | θ). (6)

The GP-SSM has two types of latent variables that need
to be marginalized (integrated out) in order to compute
the likelihood

p(y0:T | θ) =

∫
p(y0:T ,x0:T , f1:T | θ) dx0:T df1:T

=

∫
p(y0:T | x0:T ,θ)

(∫
p(x0:T , f1:T | θ) df1:T

)
dx0:T .

(7)

Following results from Frigola et al. (2013), the latent vari-
ables f1:T can be marginalized analytically. This is equiv-
alent to integrating out the uncertainty in the unknown
function f and working directly with a prior over the
state trajectories p(x0:T | θ) that encodes the assumptions
(e.g. smoothness) of f specified in (5a). The prior over
trajectories can be factorized as

p(x0:T | θ) = p(x0 | θ)

T∏
t=1

p(xt | θ,x0:t−1). (8)

Using standard expressions for GP prediction, the one-step
predictive density is given by

p(xt | θ,x0:t−1) = N
(
xt | µt(x0:t−1),Σt(x0:t−1)

)
, (9a)

where

µt(x0:t−1) = mt−1 + Kt−1,0:t−2K̃
−1
0:t−2 (x1:t−1 −m0:t−2),

(9b)

Σt(x0:t−1) = K̃t−1 −Kt−1,0:t−2K̃
−1
0:t−2K

>
t−1,0:t−2, (9c)



for t ≥ 2 and µ1(x0) = m0, Σ1(x0) = K̃0. Here we have

defined the mean vector m0:t−1 ,
[
m(x0)> . . . m(xt−1)>

]>
and the (nxt)× (nxt) positive definite matrix K0:t−1 with
block entries [K0:t−1]i,j = k(xi−1,xj−1). These matrices
use two sets of indices, as in Kt−1,0:t−2, to refer to the

off-diagonal blocks of K0:t−1. We also define K̃0:t−1 =
K0:t−1 + It ⊗Q, where ⊗ denotes the Kronecker product.

Using (8) we can thus write the likelihood (7) as

p(y0:T | θ) =

∫
p(y0:T | x0:T ,θ)p(x0:T | θ) dx0:T . (10)

The integration with respect to x0:T , however, is not
analytically tractable. This difficulty will be addressed in
the subsequent section.

A GP-SSM can be seen as a hierarchical probabilistic
model which describes a prior over the latent state trajec-
tories p(x0:T | θx,Q) and links this prior with the observed
data via the likelihood p(yt | xt,θy). Direct application of
maximum likelihood on p(yt | xt,θy) to obtain estimates
of the state trajectory and likelihood parameters would
invariably result in over-fitting. However, by introducing a
prior on the state trajectories 1 and marginalizing them
as in (10), we obtain the so-called marginal likelihood.
Maximization of the marginal likelihood with respect to
the parameters results in a procedure known as type II
maximum likelihood or empirical Bayes (Bishop, 2006).
Empirical Bayes reduces the risk of over-fitting since it
automatically incorporates a trade-off between model fit
and model complexity, a property often known as Bayesian
Occam’s razor (Ghahramani, 2012).

4. PARTICLE STOCHASTIC APPROXIMATION EM

As pointed out above, direct evaluation of the likelihood
(10) is not possible for a GP-SSM. However, by viewing the
latent states x0:T as missing data, we are able to evaluate
the complete data log-likelihood

log p(y0:T ,x0:T | θ) = log p(y0:T | x0:T ,θ)+log p(x0:T | θ),
(11)

by using (5c) and (9). We therefore turn to the Expectation
Maximization (EM) algorithm (Dempster et al., 1977).
The EM algorithm uses (11) to construct a surrogate cost
function for the ML problem, defined as

Q(θ,θ′) = Eθ′ [log p(y0:T ,x0:T | θ) | y0:T ]

=

∫
log p(y0:T ,x0:T | θ)p(x0:T | y0:T ,θ

′)dx0:T . (12)

It is an iterative procedure that maximizes (10) by iterat-
ing two steps, expectation (E) and maximization (M),

(E) Compute Q(θ,θk−1).
(M) Compute θk = arg maxθ Q(θ,θk−1).

The resulting sequence {θk}k≥0 will, under weak assump-
tions, converge to a stationary point of the likelihood
p(y0:T | θ).

To implement the above procedure we need to compute the
integral in (12), which in general is not computationally

1 A prior over the state trajectories is not an exclusive feature
of GP-SSMs. Linear-Gaussian state-space models, for instance,
also describe a prior distribution over state trajectories: p(x1:T |
A,B,Q,x0).

tractable for a GP-SSM. To deal with this difficulty, we
employ a Monte-Carlo-based implementation of the EM al-
gorithm, referred to as PSAEM (Lindsten, 2013). This pro-
cedure is a combination of stochastic approximation EM
(SAEM) (Delyon et al., 1999) and particle Markov chain
Monte Carlo (PMCMC) (Andrieu et al., 2010; Lindsten
et al., 2012). As illustrated by Lindsten (2013), PSAEM
is a competitive alternative to particle-smoothing-based
EM algorithms (e.g. (Schön et al., 2011; Olsson et al.,
2008)), as it enjoys better convergence properties and has
a much lower computational cost. The method maintains
a stochastic approximation of the auxiliary quantity (12),

Q̂k(θ) ≈ Q(θ,θk−1). This approximation is updated ac-
cording to

Q̂k(θ) = (1− γk)Q̂k−1(θ) + γk log p(y0:T ,x0:T [k] | θ).
(13)

Here, {γk}k≥0 is a sequence of step sizes, satisfying the
usual stochastic approximation conditions:

∑
k γk = ∞

and
∑

k γ
2
k <∞. A typical choice is to take γk = k−p with

p ∈ ]0.5, 1], where a smaller value of p gives a more rapid
convergence at the cost of higher variance. In the vanilla
SAEM algorithm, x0:T [k] is a draw from the smoothing
distribution p(x0:T | y0:T ,θk−1). In this setting, Delyon
et al. (1999) show that using the stochastic approximation
(13) instead of (12) in the EM algorithm results in a valid
method, i.e. {θk}k≥0 will still converge to a maximizer of
p(y0:T | θ).

The PSAEM algorithm is an extension of SAEM, which
is useful when it is not possible to sample directly from
the joint smoothing distribution. This is indeed the case
in our setting. Instead of sampling from the smoothing
distribution, the sample trajectory x0:T [k] in (13) may be
drawn from an ergodic Markov kernel, leaving the smooth-
ing distribution invariant. Under suitable conditions on
the kernel, this will not violate the validity of SAEM; see
(Andrieu and Vihola, 2011; Andrieu et al., 2005).

In PSAEM, this Markov kernel on the space of trajectories,
denoted as PN

θ (x?
0:T | x′0:T ), is constructed using PMCMC

theory. In particular, we use the method by Lindsten et al.
(2012), particle Gibbs with ancestor sampling (PGAS).
We have previously used PGAS for Bayesian identification
of GP-SSMs (Frigola et al., 2013). PGAS is a sequential
Monte Carlo method, akin to a standard particle filter (see
e.g. (Doucet and Johansen, 2011; Gustafsson, 2010)), but
with the difference that one particle at each time point
is specified a priori. These reference states, denoted as
x′0:T , can be thought of as guiding the particles of the
particle filter to the “correct” regions of the state-space.
More formally, as shown by Lindsten et al. (2012), PGAS
defines a Markov kernel which leaves the joint smoothing
distribution invariant, i.e. for any θ,∫
PN
θ (x?

0:T | x′0:T )p(x′0:T | y0:T ,θ)dx′0:T = p(x?
0:T | y0:T ,θ).

(14)

The PGAS kernel is indexed by N , which is the number of
particles used in the underlying particle filter. Note in par-
ticular that the desired property (14) holds for any N ≥ 1,
i.e. the number of particles only affects the mixing of the
Markov kernel. A larger N implies faster mixing, which
in turn results in better approximations of the auxiliary
quantity (13). However, it has been experienced in practice



that the correlation between consecutive trajectories drops
of quickly as N increases (Lindsten et al., 2012; Lindsten
and Schön, 2013), and for many models a moderate N
(e.g. in the range 5–20) is enough to get a rapidly mixing
kernel. We refer to (Lindsten, 2013; Lindsten et al., 2012)
for details. We conclude by noting that it is possible to
generate a sample x0:T [k] ∼ PN

θ[k−1]( · | x0:T [k − 1]) by

running a particle-filter-like algorithm. This method is
given as Algorithm 1 in (Lindsten et al., 2012) and is
described specifically for GP-SSMs in Section 3 of (Frigola
et al., 2013).

Next, we address the M-step of the EM algorithm. Max-
imizing the quantity (13) will typically not be possible
in closed form. Instead, we make use of a numerical op-
timization routine implementing a quasi-Newton method
(BFGS). Using (11), the gradient of the complete data
log-likelihood can be written as

∂

∂θ
log p(y0:T ,x0:T | θ) =

T∑
t=0

∂

∂θ
log p(yt | xt,θ)

+

T∑
t=1

∂

∂θ
log p(xt | x0:t−1,θ) +

∂

∂θ
log p(x0 | θ), (15)

where the individual terms can be computed using (5c)
and (9), respectively. The resulting PSAEM algorithm for
learning of GP-SSMs is summarized in Algorithm 1.

Algorithm 1 PSAEM for GP-SSMs

(1) Set θ0 and x0:T [0] arbitrarily. Set Q̂0(θ) ≡ 0.
(2) For k ≥ 1:

(a) Simulate x0:T [k] ∼ PN
θ[k−1]( · | x0:T [k − 1]) (run

Algorithm 1 in (Lindsten et al., 2012) and set
x0:T [k] to one of the particle trajectories with
probabilities given by their importance weights).

(b) Update Q̂k(θ) according to (13).

(c) Compute θk = arg maxθ Q̂k(θ).

A particular feature of the proposed approach is that it
performs smoothing even when the state transition func-
tion is not yet explicitly defined. Once samples from the
smoothing distribution have been obtained it is then possi-
ble to analytically describe the state transition probability
density (see (Frigola et al., 2013) for details). This con-
trasts with the standard procedure where the smoothing
distribution is found using a given state transition density.

5. EXPERIMENTAL RESULTS

In this section we present the results of applying PSAEM
to identify various dynamical systems.

5.1 Identification of a Linear System

Although GP-SSMs are particularly suited to nonlinear
system identification, we start by illustrating their behav-
ior when identifying the following linear system

xt+1 = 0.8 xt + 3 ut + vt, vt ∼ N (0, 1.5), (16a)

yt = 2 xt + et, et ∼ N (0, 1.5), (16b)

excited by a periodic input. The GP-SSM can model this
linear system by using a linear covariance function for
the GP. This covariance function imposes, in a somehow
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Fig. 2. Linear dynamical system learned using a GP-SSM
with linear covariance function. Predictions (a) on
training data, and (b) on test data (see text for more
details).

indirect fashion, that the state-transition function in (16a)
must be linear. A GP-SSM with linear covariance function
is formally equivalent to a linear state-space model where
a Gaussian prior is placed over the, unknown to us, pa-
rameters (A = 0.8 and B = 3) (Rasmussen and Williams,
2006, Section 2.1). The hyper-parameters of the covariance
function are equivalent to the variances of a zero-mean
prior over A and B. Therefore, the application of PSAEM
to this particular GP-SSM can be interpreted as finding
the hyper-parameters of a Gaussian prior over the param-
eters of the linear model that maximize the likelihood of
the observed data whilst marginalizing over A and B. In
addition, the likelihood will be simultaneously optimized
with respect to the process noise and measurement noise
variances (q and r respectively).

Figure 1 shows the convergence of the GP hyper-
parameters (lx and lu) and noise parameters with respect
to the PSAEM iteration. In order to judge the quality
of the learned GP-SSM we evaluate its predictive per-
formance on the data set used for learning (training set)
and on an independent data set generated from the same
dynamical system (test set). The GP-SSM can make prob-
abilistic predictions which report the uncertainty arising
from the fact that only a finite amount of data is observed.

Figure 2 displays the predicted value of ft+1−xt versus the
true value. Recall that ft+1 − xt is equivalent to the step
taken by the state in one single transition before process
noise is added: f(xt,ut) − xt. One standard deviation
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system using a squared exponential covariance func-
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Fig. 4. Linear dynamical system learned using a GP-
SSM with squared exponential covariance function.
Predictions (a) on training data, and (b) on test data.

error bars from the predictive distribution have also been
plotted. Perfect predictions would lie on the unit slope line.
We note that although the predictions are not perfect,
error-bars tend to be large in predictions that are far
from the true value and narrower for predictions that are
closer to the truth. This is the desired outcome since the
goal of the GP-SSM is to represent the uncertainty in its
predictions.

We now move into a scenario in which the data is still
generated by the linear dynamical system in (16) but
we pretend that we are not aware of its linearity. In
this case, a covariance function able to model nonlinear
transition functions is a judicious choice. We use the
squared exponential covariance function which imposes the
assumption that the state transition function is smooth
and infinitely differentiable (Rasmussen and Williams,
2006). Figure 3 shows, for a PSAEM run, the convergence
of the covariance function hyper-parameters (length-scales
λx and λu and signal variance σf ) and also the convergence
of the noise parameters.

The predictive performance on training data and indepen-
dent test data is presented in Figure 4. Interestingly, in
the panel corresponding to training data (a), there is par-
ticularly poor prediction that largely underestimates the
value of the state transition. However, the variance for this
prediction is very high which indicates that the identified
model has little confidence in it. In this particular case,
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Fig. 5. Nonlinear dynamical system with one state and one
input. The black mesh represents the ground truth
dynamics function and the colored surface is the mean
of the identified function. Color is proportional to
the standard deviation of the identified function (red
represents high uncertainty and blue low uncertainty).
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Fig. 6. State trajectory from a test data set (solid black
line). One step ahead predictions made with the iden-
tified model are depicted by a dashed line (mean) and
a colored interval at ±1 standard deviation (including
process noise).

the mean of the prediction is 2.5 standard deviations away
from the true value of the state transition.

5.2 Identification of a Nonlinear System

GP-SSMs are particularly powerful for nonlinear system
identification when it is not possible to create a parametric
model of the system based on detailed knowledge about
its dynamics. To illustrate this capability of GP-SSMs we
consider the nonlinear dynamical system

xt+1 = axt + b
xt

1 + x2
t

+ cut + vt, vt ∼ N (0, q), (17a)

yt = dx2
t + et, et ∼ N (0, r), (17b)

with parameters (a, b, c, d, q, r) = (0.5, 25, 8, 0.05, 10, 1)
and a known input ut = cos(1.2(t + 1)). One of the
challenging properties of this system is that the quadratic
measurement function (17b) tends to induce a bimodal
distribution in the marginal smoothing distribution. For
instance, if we were to consider only one measurement in
isolation and r = 0 we would have xt = ±

√
yt

d . Moreover,



the state transition function (17a) exhibits a very sharp
gradient in the xt direction at the origin, but is otherwise
parsimonious as xt → ±∞.

Again, we pretend that detailed knowledge about the
particular form of (17a) is not available to us. We select
a covariance function that consists of a Matérn covariance
function in the x direction and a squared exponential in
the u direction. The Matérn covariance function imposes
less smoothness constraints than the squared exponential
(Rasmussen and Williams, 2006) and is therefore more
suited to model functions that can have sharp transitions.

Figure 5 shows the true state transition dynamics function
(black mesh) and the identified function as a colored sur-
face. Since the identified function from the GP-SSM comes
in the form of a probability distribution over functions,
the surface is plotted at E[f∗|x∗,u∗,y0:T ] where the sym-
bol ∗ denotes test points. The standard deviation of f∗,
which represents our uncertainty about the actual value
of the function, is depicted by the color of the surface.
Figure 6 shows the one step ahead predictive distributions
p(x∗t+1|x∗t ,u∗t ,y0:T ) on a test data set.

6. CONCLUSIONS

GP-SSMs allow for a high degree of flexibility when ad-
dressing the nonlinear system identification problem by
making use of Bayesian nonparametric system models.
These models enable the incorporation of high-level as-
sumptions, such as smoothness of the transition function,
while still being able to capture a wide range of nonlinear
dynamical functions. Furthermore, the GP-SSM is capable
of making probabilistic predictions that can be useful in
adaptive control and robotics, when the control strategy
might depend on the uncertainty in the dynamics. Our
particle-filter-based maximum likelihood inference of the
model hyper-parameters preserves the full nonparametric
richness of the model. In addition, marginalization of the
dynamical function effectively averages over all possible
dynamics consistent with the GP prior and the data, and
hence provides a strong safeguard against overfitting.
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