Conceptual levels of design

(A) ROS Community: ROS Distributions, Repositories

(B) Computation Graph: Peer-to-Peer Network of ROS nodes (processes).

(C) File-system level: ROS Tools for managing source code, build instructions, and message definitions.
Another View of ROS

<table>
<thead>
<tr>
<th>Plumbing</th>
<th>Tools</th>
<th>Robot Capabilities & Functions</th>
<th>Community EcoSystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Device Drivers</td>
<td>• Visualization</td>
<td>• Robot Control</td>
<td>• Package Organization</td>
</tr>
<tr>
<td>• Inter-Node Communication</td>
<td>• Simulation</td>
<td>• Motion Planning</td>
<td>• Repositories</td>
</tr>
<tr>
<td>• Process Management</td>
<td>• Debugging</td>
<td>• Mapping</td>
<td>• Tutorials</td>
</tr>
<tr>
<td></td>
<td>• User Interface</td>
<td>• Localization</td>
<td>• Documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Perception</td>
<td>• FAQ/Forum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Manipulation</td>
<td>• Workshops/Training</td>
</tr>
</tbody>
</table>
Many ROS Tools

Developer Tools:
- Building ROS nodes: `catkin_make`
- Running ROS nodes: `rosrun`, `roslaunch`
- Viewing network topology: `rqt_graph`

Debugging Tools:
- **Rostopic:** display info about active topics (publishers, subscribers, data rates and content)
- rostopic echo [topic name] *(prints topic data)*
- rostopic list *(prints list of active topics)*
- **Rqt_plot:** plots topic data

- Data logging:
 - Rosbag record [topics] –o <output_file>
- Data playback:
 - Rosbag play <input_file> --clock
Many ROS Tools

Visualization Tools: RVIZ
- Sensor and robot state data
- Coordinate frames
- Maps, built or in process
- Visual 3D debugging markers

Simulation Tools:
- **Gazebo**: started as grad student project at USC
- Can model and simulate motions/dynamics of different robots
- Can simulate sensory views
- Can build different environments
- Can run simulation from ROS code for testing
A first look at `move_base`

`move_base` is a package that implements an action in ROS.
- An action can be preempted
- An action can provide periodic feedback on its execution

`move_base` is a node that moves a robot (the “base”) to a goal
- It links a global and local planner with sensory data and maps that are being built, so that the navigation stack can guide the robot to a goal, and have recovery strategies
Download ROS distribution.

• Choose how you want to manage Ubuntu on your machine:
 • Dual boot
 • Virtual machine: (one option is the free virtual box: https://itsfoss.com/install-linux-in-virtualbox/)
 • Try the Windows installation?
 • Install ROS (melodic is best, but kinetic might be okay)

GO through the first 2-3 steps of the Core ROS Tutorial at the beginner’s level.
 • You may prefer to start the first few steps of “A Guided Journey to the Use of ROS”
Three Major Map Models

Grid-Based:
Collection of discretized obstacle/free-space pixels

Feature-Based:
Collection of landmark locations and correlated uncertainty

Topological:
Collection of nodes and their interconnections

Elfes, Moravec, Thrun, Burgard, Fox, Simmons, Koenig, Konolige, etc.

Smith/Self/Cheeseman, Durrant–Whyte, Leonard, Nebot, Christensen, etc.

Kuipers/Byun, Chong/Kleeman, Dudek, Choset, Howard, Mataric, etc.
Gmapping

Occupancy Grid: “map” is a grid of “cells”: \(\{x_{i,j}^m\} \)

- \(x_{i,j}^m = 0 \) if cell \((i,j)\) is empty; \(x_{i,j}^m = 1 \) if cell \((i,j)\) is occupied

- \(p \left(x_{k+1}, \{x_{i,j}^m\}_{k+1} | x_{1:k}^r, \{x_{i,j}^m\}_k, y_{1:k+1} \right) \) (estimate cell occupancy probability)

Gmapping:

- Uses a *Rao-Blackwellized* particle filter for estimator
- Actually computes \(p \left(x_{1:T}^r, \{x_{i,j}^m\} | x_{1:k}^r, x_k^m, y_{1:k+1} \right) \)
Control & Planning for MDPs POMDPs

Autonomy (a self-governing system):
- Make Decisions and Plans, in the presence of uncertainty
 - Process and measurement noise
 - Incomplete models
 - Incomplete information
 - Adversarial conditions
- With little or no human guidance

Some key issues
- Where am I? ⇒ SLAM
- Action selection
 - Control in Markov Decision Processes (MDPs) and POMPDs
- Planning
- Supervisory Control
Given $x_{k+1} = f(x_k, u_k) + \eta_k$:

- State Feedback (assumes that all states are “observable”):
 \[u_k = g(x_1, x_2, \ldots, x_k, u_1, \ldots, u_{k-1}) \]

- Output Feedback: $y_k = h(x_k) + \omega_k$
 \[u_k = q(y_1, \ldots, y_k, u_1, \ldots, u_{k-1}) \]

Feedback Aims:

- Given a goal, maximize probability of attaining goal
- If possible, optimize other criteria while achieving goal
 - Minimize energy use, or time to goal)
- Avoid problems
 - Avoid obstacles, stay away from difficult to traverse or dangerous areas
Markov Decision Processes (MDPs)

Motivation: a model for many (but not all) dynamical systems that are part of a decision problem

Definition: A *Mark Decision Process* (MDP) consists of

- A discrete set of states, \(S = \{x_1, x_2, \ldots, x_N\} \)
- A set of possible actions to take in each state: \(U = \{u_1, \ldots, u_k\} \)
 - Set of actions can be state dependent: \(u_i = U(x_i) \)
Markov Decision Processes (MDPs)

Definition (continued): A *Mark Decision Process* (MDP) consists of

- A *transition function*, T, that describes the system “dynamics”

 - Deterministic: $T: S \times U \rightarrow S$
 - Stochastic: $T: S \times U \rightarrow \text{Prob}(S)$.

 - I.e., a probability distribution over the next states, condition and the current state and action: $p(x'|x,u)$

 ![Deterministic](image1)
 ![Stochastic](image2)

 - The *Markov Assumption* holds:

 - $p(x_{k+1}|x_0, x_1, ..., x_k, u_0, ..., u_k) = p(x_{k+1}|x_k, u_k)$
 - the prediction of state x_{k+1} only depends upon x_k, u_k, and not prior states and controls
 - Future system states only depend upon the current state (and control), and not on the prior history → *memoryless*
Markov Decision Processes (MDPs)

Definition (continued): A *Mark Decision Process* (MDP) consists of

- A reward function $r(x, u) \to \mathbb{R}$

 - Reward can incorporate *goal information*

 $$r(x, u) = \begin{cases}
 +100 & \text{if } u \text{ leads to the goal} \\
 -1 & \text{otherwise}
 \end{cases}$$

 - Reward can incorporate costs:

 $r(x, u) =$ amount of energy to execute action u

 $r(x, u) =$ penalty to be in state x (e.g., traversibility analysis)
Policy

Definition: A *Control Policy*, or *Policy*, prescribes an *action* or *control*

- \(u_k = \pi(x_k) \) for a fully observable system (MDP)
- \(u_k = \pi(y_{1:k}, u_{1:k-1}) \) for partially observable system (more later)

- Policy \(\pi \) can be deterministic or stochastic
 - Deterministic: \(u = \pi(x) \)
 - Stochastic: \(\pi(u|x) = \text{Prob}[u_t = u|s_t = x] \)

We want to find a policy that

- Realizes the goal as best as possible
- Considers constraints
- Considers the costs of its actions

Approach: Find \(\pi(x) \) that *maximizes* a cumulative reward
Cumulative Reward

\[R_T = E \left[\sum_{i=0}^{T-1} \gamma^i r(x_i, u_i) \right] \quad R_T^\pi = E \left[\sum_{i=0}^{T-1} \gamma^i r(x_i, u_i) | u = \pi(x) \right] \]

\(T \) is the **horizon**
- \(T = 1 \): "Greedy"
- \(T \) is finite: "Finite-Horizon Problem"
- \(T = \infty \): "Infinite-Horizon Problem" (often used when \(T \) large)

\(\gamma \) is a discount factor: \(\gamma \in [0,1] \) or discount rate.
- A reward \(n \) steps away is discounted by \(\gamma^n \)
- Models mortality or impatience: you may die soon
- Models the preference for shorter solutions
- Needed for infinite horizon cumulative reward to be finite

\[|R_\infty| \leq r_{\max} + \gamma r_{\max} + \gamma^2 r_{\max} + \cdots = \frac{r_{\max}}{1-\gamma}, \quad r_{\max} = \max_{x,u} |r(x,u)| \]
Dynamic Programming

Let’s first consider a class of problems where the system dynamics are not important

- the transitions between states are the only costs that matter.
- Said differently, the decision made at each state incurs a cost
- Such problem can be modeled by a graph, $G=(V,E)$ with weighted edges. I.e., weight $w_{i,j}$ is associated to edge, $e_{i,j}$

- These problems reduce down to a shortest path problem

Dynamic programming (DP) is a general optimization technique to solve these sequential decision problems.

It is based on the "principle of optimality"
Illustration of DP by shortest path problem

Problem: We plan to construct a highway from city A to city K. Different construction alternatives and their costs are given in the following graph. Determine the highway route with the minimum total cost.
Basic Idea:

- if node C belongs to an optimal path from node A to node B, then the sub-path from A to C and from C to B are also optimal
- Any sub-path of an optimal path is optimal

Corollary:

\[SP(x, y) = \min \{SP(x, z) + l(z, y) \mid z : \text{predecessor of } y\} \]
Application to Autonomous Planning

Approximate Cellular Decomposition:

- Divide environment (or c-space) into “cells”
 - Simple shape
 - Easy to move between points in same cell.
 - Easy to move to adjacent cells
 - Adjacency is easy to define
 - Cells are disjoint: \(c_i \cap c_j = \emptyset \), \(W = \sum_i c_i \)

Cells are labeled as
- Empty
- Occupied

In known environment:
- Use geometric model to divide into cells & occupancy

In unknown environment:
- Use occupancy grid SLAM (e.g., “gmapping”)

Application to Autonomous Planning

Adjacency Graph
- Node: empty/free cells
- Edges: transitions between adjacent free cells
Application to Autonomous Planning

Adjacency Graph
- Node: empty/free cells
- Edges: transitions between adjacent free cells

Shortest Path problem

Minimize \(w_{i_1,j_1} + \cdots + w_{i_p,j_p} \) such that \(x_{\text{start}} \in c_{i_1,j_1}, x_{\text{final}} \in c_{i_p,j_p} \)
Finding the Optimal Policy

Recursive Derivation: **Step 1**

- $T = 1$ (greedy solution): $\pi_1(x) = \underset{u}{\text{argmax}} r(x, u)$

- The *value (or cost-to-go) function* describes the “value” of the cumulative reward when the optimal actions is taken:

$$V_1(x) = \max_u r(x, u) \quad (= \max_u E[r(x, u)], E \text{ dropped below})$$

Recursive Derivation: **Step 2**

- $T = 2$: $\pi_2(x) = \underset{u}{\text{argmax}} [r(x, u) + \gamma \sum_z V_1(z)T(z|u, x)]$

- Value function at $T = 2$

$$V_2(x) = \max_u \left[r(x, u) + \gamma \sum_z V_1(z)T(z|u, x) \right]$$
Finding the Optimal Policy

Recursive Derivation: **Step T**

\[\pi_T(x) = \arg \max_u [r(x, u) + \gamma \sum_z V_{T-1}(z)T(z|u, x)] \]

\[V_T(x) = \max_u [r(x, u) + \gamma \sum_z V_{T-1}(z)T(z|u, x)] \]

Infinite Horizon:

\[V_\infty(x) = \max_u [r(x, u) + \gamma \sum_z V_\infty(z)T(z|u, x)] \]

- The “Bellman Equation”
- The optimal value function is the “fixed point” of this equation. This is the basis of “value iteration”
- The optimal policy (at any time)
\[\pi^*(x) = \arg \max_u [r(x, u) + \gamma \sum_z V_\infty(z)T(z|u, x)] \]
Application to Autonomous Planning

Adjacency Graph
- Node: empty/free cells
- Edges: transitions between adjacent free cells

Shortest Path problem

Minimize \(w_{i_1,j_1} + \cdots + w_{i_p,j_p} \) such that \(x_{\text{start}} \in c_{i_1,j_1}, x_{\text{final}} \in c_{i_p,j_p} \)
Graph Search: the A* algorithm

General Graph Search Goal: search the (adjacency) graph for a feasible path connecting the start to the goal node(s).

Optimal Search: find the feasible path with the guaranteed lowest cost of traversal (the sum of the edge weights along the path)

General Graph Search data structures:
- All states or nodes are labeled *unvisited, visited, dead*
- **Q:** a priority queue
- **T:** a spanning tree or search tree

General Graph Search Algorithm:
- **Init:** mark x_{init} visited, all other states visited
 - insert x_{init} into Q
 - insert x_{init} into T
Graph Search: basic algorithm structure

• While Q not empty:
 • $x_i = \text{getFirst}(Q)$
 • If $x_j = x_{goal}$,
 • Add pointer from x_j to x_i in T
 • Return Success
 • For all $u_j \in U(x_i)$ % get successor nodes
 • $x_j = f(u_j)$
 • If x_j not visited,
 • mark x_j as visited
 • Add pointers from x_j to x_i in T
 • Insert x_j into Q
 • Else resolve duplicate links (if appropriate)
 • Return Failure
Graph Search: A* algorithm

A* uses additional functions to improve its operation and outcome

- \(g(x) \): cost-to-arrive.
 - The total edge cost from the start node to the current node \(x \) along an optimal path
- \(h(x) \): heuristic cost-to-go.
 - An estimate of the cost between current node \(x \) and \(x_{goal} \)
- \(k(x, x') = \) distance from node \(x \) to node \(x' \)
- \(f(x) = g(x) + h(x) \): the estimated cost to the goal through \(x \)

Summary of A*:
- \(getFirst(Q) \) removes node \(x_k \) from \(Q \) with lowest \(f(x_k) \)
- For each successor node of \(x_k \) (denoted by \(x' \)) removed from \(Q \), check to see if going through \(x_k \) is a lower cost way to reach \(x' \)
Graph Search: A* algorithm

Replace the successor node processing loop with the following

- **For each** successor node of x_k (denoted by x')
 - $g_{\text{test}}(x') = g(x) + k(x, x'); \quad f(x') = g(x') + h(x')$
 - **If** x' **visited**,
 - **If** $g_{\text{test}}(x') \leq g(x')$ % found a better path
 - Remove existing back-pointer from x' in T
 - Add back-pointer from x' to x_k in T
 - Add x' to Q
 - **Else** discard x' (or put x' on the CLOSED list)
 - **Else** % x' has not been visited
 - $g(x') = g_{\text{test}}(x')$
 - Add back-pointer from x' to x_k in T
 - Add x' to Q
ROS Goals for Next Week

GO through the steps 5, 6, 7, 8 of the Core ROS Tutorial at the beginner’s level.
 • You may prefer to the analogous steps in “A Guided Journey to the Use of ROS”

Download, install, move_base

Read about and Install Rviz

Heads-up: need to have visualization of your vehicle in Rviz by the following week.