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1 Introduction

These notes review the basic equations of EKF (extended Kalman Filter) SLAM (Simulta-
neous Localization and Mapping).

1.1 The Notion of a “Map”

Let ~pRk denote the robot’s position at time tk. We assume that the robot’s exteroception
sensor suite can identify and recognize “landmarks” which will make up the map (where
the landmarks play the role of a “beacon”). We will assume that the robot can process the
sensory data associated with the landmark so that a unique point can be associated to each
landmark. Hence, each landmark can be associated to the coordinates of that point. Let
~plj denote the coordinates of the jth landmark. While we assume that the landmarks are
stationary, we assume that any measurements of their location is noisy, and therefore the
estimate of the landmark’s location overy time will hopefully converge to its true relative
location.

An estimator, in this case an Extended Kalman Filter (EKF) will be used to update the
estimate of the robot’s position and the landmark’s position. The state of the filter will
consist of the robot’s state as well as the landmark positions. Let ~zk denote the system state

~zk =


~pRk
~pl1k
...
~plN

 ,

[
~pRk
~ML
k

]

where N is the number of landmarks, and ~ML
k is the vector of all landmark positions, which

defines the “map” which is to be maintained by the SLAM algorithm.

1.2 The System Dynamic model

We assume that the dynamics of the robot’s motion can be captured by a discrete time
model of the following form:

~pRk+1 = f(~pRk , uk) + ~ηk

where ~pRk is the robot’s position and uk is the robot’s control input at time k, while ~ηk models
process disturbances at tk.
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Since the landmarks are assumed to be stationary, their true positions are assumed to be
constant over time:

~p
lj
k+1 = ~p

lj
k ∀ j = 1, . . . , N .

Hence, the dynamics take the form:

~zk+1 =

[
~pRk+1
~ML
k+1

]
= f̃(~zk, uk) =

[
f(~pRk , uk)

~ML
k

]
We assume that the robot can measure the range and bearing to the landmark. Let us
assume for now that the robot can “see” all N landmarks. Then, the measurment is:

~yk =


rl1k
φl1
k
...

rlNk
φlN
k

+ ~ωk = h(~rLk (~zk), ~φL
k (~zk)) + ~ωk

where r
lj
k and φ

lj
k are the range and bearing measurements of the jth landmark:

r
lj
k (~pRk , ~p

lj
k ) = ||~pRk − ~p

lj
k || =

√
(xRk − x

lj
k )2 + (yRk − y

lj
k )2 (1)

φ
lj
k (~pRk , ~p

lj
k ) = Atan2[(yRk − y

lj
k ), (xRk − x

lj
k )] + θRk (2)

and ~ωk represents measurement noise. The vectors ~rLk and ~φR
k represent all range and bearing

measurments at time tk. The measurement function h(·) is a function of both the robot’s
state and the map states.

2 Localization Updates: Naive case

Assume that an estimate (and covariance of the estimate) of the robot state and landmark
map is available at time tk: ẑk|k, Pk|k. Further, let us assume that the robot moves from its
location at time tk to a new location at time tk+1. At tk+1 let us unrealistically assume that
the robot can measure the range and bearing to all N landmarks. In this case, we use the
EKF to update the estimate of the robot’s position, as well as to improve the estimate of
the relative locations of the landmarks.

Dynamic State Update: The dynamic update of the state estimate and its covariance is
given by:

ẑk+1|k = f̃(ẑk|k, uk) (3)

Pk+1|k = F̃kPk|kF̃
T
k + Vk (4)
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where Vk is the covariance1 and matrix Fk is the linearization of the robot’s dynamics at the
current best state estimate:

Fk =
∂

∂~z
f̃(~zk, uk)

∣∣
(~z,~u)=(ẑk|k,~uk)

.

Note that Fk has an appealing structure:

F̃k =


∂f(~pR,uk)

∂~pR
0 · · · 0

0 I · · · 0
...

...
. . . 0

0 0 · · · I


(~pR,~uk)=(~pR

k|k,~uk)

,

[
Fk 0
0 I

]
(5)

Note that the covariance matrix of the system state estimate, Pk|k, has the following struc-
ture:

Pk|k =

[
PRR
k|k PRLk|k

PLR
k|k PLL

k|k

]
(6)

where PRR is the uncertainty in the robot’s state estimate, PLL is the uncertainty in the
landmark location estimates, and PRL = (PLR)T is the correlation between the robot’s
undercertainty and the landmarks’ uncertainties. Because of this structure, Equation (4)
has the simplified structure:

Pk+1|k =

[
Fk 0
0 I

] [
PRR
k|k PRL

k|k
PLR
k|k PLL

k|k

] [
Fk 0
0 I

]T
+ Vk =

[
FkP

RR
k|k F

T
k FkP

RL
k|k

(FkP
RL
k|k )T PLL

k|k

]
+ Vk.

Since the landmarks are assumed to be stationary (but with imprecisely known locations),
their covariance does not change during the dynamic update! When the map becomes large
(e.g., dozens of landmarks or more), this structure also leads to computational savings.

Measurement Update: The measurement update of the Kalman Filter is:

~νk+1 = ~yk+1 − h(ẑk+1|k) (7)

Sk+1 = Hk+1Pk+1|kH
T
k+1 +Qk (8)

Kk+1 = Pk+1|kH
T
k+1S

−1
k+1 (9)

ẑk+1|k+1 = ẑk+1|k +Kk+1~νk+1 (10)

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k (11)

where Qk is the covariance of the measurement noise, and Hk+1 is the linearization of the
meaasurement equation:

Hk+1 =
∂h(z)

∂z

∣∣
z=ẑk+1|k

. (12)

1The covariance of the disturbance, which is assumed to be a zero mean Gaussian continuous random
variable, can be found as E~ηk [~ηk~ηTk ], where E denotes expectation.
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3 Some Issues to Consider in an Actual EKF SLAM

Implementation

An actual SLAM implementation has to incorporate many additional issues. Here we only
summarize a few issues, and then some procedures to address these issues.

• Adding new landmarks to the map.

• Updating the map when only some of the landmarks are visible.

• Associating sensory data to landmark identity.

3.1 Incorporating new states into the map

Let us assume that at time tk the robot has “built” a map consisting of N − 1 land-
marks. At time tk+1 the robot finds a new landmark, lnew, and chooses to incorporate
it into its map to be the N th landmark. Hence, at tk the augmented state vector is ~zk =[
~pRk ~pl1k . . . ~p

lN−1

k

]T
. At tk+1 the state vector is enlarged: ~zk =

[
~pRk ~pl1k . . . ~p

lN−1

k ~plnew
k

]T
.

The addition of this new state also implies that the covariance matrix will grow in size, and
that it must be properly initialized to include a reasonable estimate of the newly found
landmark’s position uncertainty.

Let us assume that the newly enlarged covariance matrix has the structure PRR PRL PRlnew

PLR PLL PLlnew

P lnewR P lnewL P lnew,lnew


where R indicates robot-related states, L indicates the states of the previously known land-
marks, and lnew indicates the states associated with the newly found landmark.

Note that to update the covariance matrix during the measurement update, we will need
to linearize the measurement equations. Hence, we need to have an initial estimate of the
landmark’s location (and the uncertainty in that location) in order to process all of the
measurements at tk+1. A logical estimate of the landmark’s position is to add the robot-to-
landmark distance (as measured using the range and bearing sensors) to the best estimate
of the robot’s current position (at tk+1|k) to

p̂lnew

k+1|k = p̂Rk+1|k +

[
rlnew
k+1 cos(φlnew

k+1 + θ̂k)

rlnew
k+1 sin(φlnew

k+1 + θ̂k)

]
(13)

If we assume that the noise experienced during the measurement of the new landmarks’s
location at tk+1 is uncorrelated with the noise in the robot’s position at time tk (an excellent

4



assumption), then it would be natural to estimate the uncertainty of the robot’s position at
tk+1 to be

P lnewlnew

k+1|k+1 = JlnewRP
RR
k+1|kJ

T
lnewR +Qk+1

where Qk+1 is the covariance, or uncertainty, in the measurement of the landmark’s position
(relative to the robot). The matrix JlnewR is a Jacobian matrix which measures the sensitivity
of the landmark’s location to changes in the robot’s position. The Jacobian can generally
be calculated as follows. If we have a formula for the landmark’s position as a function of
the robot’s position (e.g., exactly the formula (13), then the Jacobian is the linearization of
this formula:

JlnewR =
∂~plnew

∂~pR
.

However, after initializing the landmark’s location and uncertainty, we will carry out a com-
plete measurement update step at tk+1, which will incorporate the measurement uncertainty
related to the new landmark. Hence, we would “double count” the measurement uncer-
taintly in this proposed approach. I.e., conceptually we would like to estimate P lnewlnew

k+1|k , the

covariance before we take into account the measurement (and its uncertainty) of the new
landmark at tk+1 upon the entire system state. Hence,

P lnewlnew

k+1|k+1 = JlnewRP
RR
k+1|kJ

T
lnewR

Before completing the measurement update at tk+1, we also need initial estimates for PRlnew

and PLlnew at tk+1|k. If one carefully scrutinizes the construction of the covariance formulas
in the measurement update equations, then a reasonable estimate of these matrices can be
constructed as:

PRlnew

k+1|k = PRRJT
lnewR (14)

P lnewL
k+1|k = JlnewRP

RL (15)

3.2 Updating the Map with Limited Landmark Visibility

At any given instant, not all of the previously found landmarks are likely to be visible. This
lack of visibility needs to be taken into account when updating the robot and landmark state
estimates.

Let us assume that at time tk, N landmarks can be viewed, and the EKF framework is
used to find the best estimate of the system state and its uncertainty at tk: ẑk|k, Pk|k.
Now, assume that during the robot’s movement between time tk and time tk+1 that the jth

landmark becomes hidden. The dynamic update step is not affected by the disappearance
of landmark lj before the measurement update at tk+1:

ẑk+1|k = f̃(ẑk|k, uk); Pk+1|k = F̃kPk|kF̃
T
k + vk.
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But, the measurement update will be affected by the change in the number of landmarks.
Let the measurement vector at tk+1 be denoted by ~yNj:

~yN\j =
(
rl1k+1 φl1

k+1 · · · r
lj−1

k+1 φ
lj−1

k+1 r
lj+1

k+1 φ
lj+1

k+1

... rlNk+1 φlN
k+1

)
(16)

When all N landmarks are visible, ~y has dimension 2N . When landmark lj disappears, ~yN\j

has dimension 2(N − 1).

There are two ways to see how the disappearance of landmark lj will affect the measurement
update–they both lead to the same outcome.

In the first conceptual approach, assume that the state vector ~z still incorporates the entire
map of all landmarks, including the non-visible landmark. Let hN\j(~z) denote the measure-
ment function, where the jth landmark measurement is not incorporated (as in Equation
(16)). Then the linearization of the measurement function (as needed to compute Equations

(8)-(11)) produces a 2(N − 1)× (2N + 3) matrix H
N\j
k+1

H
N\j
k+1 =

∂hN\j

∂z

∣∣
z= ˆzk+1|k

.

However, note that
∂hN\j

∂rlj
=
∂hN\j

∂φlj
= 0

and hence the linearization of the measurement equation, Hk+1 will have a row of zeros
associated with the missing landmark index. In the linearized covariance update equation
(8), these zeros will multiply the jth row and jth column of Pk+1|k, causing no updates to the
elements in the jth row and column of Pk + 1|k.

In the second conceptual approach, we assume that at tk+1 the actual map shrinks in size–i.e.

the jth landmark state is removed from the map: ~z
N\j
k+1 =

(
~pTk+1 ~pl1k+1 · · · ~p

lj−1

k+1 ~p
lj+1

k+1 · · · ~plNk+1

)
.

Hence, in the measurement update takes the form:

y
N\j
k+1 = hN\j(~zN\j) + ~ωk .

In order to carry out the measurement updates one must construct a new covariance matrix
P

N\j
k+1|k by removing the jth column and jth row of Pk+1|k.

3.3 A Simplified Data Association Solution

The EKF SLAM approach is based on the important assumption that each of the landmarks
is identifiable during each measurement update. That is, it is assumed that one can reliably
associate a specific landmark index to each landmark data measurement. In practice, this
data association problem can be difficult to solve.

A very simple data association algorithm can be constructed as follows. Assume that at tk
the labels of each landmark are known. Assume that the range and bearing to the same N
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land marks can be found at tk+1. However, the labels (or indices) of these landmarks are
not known, meaning that we don’t know how to associated the landmark measurements at
tk+1 to the labels determined at tk.

Assume, for the purposes of the data association process, that an arbitrary labeling is as-
signed to the landmark measurements at tk+1. The goal is now to find the proper matching
of the measurements at tk+1 with the labels of tk. To assist in the proper matching of data
to labels, calculate the following innovations:

νijk+1 = yik+1 − hj(p̂
lj
k+1|k)

where yik+1 is the landmark data which is temporarily assigned index i at tk+1, and hj(p̂
lj
k+1|k)

is the predicted location of landmark j (whose identity was properly established at tk) after
the robot moves to its new position at tk+1. Hence, νij is the data association error between
the tentative pairing of landmark data i acquired at time tk with landmark index j at tk.

Naively, for landmark j a tk, the landmark k at measurement time tk+1 is assumed to be the
best match to lj if k = arg mini ν

ij. However, this naive argument must be slightly modified
so that we measure the “error” in the most suitable way.

Let Sk+1 denote the innovation covariance, Equation (8), at tk+1. Let the covariance associ-
ated with the innovation νij be dnoted Sij. This covariance is computed as:

Sij
k+1 = Hj

k+1Pk+1|k(Hj
k+1)

T +Qii

where Hj is the linearization of the measurement equation associated with the jth landmark
at time tk.

Hj
k+1 =

(
∂hj

∂~pR
0 · · · ∂hj

∂~plj
0 · · · 0

) ∣∣∣∣
~pR
k+1|k,~p

lj
k+1|k

.

Using this covariance, the association error arising from the belief that the ith measurement
at tk+1 is associated with the jth landmark at time tk is given by:

χ2
ij = νij(Sij)−1νij.

The most likely landmark at tk+1 to associated with landmark lj at tk is the one which
minimizes this association error:

li = arg min
i

χ2
ij .
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