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Abstract

This article reviews theory and applications of Koopman modes in fluid
mechanics. Koopman mode decomposition is based on the surprising fact,
discovered in Mezić (2005), that normal modes of linear oscillations have
their natural analogs—Koopman modes—in the context of nonlinear dy-
namics. To pursue this analogy, one must change the representation of the
system from the state-space representation to the dynamics governed by the
linear Koopman operator on an infinite-dimensional space of observables.
Whereas Koopman in his original paper dealt only with measure-preserving
transformations, the discussion here is predominantly on dissipative sys-
tems arising from Navier-Stokes evolution. The analysis is based on spectral
properties of the Koopman operator. Aspects of point and continuous parts
of the spectrum are discussed. The point spectrum corresponds to isolated
frequencies of oscillation present in the fluid flow, and also to growth rates
of stable and unstable modes. The continuous part of the spectrum corre-
sponds to chaotic motion on the attractor. A method of computation of the
spectrum and the associated Koopman modes is discussed in terms of gener-
alized Laplace analysis. When applied to a generic observable, this method
uncovers the full point spectrum. A computational alternative is given by
Arnoldi-type methods, leading to so-called dynamic mode decomposition,
and I discuss the connection and differences between these two methods. A
number of applications are reviewed in which decompositions of this type
have been pursued. Koopman mode theory unifies and provides a rigorous
background for a number of different concepts that have been advanced in
fluid mechanics, including global mode analysis, triple decomposition, and
dynamic mode decomposition.

357

Click here for quick links to 
Annual Reviews content online, 
including:

• Other articles in this volume
• Top cited articles
• Top downloaded articles
• Our comprehensive search

FurtherANNUAL
REVIEWS

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
3.

45
:3

57
-3

78
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

nt
a 

B
ar

ba
ra

 o
n 

08
/2

0/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



FL45CH15-Mezic ARI 28 November 2012 14:56

Proper orthogonal
decomposition
(POD):
decomposition of a
physical field, such as
the velocity field, into
spatial modes that are
ranked by
contributions to a
quadratic or some
other norm of the field

1. INTRODUCTION

Fluid flows at high Reynolds number present us with a bewildering complexity of interactions
that at times appear driven by organized structures and at times lack any detectable structure
whatsoever. Researchers have long been striving to detangle this complexity by isolating features
of flows that appear to have a dominant effect on the dynamics, such as localized vortices, as
well as strain and shear structures (Batchelor 2000), with the idea that a certain superposition of
dynamics driven by such structures will describe the flow accurately. Although these studies lead
to important information about the dynamics of such coherent, isolated structures, the equations
governing fluid-flow motion at high Reynolds number are nonlinear, and thus even the possibility
of such superposition is called into question. The joint dynamics of coherent structures can be
studied using statistical mechanics, as in Lundgren & Pointin (1977), using the assumption of
ergodicity, to determine the long-term statistical properties or resulting flows. However, often
our interest is not in the long-term properties, such as the average Eulerian velocity, but instead is
in short-term, dynamical aspects, such as spatial and temporal properties of instability inception.
An example in which much of the focus is on short-term, transient dynamics is the control of fluid
flows (see, e.g., Koumoutsakos & Mezić 2006).

An idea that permeates applied mathematics, theoretical physics, and engineering for problems
that deal with transient features is that of the expansion of a possibly complicated function of
space and time into an infinite sum of simpler components. The most common such examples
are of course the Taylor and Fourier expansions (or decompositions) and the more recent
addition of wavelet decompositions (for applications in fluid dynamics, see Farge 1992). For these
decompositions, a fixed set of functions of space is chosen, and the evolving function or field is
projected onto those to obtain time-dependent coefficients. We could call these decompositions
with a predetermined basis. Another approach is the expansion into proper orthogonal modes,
called proper orthogonal decomposition (POD) (Holmes et al. 1998), Karhunen-Loeve decom-
position, or empirical orthogonal components decomposition, among other names. POD has
been rediscovered a number of times since the initial works of Karhunen and Loeve in the context
of stochastic processes. In comparison to the previous example of Taylor and Fourier expansions,
in POD the spatial functions chosen to represent an evolving function (or a field) are dependent

PROPER ORTHOGONAL DECOMPOSITION

POD was introduced in fluid dynamics by Holmes, Lumley, and Berkooz (see Holmes et al. 1998), following the
original work of Karhunen-Loeve, Lorenz, and others. The technique, as originally developed, aims to decompose
a physical field (e.g., the velocity field) into a sum of spatially orthogonal modes defined on the flow domain.
Its implementation requires knowledge of the time-averaged spatial correlation matrix of the velocity field. In the
context of the Koopman operator ideas reviewed in this article, each spatial mode obtained by the POD procedure is a
projection of the product of velocities at points x and y, v(x) and v(y) onto the eigenspace of the Koopman operator at
eigenvalue 1 (recall that the eigenspace at 1 corresponds to fields that are time averages of observables). The resulting
decomposition is closest to the original field in the least-squares sense (there are also variants that minimize other
norms). Galerkin projection of the field on the resulting modes yields a system of ordinary differential equations.
One of the most common uses for POD in fluid dynamics is the analysis of the flow physics using a truncated set of
equations from the Galerkin projection. One known problem with this procedure is that the selection of modes that
preserve stability properties of the original evolution can be sensitive (Amsallem & Farhat 2012). This is related to
the fact that instabilities are dynamical events that start with modes of small energy.
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Koopman operator:
an infinite-
dimensional linear
operator that evolves
fields of physical
observables defined on
a state space of a
dynamical system

Koopman mode: a
spatial field defined on
the domain of
evolution of the
physical observable
(e.g., fluid-flow
domain, on which the
velocity field is
defined) obtained by
projection of the
physical field onto an
eigenfunction of the
Koopman operator

Global mode:
a spatial mode of an
observable field, such
as the velocity field
that oscillates at a
single frequency and
phase under the
dynamical evolution of
the field

Dynamic mode
decomposition
(DMD):
a decomposition of a
physical field into the
modes obtained by the
Arnoldi algorithm for
finding eigenvalues
and eigenvectors of
linear operators

on the evolution of the function itself. In fact, out of all orthogonal expansions that could
represent the field, POD has the convenient property that it is the closest to the field at every
finite expansion length, in a least-squares (or energy) sense. However, dynamical information is
not always captured well. For example, very small energy perturbations can lead to a large-scale
instability. Moreover, although POD mode decomposition would capture the high-energy con-
sequences of such a perturbation, the initial small energy perturbation would not be featured as
important.

An alternative concept has emerged in work of Mezić (2005), in which the author studied the
problem of decomposing evolution of a field from the perspective of operator theory. The essence
of the idea is to provide a decomposition that is based on projection onto eigenfunctions of a linear
operator—the Koopman, or composition, operator—associated with the dynamical evolution of
the underlying field. The technical aspects of this are described in Section 3. The approach is based
not on the concept of the closeness of the projection to the full dynamics of the field, but instead
on decomposition into dynamically relevant modes. These modes have the property that they
represent the collective motion of fluid, in which a spatial shape is multiplied by a time-dependent
function of form exp(λt) for complex λ, which is an eigenvalue of the Koopman operator. (Time
dependence can be more complicated in the case of degenerate eigenvalues.) In fact, the resulting
decomposition in the case of a linear system is the decomposition into normal modes that proves
useful in the theory of oscillations. Thus, by applying it, we achieve continuity in the treatment
of linear and nonlinear dynamics.

The resulting modes—named Koopman modes by Rowley et al. (2009)—are not necessarily
orthogonal. They are also a natural extension of the concept of global modes advocated in the
1990s by Huerre & Monkewitz (1990). These authors defined global modes as spatial structures
that evolve at a single frequency. That concept was associated with linearization by Theofilis (2003)
and Henningson & Åkervik (2008), but the work of Mezić (2005) proved rigorously that there is
no need for that: Global modes, as defined by Huerre & Monkewitz (1990), are related to the point
spectrum of the Koopman operator associated with the fully nonlinear evolution. In fact, as shown
below, the more recent work showing how one can obtain global modes by solving an eigenvalue
problem for perturbation around the mean (time-averaged) flow is yet another consequence of
Koopman mode expansion (Pier 2002, Noack et al. 2003, Barkley 2006).

These concepts can also be connected to the work of Reynolds & Hussain (1972) on triple
decomposition in which the flow is decomposed into its mean, periodically oscillating (coherent),
and incoherent parts (in fact, this fluid mechanical connection was pointed out in Mezić 2005).
This definition is valid for asymptotic evolution, in which transient evolution has subsided.

Here we define Koopman modes as the projection of an observable such as the velocity field
on an eigenfunction of the Koopman operator. (Vorticity and pressure modes are of interest but
have not been studied yet.) This definition subsumes the previous concepts and defines Koopman
modes as collective motions of fluid that are occurring at the same spatial frequency, growth,
or decay rate. The analysis becomes even more general when there are degenerate eigenvalues,
and a more complex, collective time evolution that incorporates algebraic terms can be present. In
addition, the existence of a continuous spectrum poses a largely open problem on how to represent
that part of the flow in terms of structures that are local (but not associated with linearization) in
time, frequency, and space but that also possess aspects of collective motion.

A numerical method for decomposing fluid flows named dynamic mode decomposition (DMD)
was first proposed by Schmid & Sesterhenn (2008) and later published in Schmid (2010). Rowley
et al. (2009) demonstrated that there is a relationship between Koopman mode decomposition
and DMD and specifically that DMD modes constitute a subset of Koopman modes. The com-
putation of DMD modes is based on an efficient group of algorithms from linear algebra, called
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DYNAMIC MODE DECOMPOSITION

DMD was introduced in fluid mechanics by Schmidt & Sesterhenn (2008). It is based on considering the sequence
of snapshots v0, v1, . . . vN of a flow field. An assumption is made that the snapshots are related by a matrix K such
that vk+1 = Kvk. The eigenvalues and eigenvectors of K are then found either through algorithmic implementation
based on the full matrix or via consideration of the eigenvalues and eigenvectors of the companion matrix described in
the text. In terms of Koopman operator-based analysis, the finite matrix K can be considered as a finite-dimensional
approximation of the action of an infinite-dimensional operator, the Koopman operator, restricted to the Krylov
subspace of flow fields spanned by the snapshots.

Arnoldi-type methods, based on snapshots of the dynamical evolution of observables (e.g., of fluid
velocity) at regular time intervals. The combination of rigorous analysis in Mezić (2005) and effi-
cient computational methods in Rowley et al. (2009) and Schmid (2010) has led to rapidly growing
applications of this approach.

In this review, Section 2 discusses the treatment of fluid-flow velocity as a field of state-space
observables, in which the state space is the space of Fourier coefficients associated with Galerkin
projection onto a suitable basis of functions on the physical space. Section 3 defines and discusses
a variety of properties of the Koopman operator, including its spectral properties. The notion of
Koopman modes is defined, and the expansion of dynamics into the sum of such modes multiplied
by suitable coefficients is discussed. A general rigorous method is introduced to compute Koopman
modes called generalized Laplace analysis (GLA), and several examples of expansion are presented,
including the harmonic oscillator, general linear systems, and nonlinear observables on a stable
linear system. Koopman mode analysis is connected to global modes based on perturbation from
the mean flow. Computation methods of Koopman modes based on Arnoldi-type algorithms are
also reviewed. Section 5 reviews some applications of Koopman mode analysis to a variety of fluid
flows and other dynamical processes. Section 6 concludes.

2. VELOCITY FIELD AS A FIELD OF STATE-SPACE OBSERVABLES

2.1. Galerkin Representation of Fluid Flow

For simplicity, the discussion in this section is restricted to incompressible flows. However, the
ideas presented here, and the Koopman spectrum–based analyses, are quite general and easily
extendible to compressible flow and to multiphase flow situations.

The dynamics of incompressible fluid flow is most commonly studied using the Eulerian frame-
work, via the nondimensional version of Navier-Stokes equations

ut + u · ∇u = −∇ p + 1
Re

∇2u + f (x), ∇ · u = 0, (1)

where Re = ρUL/μ is the Reynolds number, U a characteristic velocity, and L a length scale. The
nondimensional forcing f is assumed steady for simplicity. [Throughout, all vectors are written
in bold font (e.g., x), and their respective elements are written in standard font with indices as
subscripts (e.g., x1, x2, . . .). The subscript t (e.g., ct) indicates partial differentiation with time,
and ∇ is the gradient operator.] The density of the fluid is ρ and its viscosity μ. Velocity (u)
and pressure (p) are nondimensional, with velocity scaled by U and pressure scaled by ρU 2. For
simplicity, we assume periodic boundary conditions in a three-dimensional unit box and represent
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A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
3.

45
:3

57
-3

78
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

nt
a 

B
ar

ba
ra

 o
n 

08
/2

0/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



FL45CH15-Mezic ARI 28 November 2012 14:56

u(x, t) using spatial Fourier decomposition:

u(x, t) =
∑
k∈Z3

ak(t) exp(i2πk · x), (2)

where as usual i = √−1 and a−k(t) = ac
k(t) to obtain real vector u, with ac

k the complex conjugate
of the coefficient ak. Then, using Galerkin projection, an infinite set of differential equations is
obtained for ak(t):

ȧk(t) = f (a), (3)

where a is the infinite-dimensional vector of Fourier coefficients (see, e.g., Rowley et al. 2004).
Famously, in many cases in which the existence and uniqueness of solutions are known, the
dynamics settles on a finite-dimensional attractor (Temam 1997). Thus, at least when considering
the dynamics on the attractor only, we are dealing with a finite (albeit possibly large) dimensional
dynamical system.

2.2. Velocity Field as Field of State-Space Observables

The space A of coefficients ak can be thought of as the state space for fluid-flow evolution, and
the velocity at every point x is a vector-valued function on that state space, as is evident from
Equation 2. Namely, picking a point in A, a, we can obtain the vector u at any point x:

u(x) =
∑
k∈Z3

ak exp(i2πk · x). (4)

Thus we can think of u(x) as a family of vector-valued linear observables on A parameterized by
x. Specifically, the value of observable u(x) that the system sees at time t is given by Equation 2.

3. KOOPMAN OPERATOR, EIGENFUNCTIONS, AND MODES

3.1. Koopman Operator for Continuous-Time Dynamical Systems

For a general dynamical system

ż = F(z), (5)

STATE-SPACE REPRESENTATION OF PROBLEMS IN FLUID MECHANICS AND
FIELDS OF OBSERVABLES

We give two familiar examples in which a state-space representation of fluid flow can be obtained in analytical form.
The first stems from vortex dynamics. The position of a vortex moving inside a unit circle is described by the angle
φ moving on a circular trajectory with constant radius. The evolution of φ is linear in time. The velocity field is a
function of φ—the state-space variable, as well as the spatial (radial) coordinates at which the velocity is measured,
r, θ . The evolution of the velocity field is periodic in time (Shashikanth & Newton 1998).

Another example stems from bifurcation theory. Rayleigh-Bénard convection can be studied using the Boussinesq
approximation and in two-dimensional cases leads to two coupled partial differential equations for the stream
function and temperature (Moehlis & Knobloch 2007). Just after the onset of convection, a state-space representation
in the form of an amplitude equation ȧ = c 1a + c 3a3 is derived, and observables ψ , the streamfunction, and θ ,
the temperature, are expressed as functions of A. The state-space equation for A can be linearized in the basin of
attraction of its stable fixed point and transformed into ḃ = −λb , an equation whose Koopman eigenfunctions we
study below.
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z3

z1 z2

z0

St(z0)

Figure 1
Trajectory of a dynamical system in R

3.

defined on a state space A (i.e., z ∈ A), where z is a vector and F is a possibly nonlinear vector-
valued function, of the same dimension as its argument z, we denote by St(z0) the position at time
t of the trajectory of Equation 5 that starts at time zero at point z0 (see Figure 1).

We denote by g an arbitrary, vector-valued observable from A to R
m. The value of this

observable g, which the system trajectory starting from z0 at time zero sees at time t, is

g(t, z0) = g(St(z0)). (6)

Note that the space of observables g is a vector space. The family of operators U t, acting on the
space of observables parameterized by time t, is defined by

U tg(z0) = g(St(z0)). (7)

Thus, for a fixed τ , U τ maps the vector-valued observable g(z0) to g(τ, z0). With some abuse of
language, we call the family of operators U t the Koopman operator of the continuous-time system
(Equation 5). This operator was defined for the first time in Koopman (1931) for Hamiltonian
dynamical systems. In operator theory, such operators are often called composition operators,
when defined for general dynamical systems, as U t acts on observables by composing them with
the mapping St (Singh & Manhas 1993).

3.2. Koopman Eigenfunctions

The operator U t is linear, as can be easily seen from its definition (Equation 7); thus it makes
sense to consider its spectral properties in the context of analyzing Equation 5. In this direction,
we look for special observables φ(z) : A → C on the state space that have the evolution in time
given by

U tφ(z0) = φ(St(z0)) = exp(λt)φ(z0). (8)

Such observables (functions) φ are the eigenfunctions of U t, and the associated numbers λ are the
eigenvalues of U t.

Example 1 (stable system in one dimension): Let us consider the following simple example
of a stable dynamical system in one dimension,

ż = −λz, λ > 0. (9)
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Spectral expansion
(decomposition):
an expansion
(decomposition) of a
physical field into
(generalized)
eigenvectors of the
Koopman operator

The trajectories are given by St(z0) = z0 exp(−λt). Let the observable ϕ(z) = z. We have

U tφ(z) = φ(z exp(−λt)) = z exp(−λt) = exp(−λt)φ(z),

and φ(z) = z is an eigenfunction of the Koopman operator associated with the eigenvalue −λ. This
is the consequence of the more general property that for linear stable systems, the set of eigenvalues
of the Koopman operator contains the spectrum of the system matrix (see Rowley et al. 2009 and
below). However, the set of eigenvalues and eigenfunctions of the Koopman operator is larger
than those “linear” ones, and it depends on the space of functions in which the evolution is taking
place (Gaspard et al. 1995). Let us consider φ(z) = zn, n ∈ Z

+. We have

U tφ(z) = φ(z exp(−λt)) = zn exp(−nλt) = exp(−nλt)φ(z),

and thus the functions φ(z) = zn are eigenfunctions of U t associated with eigenvalues −nλ. Despite
the dynamics itself being linear, the eigenfunctions of the Koopman operator are not necessarily
linear. These functions span the space of real-analytic functions on R, and thus nonlinear observ-
ables evolving under linear dynamics can be represented by a spectral expansion using Koopman
eigenfunctions. We consider then the evolution of any real-analytic observable u(z), with Taylor
expansion

u(z) =
∞∑
j=0

u j zj ,

where u j = (1/j !)d j u/d zj (0). Its evolution, given by u(t, z) = U tu(z), can be represented as

u(t, z) = U tu(z) = U t

⎛
⎝ ∞∑

j=0

u j zj

⎞
⎠ =

∞∑
j=0

u j exp(− jλt)zj .

For n real or negative, zn is also an eigenfunction, provided we expand the space of observables in
which we are interested. For example, if we allow in the space of observables functions that lack a
derivative of order [n] + 1 (for real n, where [n] is the integer part of n), n can be any real positive
number. If n is negative, we need to allow for observables that have a singularity at zero.

We note that if φλ1 is an eigenfunction of U t at λ1 and φλ2 is an eigenfunction of U t at λ2, then
φλ1 · φλ2 is an eigenfunction at λ1 + λ2:

U t(φλ1 (z)φλ2 (z)) = φλ1 (St(z)) · φλ2 (St(z))
= exp(λ1t)φλ1 (z) exp(λ2t)φλ2 (z)
= exp((λ1 + λ2)t)φλ1 (z)φλ2 (z).

(10)

Thus, if we find an eigenvalue λ and the associated eigenfunction φλ, then nλ is an eigenvalue for
the associated eigenfunction φn

λ . It is easy to see how these results can be extended to diagonalizable
linear systems of arbitrary dimension (Gaspard et al. 1995). In addition, a large class of nonlinear
systems can be treated using a linearizing transformation, as shown in Gaspard et al. (1995) and
Lan & Mezić (2012). Let us consider a nonlinear system ẏ = g(y), within a basin of attraction
of a fixed point or a limit cycle. If one can find an analytic linearizing transformation z = h(y),
then the spectrum of the Koopman operator of the nonlinear system is equal to that of the linear
system. For the more general case of two conjugate systems, the reasoning is as follows: We let St

and U t
S be the family of mappings and the Koopman operator associated with ż = f (z), and Tt and

U t
T be a family of mappings and the Koopman operator associated with ẏ = g(y). Assume that

φ(z) is an eigenfunction of U t
S associated with eigenvalue λ. In addition, we let h be a mapping

such that St(h(y)) = h(Tt(y)); i.e., the two dynamical systems are conjugate. Then we have

exp(λt)φ ◦ h(y) = φ(St(h(y))) = φ(h(Tt(y))) = U t
T (φ ◦ h(y));
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i.e., if φ is an eigenfunction at λ of U t
S, then the composition φ ◦ h is an eigenfunction of U t

T

at λ. In other words, if we can find a global conjugacy to a linear system or a skew-product of a
linear system and rotation on a cycle [which was shown to be possible under general conditions
in an entire basin of attraction of a fixed point or a limit cycle by Lan & Mezić (2012)], then the
spectrum of the Koopman operator can be determined from the spectrum of the linearization at
the fixed point or the limit cycle.

3.3. Koopman Modes

We assume now that we have a vector-valued observable u(z, x), where x ∈ B ⊂ R
n and z ∈ A,

the state space of the dynamical system (Equation 5).
Definition 1 (Koopman mode): The Koopman mode s(x) at isolated eigenvalue λ of algebraic

multiplicity 1 is the projection of u(z, x) onto the eigenfunction φλ(z) of U t at λ.
The projection in question can be obtained as an inner product with the eigenfunction φ̄c

λ(z)
at λc of the adjoint of U t—the Perron-Frobenius operator (Gaspard 2005). This would, however,
require an explicit calculation of such an eigenfunction. An alternative is provided by the following.

Theorem 1 (GLA): We let λ1, . . . , λK be the eigenvalues of U t such that | exp(λ1)| ≥
| exp(λ2)| ≥ · · · ≥ | exp(λK )|. Then the Koopman mode associated with λK is obtained by
computing

φK (z)sK (x) = lim
T →∞

1
T

∫ T

0
exp(−λK t)

⎡
⎣u(Stz, x) −

K−1∑
j=0

exp(λ j t)φ j (z)s j (x)

⎤
⎦ dt, (11)

and we denote sK (z, x) = φK (z)sK (x).
Koopman modes are independent of initial conditions and, as shown in the example below, form

a basis for the expansion of the evolution of the observable u starting from any initial condition
in the state space (just as in the case of linear normal modes). The GLA computation starts by
identifying or guessing the spectral radius (i.e., the largest Koopman eigenvalue associated with
the evolution of the observable) and removing the contribution of that observable in the manner
evident in Equation 11. However, this may lead to an unstable computation. An alternative is
provided by the Arnoldi-type methods described below.

Example 2 (Koopman modes for a stable system): We consider now the field of observables
on state space A parameterized by the spatial variable x ∈ [0, 1], denoted by u(z, x), evolving under
the dynamics of Equation 9. The time evolution of this field is

u(t, z, x) =
∞∑
j=0

exp(− jλt)zj u j (x),

where
u j (x) = (1/j !)d j u/d zj (0, x)

is the Koopman mode associated with the eigenvalue −λ j = − jλ. If we want to isolate the
contribution to the time evolution of u(z, x) that comes from a particular eigenvalue Kλ, we use
GLA. Let

s K (z, x) = lim
T →∞

1
T

∫ T

0
exp(Kλt)

⎡
⎣u(t, z, x) −

K−1∑
j=0

exp(− jλt)zj u j (x)

⎤
⎦ dt

= lim
T →∞

1
T

∫ T

0
exp(Kλt)

⎡
⎣ ∞∑

j=K

exp(− jλt)zj u j (x)

⎤
⎦ dt

= uK (x)zK .

(12)
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Note that (generalized) eigenfunctions of (U t)T —the Perron-Frobenius operator—are in
this case given by the delta distribution and its derivatives δ j (x), j ∈ N, and∫

A δ j (x)u(z, x)d z = ∂ j u/∂zj (0, x) (Gaspard et al. 1995). Thus the GLA provides the desired pro-
jection of u(z, x) onto Koopman eigenfunctions obtained via the inner product with the dual
eigenfunctions of the Perron-Frobenius operator.

In fact, for the case with no unstable modes,1 and | exp(λK )| = 1, the expression in
Equation 11 reads (Mezić & Banaszuk 2004, Mezić 2005)

sK (z, x) = lim
T →∞

1
T

∫ T

0
exp(−λK t)u(Stz, x)dt, (13)

because all the other possible eigenvalues λ j of U t have | exp(λ j )| ≤ 1, and those with | exp(λ j )| = 1
do not resonate with λK ; i.e.,

lim
T →∞

1
T

∫ T

0
exp(−λK t) exp(λ j t)dt = 0. (14)

3.4. Spectral Expansion

Koopman modes are of interest because they are akin to the eigenvector expansions utilized
in linear dynamics. In fact, in the case in which the system in Equation 5 is linear, and given by
ż = Az, its matrix eigenvalues are eigenvalues of the associated Koopman operator. The associated
Koopman eigenfunctions are given by

φ j (z) = 〈z, w j 〉, j = 1, . . . , n, (15)

where wj are eigenvectors of the adjoint A∗ (that is, A∗w j = λc
j w j ), normalized so that 〈v j , wk〉 =

δ j k, where vj is an eigenvector of A, and 〈·, ·〉 denotes an inner product on a linear space M in
which the evolution is taking place (Rowley et al. 2009). This is easily seen by observing

φ̇ j = 〈ż, w j 〉 = 〈Az, w j 〉 = 〈z, A∗w j 〉 = λ j 〈z, w j 〉 = λ j φ j , (16)

and thus

φ j (t, z0) = U tφ j (z0) = exp(λ j t)φ j (z0).

Now, for any z ∈ M , as long as A has a full set of eigenvectors at distinct eigenvalues λ j , we may
write

z =
n∑

j=1

〈z, w j 〉v j =
n∑

j=1

φ j (z)v j ,

U tz(z0) = z(t) =
n∑

j=1

exp(λ j t)φ j (z0)v j ,

(17)

where z(z0) is the vector function that associates Cartesian coordinates with a point z0 (the initial
condition) in state space. Thus, for linear systems, the Koopman modes used in the expansion of z
coincide with the eigenvectors of A. Moreover, any nonlinear analytic observable can be expanded

1It is interesting that the theory allows for unstable modes, growing as exp(λt), λ real and bigger than zero, if we allow for
unbounded observables. The unstable modes feature prominently in linear stability theory. However, in the full nonlinear
theory of Navier-Stokes equations, it is shown in a number of contexts (but not all!) that solutions are bounded. Thus the
absence of unstable modes in Koopman spectrum computations is related to the fact that, over time, Navier-Stokes solutions
settle on an attractor.
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in the same way; we have done this in Example 2, using the products of eigenfunctions in the
expansion.

Such analysis extends beyond linear systems. In the case of systems preserving measure μ, which
includes the case in which we are studying the dynamics on an attractor of the Navier-Stokes equa-
tions [with respect to the associated invariant physical measure on the attractor (Young 2002)],
the complete spectral decomposition of a vector-valued, square-summable (i.e., L2) function
g(z, x), where z is a state-space point and x is the point in the fluid domain, is given as

U tg(z, x) = U t
s g(z, x) + U t

r g(z, x)

= g∗(x) +
k∑

j=1

exp(λ j t)φ j (z)
∫

M
g(z, x)φ̄ j (z)dμ(z)

+
∫ 1

0
exp(i2παt)d E(α)g(z, x)

= g∗(x) +
k∑

j=1

exp(λ j t)φ j (z)s j (x) +
∫ 1

0
exp(i2παt)d E(α)(g(z, x)),

(18)

where E is a complex, continuous, operator-valued spectral measure on L2, which in the last part of
the expansion represents the contribution from the continuous part of the spectrum, and U t

s and
U t

r are operators on mutually orthogonal spaces of functions, where U t
s has a pure point spectrum

and U t
r has a continuous spectrum (Plesner et al. 1969; see Mezić 2005 for the discrete-time

version). It can be shown that the part corresponding to the point spectrum is an almost-periodic
function in the sense of Bohr (Mezić 2005).

All the eigenvalues of the Koopman operator for a measure-preserving system are on the unit
circle, and eigenfunctions of the Koopman operator are orthogonal (Petersen 1989, Mezić &
Banaszuk 2004, Mezić 2005). Now the j-th Koopman mode reads

s j (x) =
∫

M
g(z̄, x)φc

j (z̄)dμ(z̄).

In this case, because of the orthogonality of eigenfunctions, the inner product is taken with the
eigenfunction of the Koopman operator itself, in contrast to the general case described above in
which the inner product involves eigenfunctions of the adjoint Perron-Frobenius operator. Note
that, from Theorem 1, because all the eigenvalues of the expansion are of modulus 1, the Koopman
mode at eigenvalue iω j can be obtained as

φ j (z)s j (x) = lim
T →∞

1
T

∫ T

0
exp(−iωt)u(Stz, x)dt. (19)

Here we do not need to subtract the already computed part of the field from the data because all
the eigenvalues have the same modulus. As pointed out by Wiener (1930) in his classic generalized
harmonic analysis, Schuster (1897) already knew that harmonic averages such as Equation 19 can
be applied to uncover hidden periodicities in signals.

The composite picture that develops from the above considerations is that the following triple
decomposition of the velocity field arises from the spectral properties of the Koopman operator
on the attractor:

u(t, z, x) = u∗(z, x) + uap (t, z, x) + uc (t, z, x),

where u∗(z, x) is the time-averaged part of the field, uap (t, z, x) is almost periodic in time, and
uc (t, z, x) is the part of the field that is genuinely aperiodic (or chaotic) in time. Thus this part
could be modeled as a stochastic process. This stochastic process can be expanded into Karhunen-
Loeve modes in space (POD) (see Holmes et al. 1998). In fact, because the modal dynamics of
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the POD in this case has a continuous spectrum, one could expect that the dynamics might be
hyperbolic. The finite-dimensional truncations should have good structural stability properties
in this case. An alternative to this decomposition of the continuous spectrum is the use of the
so-called Ruelle-Pollicott resonances, which govern the relaxation of the chaotic part of the field,
thus providing the coarse-grained picture of the continuous spectrum (Ruelle 1986, Cvitanović
et al. 2005).

A direct association between various types of attractors studied in dynamical systems and
the above decomposition can be drawn: Quasi-periodic attractors correspond to decomposition
u(t, z, x) = u∗(z, x) + uap (t, z, x); skew-periodic attractors, discussed in Broer & Takens (1993),
correspond to decomposition u∗(z, x) + uap (t, z, x) + uc (t, z, x); and axiom A attractors (Young
2002) correspond to decomposition u∗(z, x) + uc (t, z, x).

Example 3 (harmonic oscillator): In this example, we study the case in which the state-space
dynamics is provided by a harmonic oscillator. Here z = (z1, z2) and

ż1 = z2,

ż2 = −ω2z1.

This system is divergence free and thus preserves area in state space. Thus it falls into the category
of measure-preserving systems. The solution to this set of equations is given by

z1(t) = ż20(0)
ω

sin(ωt) + z1(0) cos(ωt),

z2(t) = ż20(0) cos(ωt) − z1(0)ω sin(ωt).

We use the generalized Laplace transform, for the case λ1,2 = ∓iω, to project the observable’s
vector (z1(t), z2(t)) (with x = {1, 2} as the index set or parameterizing variable) onto modes
oscillating at a single frequency:

lim
T →∞

1
T

∫ T

0
exp(±iωt)

(
z1(t)
z2(t)

)
dt = 1

2

(
z10 ± i z20/ω

z20 ∓ iωz10

)
. (20)

The first projection is

s1(z0) = 1
2

[(
z10

z20

)
+ i

(
z20/ω

−ωz10

)]
,

and the second one is its complex conjugate

s2(z0) = 1
2

[(
z10

z20

)
− i

(
z20/ω

−ωz10

)]
. (21)

We note that these projections play the role of functions si (z, x) in the general theory. Because we
are in a finite-dimensional context, the parameterizing set is such that x takes values in the finite
set {1, 2}, and thus we just have vectors of two components si = s(z0;i ), i = 1, 2.

Now we have

(z1, z2)T = z = exp(−iωt)s1(z0) + exp(iωt)s2(z0) = exp(−iωt)As1 + exp(iωt)Bs2, (22)

where

s1 =
(

1
−iω

)
, (23)

and s2 is the complex conjugate sc
1 of s1, A = 1/2(z10 + i z20/ω), and B = Ac . We can also check

that A(z10, z20) is an eigenfunction of the Koopman operator of Equation 20 (and thus B as well,
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as it is the complex conjugate of A by putting it in polar form): We let r0 =
√

z2
10 + (z20/ω)2 and

tan θ = −z20/(ωz10). Because r0 is an eigenfunction at eigenvalue zero (it is constant on the ellipse
of invariant energy) and exp(±iθ0) is an eigenfunction associated with eigenvalue exp(±iωt), and
because the product of eigenfunctions is an eigenfunction at the sum of eigenvalues, we get the
form of the spectral expansion we derived in the general case of measure-preserving systems.

3.5. Relationship Between Koopman Modes and Mean-Flow-Based
Global Modes

It is interesting to connect the expansion in Equation 18 with global mode analysis (described orig-
inally in Huerre & Monkewitz 1990) executed in the form of the analysis of perturbation around
the mean (time-averaged) flow, as studied by Pier (2002), Noack et al. (2003), and Barkley (2006).
For example, Barkley (2006) studied the Kármán vortex street in a wake of a two-dimensional
circular cylinder. A perturbation equation was derived around the time-averaged flow velocity
profile for the case of flow oscillating at a single frequency ω, and the solution of the associated
eigenvalue problem yields an oscillation frequency such that the relationship between the Strouhal
number based on that frequency and the Reynolds number matches experimental data extremely
accurately. Such analysis is based on a certain assumption about the behavior of the Reynolds
stress term.

To examine the validity of that procedure, we consider the time evolution of Equation 5.
Assume that the dynamics settles on a limit cycle, yielding, from Equation 18,

z(t) = z∗ +
∑

n∈Z/0

exp(inωt)sn,

where z∗ is the time average, and we omit the dependence of sn on initial conditions, which is just
the phase on the limit cycle. We obtain

ż =
∑

n∈Z/0

inω exp(inωt)sn = F

⎡
⎣z∗ +

∑
n∈Z/0

exp(inωt)sn

⎤
⎦ , (24)

where the right-hand side is assumed to be an analytic function. Owing to its periodicity in t, it
admits the Fourier expansion

F

⎡
⎣z∗ +

∑
n∈Z/0

exp(inωt)sn

⎤
⎦ =

∑
n∈Z

exp(inωt)Fn,

where

Fn = 1
T

∫ T

0
F

⎡
⎣z∗ +

∑
n∈Z/0

exp(inωt)sn

⎤
⎦ exp(−inωt)dt. (25)

Now, because of the analyticity of F, we expand into a Taylor series around z∗ and consider the
case n = 1:

F1 = 1
T

∫ T

0

⎡
⎣F(z∗) +

∑
n∈Z/0

exp(inωt)∇F(z∗) · sn + H.O.T .

⎤
⎦ exp(−iωt)dt. (26)

There are at least two different situations in which the higher-order terms (H.O.T.) in
Equation 26 can be neglected: (a) when the sn are small and (b) when the dynamics on the limit cy-
cle is harmonic, and subharmonics can be neglected. Note that the Galerkin projection (Equation
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3) has a quadratic right-hand side, and thus the third- and higher-order derivatives in Equation 26
are zero. In these cases, the only oscillatory terms that survive the integration are n = ±1. Using
Equations 24–26, we obtain

iωs1 = ∇F(z∗) · s1,

and the Koopman mode s1 is the solution of the global mode eigenvalue problem, which is in a
fluid mechanical context obtained as a perturbation around the mean (time-averaged) flow.

The expansion in Equation 18 was derived for the first time in Mezić (2005), for the case of
discrete-time dynamical systems. When one considers dissipative systems, with stable and unstable
directions to the attractor, the spaces of functions need to be changed (Gaspard et al. 1995). For
example, in the case in which the attractor is a limit cycle, a function space to work with can
be L2(S1) × A(S1)⊥, where A(S1)⊥ is the space of analytic functions that do not depend on the
variable θ describing the position along the limit cycle, as shown by Y. Lan & I. Mezić (unpublished
manuscript).

4. COMPUTATION OF KOOPMAN MODES

Koopman modes in principle can be computed directly using GLA, presented in Theorem 1. In
the case of | exp(λ)| = 1, this reduces to Fourier analysis. Fast Fourier transform can be used to
find the spectrum associated with an observable. Peaks of that spectrum are then identified, and
the so-called Fourier (or harmonic) average can be computed using Equation 19. The caveat here
is that different observables in principle will present different spectra, so the whole Koopman
spectrum and its modes might not be revealed. In theory, the spectrum for a generic observable
contains the full spectrum of the Koopman operator, but even the first examples computed show
that there is a significant difference in the spectra of different observables (e.g., velocities calculated
or observed at two different and distant points in the flow field). Figure 2 shows the time traces of
two observables—streamwise velocities at two different points in space, one near the wall and an-
other near the jet. The Koopman spectrum revealed by the Arnoldi-type algorithm for Koopman
eigenvalue computation (Rowley et al. 2009), discussed below, is richer than the spectra of either
observable. In the numerical simulation of fluid flows, some papers plot the eigenvalue exp(λ) inside
the unit circle, as done in Rowley et al. (2009). Owing to the discrete nature of the simulations per-
formed, a discrete sequence U n�t, n = 0, . . . , N is obtained. Thus, if λ is an eigenvalue of U t with
mode s(z, x), then the obtained evolution associated with that mode is αns(z, x) = exp(nλ�t)s(z, x),
yielding loge α = λ�t, and the eigenvalue is plotted at exp[(loge α)/�t]. As an example, Figure 3
shows the numerically computed Koopman eigenvalues and the two strongest oscillatory Koopman
modes corresponding to Koopman eigenvalues on the unit circle (i.e., on the attractor) of the jet
in transverse flow—the first case for which Koopman modes were computed (Rowley et al. 2009).

In principle, one can find the full spectrum of the Koopman operator by performing GLA,
in which Equation 11 is used on some function g(z) starting from the unit circle, successively
subtracting parts of the signal corresponding to eigenvalues with decreasing |λ|. In practice, such
computation can be unstable, as at large t it involves multiplication of a very large number with
a very small number. Also, although a generic observable will reveal all the eigenvalues of the
Koopman operator, it is easy to find examples, such as the harmonic oscillator example above,
in which the use of specific observables reveals only a portion of the spectrum. In the harmonic
oscillator example, we chose the states z1 and z2 as observables. As these are linear observables,
and the system itself is linear, the only eigenvalues revealed by GLA were ±iω. For a generic
nonlinear observable, the eigenvalues would be inω, n ∈ Z. Rowley et al. (2009) proposed the use
of an Arnoldi-type algorithm to compute Koopman modes. Prior to that, Schmid & Sesterhenn
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Figure 2
(a,b) The velocity signal (a) near the wall and (b) near the jet. (c,d ) Part of the spectrum of the Koopman operator for a jet in transverse
flow computed by the Arnoldi method (red ) and the spectrum associated with the velocity signal (blue) for the cases shown in panels a
and b. The Strouhal number St is plotted on the horizontal axis, and the normalized mode magnitude is plotted on the vertical axis.
Figure taken from Rowley et al. (2009).

(2008) proposed the use of an Arnoldi algorithm in computing the DMD (the published version
is Schmid 2010). The version of the Arnoldi algorithm derived by Ruhe (1984) and applied by
Rowley et al. (2009) and Schmid (2010) computes eigenvalues based on the so-called companion
matrix. More precisely, if u j ∈ R

n, j = 0, . . . , m is a sequence of fluid velocity snapshots at times
j�t (where n is the number of spatial points at which the velocity is obtained), the companion
matrix is defined as

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 c 0

1 0 0 c 1

0 1 0 c 2
...

. . .
...

0 0 · · · 1 c m−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (27)

where c i , i = 1, . . . m − 1 are such that

um =
m−1∑
j=0

c i ui + r,

and r is the residual vector that is zero provided um can be obtained as a linear combination of
u1, . . . , um−1 (which certainly happens when m > n). For m ≤ n, if um cannot be expressed as a
linear combination of previous snapshots, the residual vector r is chosen to be orthogonal to the
subspace spanned by u0, . . . , um−1. In the context of discrete-time dynamical systems (as obtained
from numerical simulation or experimental data), defined on state space A by

z′ = T (z),

and observable f : A → R, the time evolution under T yields the sequence of observables
{ f (z), f (T 2(z)), . . . , f (T m−1)(z), . . .} = { f0, f1, . . . , fm−1, . . .}. The left shift operator on this
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(a,b) Part of the spectrum of the Koopman operator for a jet in crossflow, with (a) Koopman eigenvalues on the unit circle, with the
darker red indicating a larger Koopman mode amplitude and blue indicating eigenvalue 1, and (b) their magnitudes. (c,d ) The two
largest magnitude Koopman modes corresponding to (c) high and (d ) low frequency. Positive (red ) and negative (blue) contour levels of
the streamwise velocity components of two Koopman modes are shown. The direction of the crossflow is z. Figure taken from Rowley
et al. (2009).

sequence is defined by

S({ f0, f1, . . . , fm−1, . . .}) = { f1, f2, . . . , fm, . . .}
and has a matrix representation in an infinite-dimensional companion matrix

C =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0 0
1 0 0 0
0 1 0 0
...

. . .
...

⎤
⎥⎥⎥⎥⎦ . (28)

Thus the spectrum of the Koopman operator restricted to the subspace spanned by u(T n(z), x) is
equal to the spectrum of the infinite-dimensional companion matrix, and the associated Koopman
modes are given by Ka (provided that a does not belong to the null space of K), where

K = [u0 u1 . . . um−1 . . .]

is the column matrix (vector-valued if u contains all three velocity components) of velocity snap-
shots at times 0, �t, . . . , (m − 1)�t, . . ., and a is an eigenvector of the shift operator restricted
to Krylov subspace spanned by ui. In this sense, the finite-dimensional companion matrix in
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Equation 27 can be thought of as an approximation to the action of the Koopman operator on the
associated finite-dimensional Krylov subspace.

Chen et al. (2012) proved that the decomposition (eigenvalues and modes) obtained from
the DMD approach is unique, provided that eigenvalues are isolated and snapshots of the flow
are independent. They also observed that subtracting the mean of the sequence of snapshots
leads to all possible eigenvalues being on the unit circle, the companion matrix analysis reducing
essentially to the discrete Fourier transform. However, the problem with subtraction of the mean
is in fact related to the observation above that the companion matrix is an approximation to
the Koopman operator representation on a finite-dimensional set of functions. When the mean
u∗ = ∑m

j=0 u j /(m + 1) is subtracted from the finite sequence of snapshots to obtain the new
sequence {u0 − u∗, u1 − u∗, . . . , um − u∗}, the action of the Koopman operator on this sequence
is not represented by the shift but can be written as

{u0 − u∗, u1 − u∗, . . . um − u∗} →
{

u1 − u∗ + 1
m + 1

(u0 − um+1),

u2 − u∗ + 1
m + 1

(u0 − um+1),

. . . , um − u∗ + 1
m + 1

(u0 − um+1)
}

.

When m → ∞, the above transformation has a limit that is the action of the Koopman
operator, but this is not so for any finite m, except when the specific periodicity on the attractor
is such that u0 = um. In that case, as Chen et al. (2012) demonstrated, the DMD computation
reduces to a discrete Fourier transform. This is in line with a statement in Mezić (2005) that
on-attractor (quasi-)periodicities can be computed using the so-called Fourier (or harmonic)
averages, which are the special case of GLA when |λ| = 1. However, in general, the computation
of Koopman modes by the DMD method needs to be done without subtracting the mean if
decaying or growing modes are to be captured.

In addition, Chen et al. (2012) devised an optimized version of the DMD algorithm, in which,
instead of a residual error at the last snapshot, they allow for errors at all snapshots but optimize the
eigenvalues to fit the data. They performed the analysis of error incurred by truncating the mode
set and found that the harmonic average (corresponding to the method proposed in Mezić 2005)
and optimized DMD modes perform equally and also better than any other modes tested. How-
ever, DMD and optimized DMD algorithms capture the eigenvalues and modes relatively well,
even with a short time sequence of snapshots (much shorter than the inherent period of the flow),
whereas harmonic averages do not. Thus, computationally, there is an interesting space-time
tradeoff for the two methods. Koopman eigenvalues and the value of Koopman modes at a spatial
point can be captured by GLA provided one has even a single point but also a long time trace of
data. Conversely, DMD methods based on Arnoldi-type algorithms seem to be able to capture
Koopman eigenvalues and Koopman modes over a shorter period from data that have a larger
spatial extent. The global-mode-type analysis discussed above is also a promising computational
method for the Koopman spectrum and mode computation, and it would be interesting to
develop it further.

5. APPLICATIONS OF KOOPMAN MODE ANALYSIS

The realization that the DMD algorithm computes Koopman eigenvalues and—via the calcula-
tion of the inverse of the so-called truncated Vandermonde matrix (see Bagheri 2010)—a subset of
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Figure 4
Part of the spectrum of the Koopman operator for self-sustained oscillations in turbulent cavity flow, with (a) Koopman eigenvalues on
the unit circle and (b) their magnitudes plotted against frequency ω in radians per second. Figure taken from Seena & Sung (2011).

Koopman modes2 led to its application in a variety of contexts. Henningson (2010) briefly summa-
rized the state of knowledge up to that point. It is evident from the description below that the num-
ber of works using the concepts of Koopman modes and the DMD algorithm is growing rapidly.

Tammisola et al. (2011) studied the stability of viscous confined-plane wakes and established
a connection of the so-called global linear mode theory with Koopman mode analysis, in their
case using essentially the Fourier version of GLA. By performing a careful comparison of spec-
tra obtained from linear stability analysis and nonlinear investigations in which the associated
Koopman modes are found, they concluded that although linear stability analysis correctly pre-
dicts the initial nonlinear behavior and therefore the stability boundary, the nonlinear state is
different for the Reynolds numbers toward the end of the range investigated. Specifically, the fre-
quency of nonlinear (Koopman) modes can differ by as much as 10% from the linear frequency.

Seena & Sung (2011) used Koopman modes to study self-sustained oscillations in turbulent
cavity flows. Eigenvalues of the Koopman operator for a Reynolds number of 12,000, at which
self-sustained oscillations were present, show a clear indication of oscillatory Koopman modes
(for eigenvalues 1–4 in Figure 4). Two different cases were studied using the DMD algorithm. In
the case of thick boundary layers, Koopman modes associated with the upcoming boundary layer
and shear layer structures had coincident frequencies but different spatial wave numbers. No self-
sustained oscillations were found. In the case of a thin incoming boundary layer, these structures
have the same temporal frequencies and spatial wave numbers, indicating coupling between two
spatial domains and ensuing internal resonance. Seena & Sung pointed out the differences in the
Koopman spectrum when sampling a subdomain of a flow versus the full domain. This is related
to the theoretical discussion above. When a subdomain is sampled, a smaller vector of observables
is evolving in time, and the spectrum of such a small vector of observables can be a subset of the
spectrum observed in the full domain. This is evident from figures 8 and 10 in Seena & Sung (2011).

2More precisely, the resulting vectors are s(z, x), as defined in this article. Koopman modes do not depend on initial conditions.
The modes obtained by the Arnoldi algorithm do.
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a b c d e

Figure 5
Top five Koopman modes of a jet emanating from the lobe diffuser, with increasing frequency from left to
right, indicating how an increase in frequency oscillations leads to higher-wave-number spatial oscillations of
the modes. Figure taken from Nastase et al. (2011).

Nastase et al. (2011) studied Koopman modes in lobed jets emanating from three-dimensional
diffusers for HVAC applications. Figure 5 shows the top five Koopman modes, with increas-
ing oscillation frequency from left to right. Higher-frequency temporal oscillations in this case
correspond to higher spatial wave-number oscillations of the corresponding modes. They used
the DMD algorithm to extract the dominant Koopman modes and, with this analysis, confirmed
their hypothesis that the dominant mode is related to Kelvin-Helmholtz structures at the lobe
trough.

Schmid et al. (2011) applied the DMD algorithm to schlieren snapshots of a helium jet
and to time-resolved particle image velocimetry (PIV) measurements of an unforced and
harmonically forced jet. As shown in the middle panel of Figure 6, the eigenvalues are pre-
sented in a different format than in Rowley et al. (2009) and Seena & Sung (2011): The frequency
is in hertz, Im(λi )/(2π ) is on the horizontal axis, and the decay rate Re(λi ) is on the vertical
axis. The emphasis in the current review article is on the abstract concept of the field of ob-
servables and their projections on the eigenfunctions of the Koopman operator. Schmid et al.
(2011) confirmed the physical relevance of such projections for two very different fields of ob-
servables: schlieren snapshots and PIV measurements. The authors analyzed the spatial structure
of Koopman modes and concluded that the primary effect of forcing is concentrated near the
nozzle exit, where oscillatory vortical fluid elements are introduced that dominate the forced dy-
namics. For the unforced jet, the decomposition shows a more typical behavior characterized by
the progressive roll-up of the outer shear layer in the downstream direction.

Tu et al. (2011) studied the separated flow over a finite-thickness flat plate at Re = 100,000 in
which the flow is characterized by up to three distinct natural frequencies: those of the shear layer,
separation bubble, and wake. They computed the POD and Koopman modes and compared the
two approaches. When the separation point is moved near the trailing edge, there are Koopman
modes that have support in the shear layer and in the far wake, and such modes are absent from
POD analysis, suggesting that these Koopman modes indicate the interaction between the shear
layer and the wake. The analysis of a forced (controlled) flow and the resulting Koopman modes
was pursued, revealing that the effectiveness of the control strategy resides in enhancing the shear
layer–wake interaction modes.

Duke et al. (2012) investigated highly resolved velocity measurements of the interfacial velocity
of an aerodynamically driven annular liquid sheet. Based on unstable Koopman mode analysis,
they proposed that two distinct instability sources are present, rather than one, and measured their
growth rates for the first time.

A number of applications of Koopman mode analysis are emerging in different fields as well.
For example, Susuki & Mezić used it to study coherency in power grids (Susuki & Mezić 2009)
and to study precursors to the so-called swing instability in the power-grid context (Susuki &
Mezić 2011), whereas Eisenhower et al. (2010) studied the dynamics of energy data and models
of buildings using Koopman modes.
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Figure 6
(Top panel ) Time evolution of a low-density helium jet. (Middle panel ) Koopman spectrum obtained using an
Arnoldi algorithm. Larger symbols correspond to larger-scale structures, and smaller ones to smaller-scale
structures. (Bottom panel ) Four Koopman modes, whose eigenvalues are numbered in the middle panel.
Figure taken from Schmid et al. (2011).

6. DISCUSSION AND CONCLUSIONS

In this review of the theory and applications of Koopman modes, we encounter a variety of ideas
and concepts in fluid mechanics that have been proposed and used to obtain collective motions of
fluid in the fully nonlinear regime, missing a common theoretical underpinning. Such concepts,
discussed above, are the global modes, triple decomposition, and DMD. The concept of Koopman
modes, derived from spectral properties of the infinite-dimensional, linear, Koopman operator
associated with a (linear or nonlinear) dynamical system, provides a unified theoretical background
for these concepts. In practice, the Koopman operator does not have to be realized to obtain the
modes. Indeed, the methods of computation of Koopman modes such as GLA and DMD deal with
snapshot sequences of the velocity field, whereas global mode analysis relies on the linearization
around the mean velocity field profile. This fact also enables these methods to be applied to PIV,
schlieren, and other fields obtained from experimental measurement.

The method for extracting Koopman modes, as deployed so far in fluid mechanics, is good for
flows with strong peaks in the spectrum, but flows with a broad spectrum need further resolution,
as shown, for example, by Muld et al. (2012), who compared POD and Koopman modes for the
flow around a surface-mounted cube that possibly has a continuous spectrum and did not find
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much difference between the two modes. In fact, Mezić (2005) argued that POD could be a robust
method for decomposition of the continuous-spectrum part of the flow, and it is interesting that
the two approaches (Koopman and POD decomposition) in practice yield similar results for such
flows. To understand such flows, progress is needed on the theoretical front, by unraveling further
mysteries of the Koopman operator structure.

SUMMARY POINTS

1. An overview is presented of the theory and applications of fluid-flow decompositions
based on spectral properties of the Koopman operator—a linear, infinite-dimensional
operator associated with the dynamical systems governing the flow evolution. The notion
of Koopman eigenfunctions and Koopman modes is reviewed.

2. The relationship between a variety of theoretical concepts and Koopman modes is dis-
cussed. Global modes, dynamic mode decomposition, and triple decomposition all have
their theoretical justification within the spectral theory of the Koopman operator.

3. Numerical analysis of Koopman modes is largely based on methods of dynamic mode
decomposition, although Fourier-transform-based methods are available for modes as-
sociated with the dynamics on the attractor.

4. The applications of Koopman operator–based analysis include the detection of coherent
structures in incompressible and compressible flows, global stability analysis, and the
unraveling of the interaction of flow structures in different parts of the flow domain (e.g.,
the interaction of the shear layer and far wake in the case of the separated flow over a
finite-thickness plate), as well as the analysis of forced (controlled) flows.

FUTURE ISSUES

1. Whereas the Koopman spectrum–based modal decomposition of systems with quasi-
periodic dynamics is well understood, the representation of systems with a mixed (part-
point, part-continuous) spectrum lacks sufficient theoretical understanding.

2. As discussed above, Arnoldi-type methods provide a finite-dimensional representation of
the Koopman operator action on a Krylov subspace. An understanding of errors inherent
in such an approximation should be enabled by that realization.

3. The Laplace transform–based methods for computing Koopman modes have well-known
error estimates. For example, the convergence in the case of a quasi-periodic attractor
(e.g., a limit cycle), where the method commonly used is the fast Fourier transform, is
given by 1/N where N is the number of snapshots. However, noisy data and problems with
spectrum estimation can make that approach deteriorate. Can advanced methods from
signal processing be used and further developed to enable this method of computation?
Can a method be designed that utilizes the theory of generalized Laplace analysis but
does not suffer from the numerical issues present when stable and unstable modes are
being computed?

4. How effective are the Koopman spectrum–based decompositions applied to vorticity and
pressure fields?

376 Mezić
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Mezić I, Banaszuk A. 2004. Comparison of systems with complex behavior. Physica D 197:101–33
Moehlis J, Knobloch E. 2007. Equivariant dynamical systems. Scholarpedia 2(10):2510

www.annualreviews.org • Spectral Analysis of Fluid Flows 377

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
3.

45
:3

57
-3

78
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

nt
a 

B
ar

ba
ra

 o
n 

08
/2

0/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.chaosbook.org
http://www.chaosbook.org


FL45CH15-Mezic ARI 28 November 2012 14:56

Muld TW, Efraimsson G, Henningson DS. 2012. Mode decomposition on surface-mounted cube. Flow Turbul.
Combust. 88:279–310

Nastase I, Meslem A, El Hassan M. 2011. Image processing analysis of vortex dynamics of lobed jets from
three-dimensional diffusers. Fluid Dyn. Res. 43:065502

Noack BR, Afanasiev K, Morzynski M, Tadmor G, Thiele F. 2003. A hierarchy of low-dimensional models
for the transient and post-transient cylinder wake. J. Fluid Mech. 497:335–63

Petersen K. 1989. Ergodic Theory. Cambridge, UK: Cambridge Univ. Press
Pier B. 2002. On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid

Mech. 458:407–17
Plesner AI, Nestell MK, Gibbs AG. 1969. Spectral Theory of Linear Operators. New York: Ungar
Reynolds WC, Hussain A. 1972. The mechanics of an organized wave in turbulent shear flow. Part 3. Theo-

retical models and comparisons with experiments. J. Fluid Mech. 54:263–88
Rowley CW, Colonius T, Murray RM. 2004. Model reduction for compressible flows using POD and Galerkin

projection. Physica D 189:115–29

Demonstrated that the
Arnoldi-type method
proposed by Schmid &
Sesterhenn (2008)
produces
approximations to
Koopman modes.
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Sylvie Cohen-Addad, Reinhard Höhler, and Olivier Pitois � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 241

Moving Contact Lines: Scales, Regimes, and Dynamical Transitions
Jacco H. Snoeijer and Bruno Andreotti � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 269

Growth of Cloud Droplets in a Turbulent Environment
Wojciech W. Grabowski and Lian-Ping Wang � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 293

The Fluid Mechanics of Cancer and Its Therapy
Petros Koumoutsakos, Igor Pivkin, and Florian Milde � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 325

v

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
3.

45
:3

57
-3

78
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

nt
a 

B
ar

ba
ra

 o
n 

08
/2

0/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



FL45-FrontMatter ARI 29 November 2012 21:15

Analysis of Fluid Flows via Spectral Properties of the Koopman Operator
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