1 Background

We have already looked at the problem of how to symbolically describe a portion (or “patch”) of a c-obstacle boundary corresponding to a EV contact between a planar polygonal robot, \(\mathcal{A} \), and a planar polygonal obstacle, \(\mathcal{O} \). The goal of this handout is to choose a parametrization of the robot and obstacle geometries which can then be used to derive a concrete formula that describes the boundary of a c-obstacle due to an EV contact.

2 Parametrization

Figure 1: Parametrization of polygonal obstacle and polygonal robot

Figure 1 describes a parametrization of the robot and an obstacle. Note that one must choose a fixed observing reference frame, whose basis vectors are subscripted by \(R \), and a reference frame fixed to the body of the moving robot, whose basis vectors are subscripted by \(A \). We choose a parametrization with the following variables

- \(\vec{r}_i \) is a vector from the origin of \(\mathcal{A} \)'s body fixed frame to the \(i^{th} \) vertex of \(\mathcal{A} \), \(a_i \).
• $||\vec{r}_i||$ is the Euclidean length of \vec{r}_i.

• By abuse of notation, let \vec{o}_j be a vector from the origin of the fixed observing frame to the j^{th} vertex of O, o_j.

• $||\vec{o}_i||$ is the Euclidean length of \vec{o}_i.

• α_i is the angle between \vec{x}_A, the x-axis of the robot’s body fixed frame and the vector \vec{r}_i.

• ϕ_i is the angle from \vec{x}_A to \vec{n}_A^i, the normal to the i^{th} edge of A, E_A^i.

• β_j is the angle between \vec{x}_R (the x-axis of the fixed observing reference frame) and \vec{o}_j.

• ξ_j is the angle between \vec{x}_R and \vec{n}_O^j, the normal to the j^{th} edge of O, E_O^j.

With these definitions, the basic vectors that are involved in the constraint equations are:

$$\vec{o}_j = ||\vec{o}_j|| \begin{bmatrix} \cos(\beta_j) \\ \sin(\beta_j) \end{bmatrix} \quad \vec{r}_i = ||\vec{r}_i|| \begin{bmatrix} \cos(\alpha_i) \\ \sin(\alpha_i) \end{bmatrix}$$

(1)

$$\vec{n}_A^i(q) = \begin{bmatrix} \cos(\phi_i + \theta) \\ \sin(\phi_i + \theta) \end{bmatrix} \quad \vec{n}_O^j = \begin{bmatrix} \cos(\xi_j) \\ \sin(\xi_j) \end{bmatrix}$$

(2)

3 The Constraint Equations in Parametrized Form

$$a_i(q) = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \vec{r}_i = \begin{bmatrix} x + ||\vec{r}_i|| \cos(\alpha_i + \theta) \\ y + ||\vec{r}_i|| \sin(\alpha_i + \theta) \end{bmatrix}$$

(3)

First constraint. First consider the constraint which ensures that vertex o_j lies on the line underlying the i^{th} edge of A:

$$\vec{n}_A^i(q) \cdot (o_j - a_i(a)) = 0.$$

(4)

Substituting in the variables from above, and performing some algebra results in the equation:

$$0 = -x \cos(\phi_i + \theta) - y \sin(\phi_i + \theta) + ||\vec{o}_j|| \cos(\phi_i + \theta - \beta_j) - ||\vec{r}_i|| \cos(\phi_i - \alpha_i).$$

(5)

This equation has the form:

$$A(\theta) \ x + B(\theta) \ y + C(\theta) = 0.$$

(6)

For a constant orientation (i.e., when the value of θ is fixed), Equation (6) represents a straight line in the x-y plane (i.e., a straight line in the constant orientation slice of c-space at level θ). Thus, the local “patch” of the configuration-space obstacle boundary is a *ruled
surface, since this equation shows that the surface is bounded by a line whose orientation changes as a function of θ.

Second Pair of Constraints. Next we consider the pair of inequality constraints that insure that the robot and obstacle don’t overlap:

\[
\vec{n}_i^A(q) \cdot (\vec{\partial}_{j-1} - \vec{\partial}_j) \geq 0 \tag{7}
\]
\[
\vec{n}_i^A(q) \cdot (\vec{\partial}_{j+1} - \vec{\partial}_j) \geq 0 \tag{8}
\]

Using the observation that:

\[
(\vec{\partial}_{j-1} - \vec{\partial}_j) = ||E_{j-1}^O|| \begin{bmatrix}
\cos(\xi_{j-1} - \pi/2) \\
\sin(\xi_{j-1} - \pi/2)
\end{bmatrix}
\tag{9}
\]

Substituting the parametrized terms into Equation (7), and simplifying yields the equivalent constraint:

\[
\cos(\phi_i + \theta - \xi_{j-1} + \pi/2) \geq 0 \tag{10}
\]

In general, for an angle γ to satisfy the equation $\cos \gamma \geq 0$, we require that $-\pi/2 \leq \gamma (mod 2\pi) \leq \pi/2$. Hence, Equation (10) is equivalent to

\[
-\pi \leq \phi_i + \theta - \xi_{j-1} \leq 0 \ (mod \ 2\pi). \tag{11}
\]

Note, for this equation, only the lower bound is physically meaningful for the geometry shown in Figure 1. Thus, constraint Equation (7) reduces to:

\[
\xi_{j-1} - \phi_i - \pi \leq \theta \tag{12}
\]

Similarly, using the observation that

\[
(\vec{\partial}_{j+1} - \vec{\partial}_j) = ||E_j^O|| \begin{bmatrix}
\cos(\xi_j + \pi/2) \\
\sin(\xi_j + \pi/2)
\end{bmatrix}
\tag{13}
\]

Equation (8) can be rewritten as

\[
\cos(\phi_i + \theta - \xi_j - \pi/2) \geq 0 \tag{14}
\]

which is equivalent to

\[
0 \leq \phi_i + \theta - \xi_j \leq \pi \ (mod \ 2\pi). \tag{15}
\]

For this equation, only the upper bound is physically meaningful, and thus constraint Equation (8) reduces to:

\[
\theta \leq \pi + \xi_j - \phi_i \tag{16}
\]

These two constraints can then be summarized as:

\[
\theta \in [(\xi_{j-1} - \phi_i - \pi), (\xi_j - \phi_i + \pi)] \ (mod \ 2\pi) \tag{17}
\]
Thus, these constraints bound the range of θ over which the local “patch” is defined. Note that the “mod 2π” modification applies to each of the upper and lower bounds.

Third pair of constraints. The final pair of inequality constraints bounds the vertex o_j to lie within the line segment E_i^A:

$$0 \leq (o_j - a_i(q)) \cdot (a_{i+1}(q) - a_i(q)) \leq ||E_i^A||^2.$$

(18)

Substituting the parametrized expressions for o_j, $a_i(q)$, and $a_{i+1}(q)$ into this equation yields:

$$0 \leq x [||\vec{r}_i|| \cos(\alpha_i + \theta) - ||\vec{r}_{i+1}|| \cos(\alpha_{i+1} + \theta)]$$

$$+ y [||\vec{r}_i|| \sin(\alpha_i + \theta) - ||\vec{r}_{i+1}|| \sin(\alpha_{i+1} + \theta)]$$

$$+ ||\vec{d}_j|| ||\vec{r}_{i+1}|| \cos(\theta + \alpha_{i+1} - \beta_j) - ||\vec{d}_j|| ||\vec{r}_i|| \cos(\theta + \alpha_i - \beta_j)$$

$$- ||\vec{r}_{i+1}|| ||\vec{r}_i|| \cos(\alpha_i - \alpha_{i+1}) + ||\vec{r}_i||^2 \leq ||E_i^A||^2.$$

(19)

These equations have the form:

$$0 \leq D(\theta) x + E(\theta) y + F(\theta) \leq ||E_i^A||^2$$

(23)

where:

$$D(\theta) = [||\vec{r}_i|| \cos(\alpha_i + \theta) - ||\vec{r}_{i+1}|| \cos(\alpha_{i+1} + \theta)]$$

$$E(\theta) = [||\vec{r}_i|| \sin(\alpha_i + \theta) - ||\vec{r}_{i+1}|| \sin(\alpha_{i+1} + \theta)]$$

$$F(\theta) = + ||\vec{d}_j|| ||\vec{r}_{i+1}|| \cos(\theta + \alpha_{i+1} - \beta_j) - ||\vec{d}_j|| ||\vec{r}_i|| \cos(\theta + \alpha_i - \beta_j)$$

$$- ||\vec{r}_{i+1}|| ||\vec{r}_i|| \cos(\alpha_i - \alpha_{i+1}) + ||\vec{r}_i||^2$$

3.1 Summary

The c-obstacle boundary patch defined by these constraint equations can thus be viewed as a ruled surface formed by sweeping a line segment (whose underlying line is given by Equation (6)) through the θ-range defined by Equation (5). The end points of the line segment can be determined as follows. One end of the line segment (for a given θ) occurs at the lower equality of Equation (23). Thus, this point can be found as the solution of the two linear equations

$$0 = Ax + By + C$$

$$0 = Dx + Ey + F$$

Similarly, the other end-point of the line segment (again, for a given θ) can be found from the upper inequality of Equation (23). That is, the other point (for fixed θ) is found by solving the linear equations:

$$0 = Ax + By + C$$

$$||E_i^A||^2 = Dx + Ey + F$$