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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has an
impact on all areas of the control discipline. New theory, new controllers, actuators,
sensors, new industrial processes, computer methods, new applications, new
philosophies…, new challenges. Much of this development work resides in
industrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended
exposition of such new work in all aspects of industrial control for wider and rapid
dissemination.

For classical low-level industrial PID controllers a widespread tuning paradigm
is based on nonparametric tuning methods pioneered by Ziegler and Nichols in the
1940s. The transition from analogue to digital controller technology led to new
tuning flexibilities and, inspired by techniques like Åström and Hägglund’s relay
experiment, autotuning or push-button controller tuning became a reality; however,
the field of more advanced control methods based on nonparametric models has not
enjoyed the success achieved by methods that use a parametric model. Whether this
is a feature of the lack of flexibility or variety of nonparametric models or whether it
is because the research focus has been lacking is an open question but there is a
utilitarian attractiveness about the idea of being able to design and tune advanced
controllers without having to pursue a preliminary detailed parametric model
identification exercise. This becomes even more of an advantage if the process to be
controlled is a nonlinear system where nonlinear system identification creates its
own difficulties for control design.

Some solution methods to advanced nonlinear system control design are those
that use fuzzy-logic models or neural-network models. On the other hand, such
routes also involve the selection and tuning of parameters that are embedded in the
model, and it might be argued that these are also parametric methods. A class of
nonparametric methods that may have the potential to become “mainstream” is that
based on Gaussian process models. A Gaussian process model is a nonparametric
probabilistic model. It is a Gaussian random function characterised by its mean and
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covariance function. The outputs of Gaussian process models are normally
distributed random variables. Professor Juš Kocijan has been working in this field
for some time and feels that a sufficient body of work has been published in the
literature to be able to present a coherent framework for the use of Gaussian process
models in control systems design and industrial applications. His thoughts have
been captured in this Advances in Industrial Control monograph entitled Modelling
and Control of Dynamic Systems Using Gaussian Process Models.

The monograph opens with a short introductory chapter and illustrative example
of Gaussian process model regression using data generated by the simple nonlinear
function, y = z3. Chapters 2 and 3 present more thorough details of system iden-
tification using Gaussian models and on how to incorporate structural and
prior information into the models. Throughout these chapters, and indeed the
complete monograph, careful referencing of the appropriate source literature
enables the reader to develop a fuller appreciation of the subject’s development. In
Chap. 4 the reader is treated to an introductory overview of how Gaussian process
models can be used in advanced control system design. Professor Kocijan is careful
to stress the developing nature of this field of research and points out the advan-
tages, disadvantages and open questions that still exist with this class of methods.
Chapter 5 summarises many of these areas for the interested reader. The monograph
closes with a chapter that contains three diverse case studies to demonstrate the use
of Gaussian model techniques in realistic industrial and environmental problems.

Modelling and Control of Dynamic Systems Using Gaussian Process Models is
an unusual entry to the Advances in Industrial Control monograph series. So, many
of the monographs present in the series are reports of “finished” work, but
Prof. Kocijan’s monograph reports the current status of this nonparametric method
and seeks to inspire researchers and engineers to join the evolving development of
future work and applications, solving open questions and creating implementation
guidelines for industrial applications; it is a welcome and interesting contribution to
the series.

Michael J. Grimble
Michael A. Johnson

vi Series Editors’ Foreword

http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_3
http://dx.doi.org/10.1007/978-3-319-21021-6_4
http://dx.doi.org/10.1007/978-3-319-21021-6_5


Preface

We are living in an era of rapidly developing technology. Dynamic systems control
is not a new methodology, but it is heavily influenced by the development of
technologies for sensing and actuating devices, data storage and communication.
All these advances create new opportunities for the control based on data-driven
models.

Systems control, especially systems control design, relies on mathematical
models. These can be developed from an understanding of the underlying relations
in the systems or from measurement data. The term for data-driven modelling used
in the control community is system identification.

Increasingly complex systems have to be controlled, and this means that we are
dealing with increasingly complex models. Examples of such systems are coming
from the fields of biological systems, environmental systems, transportation net-
works, energy grids and others. This increased complexity triggers a strong need for
new methods that deal with data in a scalable and robust way. System identification
methods are usually based on statistical analyses, resulting in parametric or non-
parametric mathematical models that can be used for systems analyses and control
design. System identification methods are well established in the control
community.

Large data sets provided with ever-better sensing devices require new identifi-
cation methods, and this book is written with purpose of demonstrating a type of
nonparametric model, coming mainly from the machine-learning community, for
use in the applications of the engineering community. On the other hand, small data
sets where larger amount of data is required for system identification is another
border situation met in practice that also needs appropriate attention.

The particular aim of the book is to describe how Gaussian process (GP) models
can be used for the design of dynamic systems control. System identification based
on GP models is an integral part of the control design and its description as such
also forms an integral part of this book. Using GP models for system identification
is a relatively recent approach, where the research activities are very lively.
Consequently, this book cannot give a complete picture of the application field,
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rather it attempts to provide an overview of the current situation and opens up
directions for further applications as well as further research options.

The book is intended to open up new horizons for engineers and researchers in
academia and industry and all those who are dealing with, or who are interested in,
new developments in the field of system identification and control. It addresses
issues, some of which are of more interest to engineers and others to researchers.
The emphasis is on guidelines for working solutions and on practical advice for
their implementation. The emphasis is not on the theoretical background of GP
models, for which other books exist, nor does it describes the basics of nonlinear
systems identification; instead it shows the potential of the selected modelling
method for use in dynamic-systems identification and control design. It is not
written in a theorem/proof style. The mathematics is kept to a minimum. The
emphasis of the book is on an intuitive understanding of the topic and on providing
guidelines and case studies to facilitate practical applications.

An introductory course in nonlinear system identification, probability, statistics
and computation intelligence methods is considered as the most appropriate pre-
requisite for reading this book.

The book was inspired by many years of research and involvement in applica-
tions using GP models. I thought it necessary to convey my experience and
fascination with the topic to the audience in an integrated form. Since my first
introduction to GP modelling more than a decade ago, I see GP modelling as a very
handy tool for engineers working with dynamic systems and my wish is that this
book conveys this fact.

The content of the book was developed over a few years, but the last three were
focused on the book preparation itself. Research on this topic is very dynamic and
I am well aware of the fact that I was not able to include everything that relates to
GP models, system identification and control design. However, I hope I have
enough content to convey the main features of using GP models when modelling
dynamic systems and design control system with these models.

The book consists of five chapters that lead the reader from a basic under-
standing of GP models, via their application for system identification, to the use
of the obtained models for system control. Real-life examples are presented to
illustrate the explained concepts in the last chapter.

I wish to express my gratitude to the many people I have interacted with during
my research on the topic and the writing of this book. I wish to thank Martin
Stepančič, Kristjan Ažman, Dejan Petelin, Matej Gašperin, Bojan Likar, Djani
Juričić, Stanko Strmčnik, and all my other colleagues from the Department of
Systems and Control at the Jožef Stefan Institute. In addition, I would like to thank
Alexandra Grancharova, Gregor Gregorčič, Jan Přikryl, Roderick Murray-Smith,
David Murray-Smith, Douglas Leith, Bill Leithead, Agathe Girard, Carl
Rasmussen, Joaquin Quiñonero Candela, Keith Thompson, Keith Neo and many
others. They all helped me by proofreading draft material, or discussed the topic
with me, or had a strong influence on my research.
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I am very grateful to the Jožef Stefan Institute and the University of Nova Gorica
for providing a highly stimulating research environment and for giving me the
freedom to write this book. Thanks to Springer for all their support.

I would like to thank Miroslav Štrubelj for assisting me with drawing the figures
and Paul McGuiness for improving the English language of the book.

Finally, I would like to thank my entire family for all their support throughout
the years it has taken me to write this book.

Ljubljana Juš Kocijan
March 2015

Preface ix



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction to Gaussian-Process Regression . . . . . . . . . . . . . . . . 3

1.1.1 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Gaussian-Process Regression. . . . . . . . . . . . . . . . . . . . . . 7

1.2 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Outline of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 System Identification with GP Models . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 The Model Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Obtaining Data—Design of the Experiment, the Experiment

Itself and Data Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Selection of Regressors . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 Covariance Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 GP Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.1 Bayesian Model Inference . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.2 Marginal Likelihood—Evidence Maximisation . . . . . . . . . 50
2.4.3 Estimation and Model Structure . . . . . . . . . . . . . . . . . . . 56
2.4.4 Selection of Mean Function . . . . . . . . . . . . . . . . . . . . . . 59
2.4.5 Asymptotic Properties of GP Models . . . . . . . . . . . . . . . . 61

2.5 Computational Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.5.1 Direct Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.5.2 Indirect Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.5.3 Evolving GP Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.6 Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.7 Dynamic Model Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.7.1 Numerical Approximation. . . . . . . . . . . . . . . . . . . . . . . . 81
2.7.2 Analytical Approximation of Statistical Moments

with a Taylor Expansion . . . . . . . . . . . . . . . . . . . . . . . . 81

xi

http://dx.doi.org/10.1007/978-3-319-21021-6_1
http://dx.doi.org/10.1007/978-3-319-21021-6_1
http://dx.doi.org/10.1007/978-3-319-21021-6_1#Sec1
http://dx.doi.org/10.1007/978-3-319-21021-6_1#Sec1
http://dx.doi.org/10.1007/978-3-319-21021-6_1#Sec2
http://dx.doi.org/10.1007/978-3-319-21021-6_1#Sec2
http://dx.doi.org/10.1007/978-3-319-21021-6_1#Sec3
http://dx.doi.org/10.1007/978-3-319-21021-6_1#Sec3
http://dx.doi.org/10.1007/978-3-319-21021-6_1#Sec4
http://dx.doi.org/10.1007/978-3-319-21021-6_1#Sec4
http://dx.doi.org/10.1007/978-3-319-21021-6_1#Sec5
http://dx.doi.org/10.1007/978-3-319-21021-6_1#Sec5
http://dx.doi.org/10.1007/978-3-319-21021-6_1#Bib1
http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec1
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec1
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec2
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec2
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec2
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec3
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec3
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec4
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec4
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec5
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec5
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec6
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec6
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec7
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec7
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec8
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec8
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec9
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec9
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec12
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec12
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec13
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec13
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec14
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec14
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec15
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec15
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec16
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec16
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec17
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec17
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec18
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec18
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec19
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec19
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec20
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec20
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec21
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec21
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec22
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec22
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec22


2.7.3 Unscented Transformation . . . . . . . . . . . . . . . . . . . . . . . 82
2.7.4 Analytical Approximation with Exact Matching

of Statistical Moments . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.7.5 Propagation of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 84
2.7.6 When to Use Uncertainty Propagation? . . . . . . . . . . . . . . 86

2.8 An Example of GP Model Identification . . . . . . . . . . . . . . . . . . . 87
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3 Incorporation of Prior Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.1 Different Prior Knowledge and Its Incorporation . . . . . . . . . . . . . 103

3.1.1 Changing Input–Output Data . . . . . . . . . . . . . . . . . . . . . 104
3.1.2 Changing the Covariance Function . . . . . . . . . . . . . . . . . 106
3.1.3 Combination with the Presumed Structure . . . . . . . . . . . . 106

3.2 Wiener and Hammerstein GP Models. . . . . . . . . . . . . . . . . . . . . 107
3.2.1 GP Modelling Used in the Wiener Model. . . . . . . . . . . . . 108
3.2.2 GP Modelling Used in the Hammerstein Model . . . . . . . . 113

3.3 Incorporation of Local Models . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.3.1 Local Models Incorporated into a GP Model. . . . . . . . . . . 122
3.3.2 Fixed-Structure GP Model . . . . . . . . . . . . . . . . . . . . . . . 132

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4 Control with GP Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.1 Control with an Inverse Dynamics Model . . . . . . . . . . . . . . . . . . 150
4.2 Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.3 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.4 Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.5 Gain Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.6 Model Identification Adaptive Control . . . . . . . . . . . . . . . . . . . . 193
4.7 Control Using Iterative Learning . . . . . . . . . . . . . . . . . . . . . . . . 198
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5 Trends, Challenges and Research Opportunities . . . . . . . . . . . . . . . 209
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.1 Gas–Liquid Separator Modelling and Control . . . . . . . . . . . . . . . 214
6.2 Faulty Measurements Detection and Reconstruction

in Urban Traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.3 Prediction of Ozone Concentration in the Air . . . . . . . . . . . . . . . 241
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Appendix A: Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 253

Appendix B: Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Appendix C: Matlab Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

xii Contents

http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec23
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec23
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec24
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec24
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec24
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec25
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec25
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec26
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec26
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec27
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Sec27
http://dx.doi.org/10.1007/978-3-319-21021-6_2#Bib1
http://dx.doi.org/10.1007/978-3-319-21021-6_3
http://dx.doi.org/10.1007/978-3-319-21021-6_3
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec1
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec1
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec2
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec2
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec3
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec3
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec4
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec4
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec5
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec5
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec6
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec6
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec7
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec7
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec8
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec8
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec9
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec9
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec10
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Sec10
http://dx.doi.org/10.1007/978-3-319-21021-6_3#Bib1
http://dx.doi.org/10.1007/978-3-319-21021-6_4
http://dx.doi.org/10.1007/978-3-319-21021-6_4
http://dx.doi.org/10.1007/978-3-319-21021-6_4#Sec1
http://dx.doi.org/10.1007/978-3-319-21021-6_4#Sec1
http://dx.doi.org/10.1007/978-3-319-21021-6_4#Sec2
http://dx.doi.org/10.1007/978-3-319-21021-6_4#Sec2
http://dx.doi.org/10.1007/978-3-319-21021-6_4#Sec3
http://dx.doi.org/10.1007/978-3-319-21021-6_4#Sec3
http://dx.doi.org/10.1007/978-3-319-21021-6_4#Sec4
http://dx.doi.org/10.1007/978-3-319-21021-6_4#Sec4
http://dx.doi.org/10.1007/978-3-319-21021-6_4#Sec5
http://dx.doi.org/10.1007/978-3-319-21021-6_4#Sec5
http://dx.doi.org/10.1007/978-3-319-21021-6_4#Sec6
http://dx.doi.org/10.1007/978-3-319-21021-6_4#Sec6
http://dx.doi.org/10.1007/978-3-319-21021-6_4#Sec7
http://dx.doi.org/10.1007/978-3-319-21021-6_4#Sec7
http://dx.doi.org/10.1007/978-3-319-21021-6_4#Bib1
http://dx.doi.org/10.1007/978-3-319-21021-6_5
http://dx.doi.org/10.1007/978-3-319-21021-6_5
http://dx.doi.org/10.1007/978-3-319-21021-6_5#Bib1
http://dx.doi.org/10.1007/978-3-319-21021-6_6
http://dx.doi.org/10.1007/978-3-319-21021-6_6
http://dx.doi.org/10.1007/978-3-319-21021-6_6#Sec1
http://dx.doi.org/10.1007/978-3-319-21021-6_6#Sec1
http://dx.doi.org/10.1007/978-3-319-21021-6_6#Sec2
http://dx.doi.org/10.1007/978-3-319-21021-6_6#Sec2
http://dx.doi.org/10.1007/978-3-319-21021-6_6#Sec2
http://dx.doi.org/10.1007/978-3-319-21021-6_6#Sec3
http://dx.doi.org/10.1007/978-3-319-21021-6_6#Sec3
http://dx.doi.org/10.1007/978-3-319-21021-6_6#Bib1


Symbols and Notation

� Distributed according to, for example: z�Nðμ; σ2Þ
kT The transpose of vector k
jjxjjA The weighted Euclidean norm
Cðzi; zjÞ Covariance function evaluated at zi and zj
D Data set: D ¼ fðzi; yiÞji ¼ 1; . . .;Ng
D Dimension of the input space Z
ΔuðkÞ Difference between two time-consecutive samples

ΔuðkÞ ¼ uðkÞ � uðk � 1Þ
δij Kronecker delta, δij ¼ 1 iff i ¼ j and 0 otherwise
δ Dirac delta function that is zero everywhere except at zero, with an

integral of one over the entire real line
E Expectation
f ðzÞ Latent function values at the inputs z, or mapping between the inputs

z and the output
φðzÞ Fixed basis function of the regression vector z
GP Gaussian process: f �GPðmf ðzÞ;Cf ðzi; zjÞÞ, the function f

is distributed as a Gaussian process with the mean function mf ðzÞ
and the covariance function Cf ðzi; zjÞ

I The identity matrix
J Cost function
jKj Determinant of the K matrix
K N � N covariance matrix for the (noisy) output values or Gram matrix

for independent homoscedastic noise, K ¼ Σf þ σ2
nI

kðz�Þ Vector, short for CðZ; z�Þ, when there is only a single test case
kðzi; zjÞ Kernel function evaluated at zi and zj
k Sampling instant
κðz�Þ Autocovariance of the test input data
‘ The value of the logarithm of the evidence or the marginal likelihood

function
lnðzÞ Natural logarithm (base e)

xiii



λ Penalty term in the minimum variance cost function
mðzÞ The mean function of a Gaussian process
μy The mean value of the random variable y with a Gaussian probability

distribution, μy ¼ EðyÞ
μðzÞ The mean value of the output Gaussian probability distribution at the

input data z
N The number of input data (identification points)
Nh MPC prediction and optimisation horizon
Nu MPC control horizon
Nðμ;ΣÞ Gaussian or normal distribution with the mean vector μ and the

covariance matrix Σ

N The integer numbers
ν The noise signal
OðNÞ The time complexity of an algorithm that quantifies the amount

of time by an algorithm that depends on the number of input data
points N

P The coincidence point
pðyjzÞ The probability (density) of the conditional random variable y given z
R The real numbers
Σf The covariance matrix for the (noise-free) f values
σ2
n; σ

2
ν

The noise variance
σ2
y The variance of the random variable y with a Gaussian probability

distribution, σ2
y ¼ varðyÞ

σ2ðzÞ The variance of the output Gaussian probability distribution at the
input data z

Ts The sampling period
θ The vector of hyperparameters (parameters of the covariance

function)
uðkÞ; yðkÞ Samples of the measurements for the signals u and y at the time

instance k
U;X The set of (constrained) input values and state values
V� The minimum value of the cost function J
x and xðkÞ The vector of states in the state-space model
yjz The conditional random variable y given z
y� The prediction of output at the input data z�

ŷ The prediction of output
ŷðkÞ The prediction at the time instant k
ŷðkþ jÞ The j-step-ahead prediction at the time instant k
Z The space of regressors
Z The D� N matrix of regressors fzigNi¼1
zi The ith regression vector
zdi The dth regressor of the ith regression vector
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Chapter 1
Introduction

This book deals with the topic of nonlinear system identification using Gaussian
process (GP) models and their role in the design of the control of dynamic systems.
We believe that this method offers great potential in dynamic-systems modelling
as well as in engineering practice. GP modelling has also been used for dynamic-
systems modelling since the end of the twentieth century.

In order to describe a variety of systems, different kinds of models are used. The
fundamental property of a model is that it uses a system’s observations to form a
pattern that possesses the same properties as the observed system. Various forms
of models exist, but in the case of modelling dynamic systems in the framework of
systems theory we are mainly interested in mathematical models.

Mathematical models of dynamic systems are used for prediction, control design,
fault detection, etc. These models can be further divided by the type of modelling.
One example is thewhite-boxmodels, which are obtained from theoreticalmodelling
based on physical, chemical or other basic principles. The alternative is black-box
models, which are obtained from experimental modelling or identification. In this
case, the structure of the mathematical model and the corresponding parameters are
identified from the system’s input and output data. When the structure is known,
partly known, or presumed, and the parameters are optimised, the combination of
both, i.e. the theoretical and the experimental, modelling methods results in grey-box
models.

Model structures are often, especially in engineering practice, presumed to be
linear. The identification of linear systems is a well-established engineering tool.
However, the presumption of linearity is usually not correct, although it is accept-
able under certain operating conditions. In this case, when a more detailed model
for a wider operating range is necessary, then nonlinear models are required. Arti-
ficial neural networks, fuzzy models, local model networks, wavelets, support vec-
tor machines and many other methods exist for modelling of nonlinear systems.
The identification of nonlinear systems is incomparably more complex than the
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2 1 Introduction

identification of linear systems. Nonlinearity can express itself in many different
ways, and the number of possible structures increases tremendously, as does the
complexity of the model. The problems that arise with this increase are, for example,
the non-transparency of the models and the increase in their computational complex-
ity. The identification of nonlinear systems and the application of these models for
design are still fields of active research. On the other hand, these are also fields of
interest for engineering practice.

Various sub-disciplines of mathematics, like statistics, go hand in hand with com-
puter science, for example, with machine learning, as well as with other scientific
fields. This offers an abundance of methods for modelling of systems among these
methods, as well as for modelling of dynamic systems. Nevertheless, some of these
methods have never found their way into engineering practice, regardless of their
attractive properties. The reasons for this cannot be easily generalised, but the dif-
ficulties associated with using these methods and the lack of interpretation when it
comes to solving engineering problems are certainly significant factors.

The GP model belongs to the class of black-box models. GP modelling differs
frommost other black-box identification approaches in that it does not try to approx-
imate the modelled system by fitting the parameters of the selected basis functions,
but rather it searches for the relationship among the measured data. The model is
composed of input–output data that characterises the behaviour of the modelled sys-
tem and the covariance function that describes the relation of the output data with
respect to the input data. The prediction of the GP model output value is given as
a normal distribution, expressed in terms of the mean and the variance. The mean
value represents the most likely output value, and the variance can be interpreted as
a measure of its confidence. The obtained variance, which depends on the amount
and the quality of the available identification data, is important information that
distinguishes the GP models from other methods.

The GP model has been known for a long time in the field of geostatistics, where
the method was named ‘kriging’ by Krige [1]. It was first used to solve a regres-
sion problem in the late 1970s by O’Hagan [2], and it gained popularity within the
machine-learning community in the late 1990s. This was initially due to the research
of Neal [3], who showed the relationship between GP models and artificial neural
networks. It continuedwith the research of Rasmussen [4], who placedGPmodelling
within the Bayesian probability framework. The research of Gibbs [5], Williams [6],
and many others followed. More about the history of GPmodelling development can
be found in [7].

GPmodels are used for regression, where themodel output is continuous, but may
be also extended for classification, where the model output is classified into a finite,
discrete number of sets. This book deals with regression models in accordance with
its aim of dynamic-systems identification. In this book, we are taking the position of
a practical user of nonlinear, black-box models. The book complements other books
where GP models have been described in detail from the theoretical point of view,
for example, [7, 8].

The application of GP models for dynamic-systems identification was initiated
within theEuropean research projectMAC [9]. The publications sharing the results of
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this project are among the first publications where GP models are used for dynamic-
systems identification and the simulation of the obtained dynamic models.

The obtained research results indicated that GP models might be attractive in
engineering practice for the following reasons:

• they are simple to use in system identification due to the relatively small number of
design decisions, like the selection of input regressors and the covariance function;

• they work well with a relatively small number of identification data, which is
sometimes the case in identification, e.g. the identification of the dynamics in a
region away from equilibrium;

• it is possible to include various sorts of prior knowledge about themodelled process
in the model, e.g. linear local models, static characteristics, etc.;

• they work well although the identification output data is noisy;
• the model prediction contains a measure of confidence, which can be exploited in
many ways for system identification, control system design and model-based fault
detection.

In the following section, a brief introduction to GP models is given. This intro-
duction will be upgraded with more details, especially about the structure, training
and validation necessary for dynamic systems modelling in Chap.2.

1.1 Introduction to Gaussian-Process Regression

A GP model is a probabilistic, nonparametric model for the prediction of output-
variable distributions. Its use and properties for modelling are thoroughly described
in, e.g., [7, 8]. Here, only a brief description, necessary to introduce the concepts
used in this book, is given. More details about GP models, especially those dealing
with the application of GP models for modelling of dynamic systems, are given in
Chap.2.

This section is divided into some preliminaries and a basic introduction to GP
regression.

1.1.1 Preliminaries

Someof the fundamental topics necessary for further understanding,which are briefly
discussed here, are regression, kernel methods and the Bayesian approach to mod-
elling.

Introduction to Regression Problem

Let us take a look at the following regression problem. Given some noisy values, for
example, measurements of a dependent variable y at certain values of the variables
described with vector z, what is the best estimate of the dependent variable for a new
value of the variables that y depends upon?

http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
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Fig. 1.1 Given 13 data points, what are the function values at z1 and z2?

We can formulate this problem as follows. Let us consider the following descrip-
tion:

y = f (z) + ν, (1.1)

where f (z) is an underlying function and ν is the noise. We are looking for an
estimate of f (z) that will enable us to find the prediction ŷ at any new value z.

The illustration of this problem for the case when z is a scalar for two values of
the variable z is given in Fig. 1.1.

Frequently, this kind of problem is solved so that at first some mathematical
structure is selected, based on prior knowledge about the system or some other
assumptions. Then the parameters of thismathematical structure are optimised for the
available measurements so that the model predictions fit the available measurements
of the dependent variable. Elements of the vector z ∈ R

D , i.e. zi : i = 1, . . . , D
are called regressors and the vector z is called the regression vector. More about
regression as one of the frequently used statistical tools can be found in general
statistical reference books, e.g., [10, 11], or, for example, in reference books on
pattern recognition, e.g., [12].

Kernel Methods

A frequent approach in modelling with regression is to approximate the nonlinear
function between the regression vector z, representing the system’s input data, and
y, representing the output data, also called an input–output mapping function, with
a set of basis functions that can be described with a vector of basis functions φ(z) =
[φ1(z), . . . ,φi (z), . . .]T. These functions have parameters that are optimised during
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the learning phase using training data, i.e. measurement data selected to be used for
modelling. These data are discarded after the learning phase.

On the other hand, kernel methods [12] are a class of algorithms that are used
for modelling relations, i.e. mapping functions, in data. The idea of kernel methods
is to solve the modelling problem using some similarity function over pairs of data
points. A direct relation between the data is sought.

Instead of introducing a set of basis functions, a localised kernel function is defined
directly on the data and can be used tomake predictions for new input vectors of data,
given the observed training set of data. The kernel function or kernel is a general
name for a function k of two arguments mapping a pair of inputs zi ∈ Z , z j ∈ Z into
R [7]. The training data is therefore kept and used during the prediction phase.

The kernel function k(zi , z j ) can be actually derived from the vector of basis
functions φ(z), with the arguments that are the regression vectors zi and z j . The
regression vectors represent, for example, the dynamic system’s inputs sampled at
different time instants:

k(zi , z j ) = φ(zi )
Tφ(z j ). (1.2)

The kernel function is a metric that measures the similarity of any two data vectors in
the input space. The value of the kernel function describes the relation between two
data vectors in the input space and not the value of the data vectors themselves. Since
the kernel function can be used to make model predictions, it can be interpreted that
the prediction depends on the training data directly.

The property of kernel methods is that the computation of an explicit, nonlinear
mapping function between the input and output data is avoided and replaced with
the training data. We obtain the identification of the mapping in the space where the
number of parameters to be optimised is smaller. The parameters for the optimisation
of the kernel function are called hyperparameters so as to be distinguished from those
of the basis functions.

The kernel function can be any function of two regression vectors with the condi-
tion that it can be formulated as an inner product, also called a dot product, of basis-
functions vectors in some, possibly also infinite, space of regressors as described by
Eq. (1.2). This also means that the kernel function can be any function that generates
a symmetric, semi-positive, square matrix named the Gram matrix K [12]. There-
fore, if ki, j = [Ki, j ], then ki, j = k j,i for every 1 ≤ i, j ≤ N and cTKc ≥ 0 for every
c ∈ R

N .
Let us introduce the case where the mapping between the input and output data is

possible only with an infinite number of basis functions. Such modelling is realisable
in practice, if the model can be obtained using a kernel method. In this case it is not
necessary to know the basis functions themselves, it will do if the properly selected
kernel function can be formulated as the inner product. An example of such a kernel
function is a Gaussian kernel

k(zi , z j ) = exp(−‖zi − z j‖2/2l2) = lim
N→∞

N∑

m=1

φm(zi )φm(z j ), (1.3)
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where l2 represents the lengthscale parameter. The kernel function described with
Eq. (1.3) replaces infinite dimensionality that is required when formulated as an inner
product.

There are numerous forms of kernel functions used by different kernel methods
like support vectormachines, e.g., [13], principal component analysis (PCA)method,
e.g., [12] and others. More details about kernel methods can be found in, e.g., [12].

Bayesian Approach to Modelling

From a probabilistic perspective wemodel the predictive distribution p(y|z) because
this quantifies our uncertainty about the value y for eachvalue z. From this conditional
distribution the predictions of the random variable y are made for any new z. The
Bayesian treatment as an established probabilisticmethod is a base for some practical
techniques for addressing the question of model complexity, reduces the level of
overfitting and provides the framework for treating uncertainties.

Gaussian-processmodelling uses the ideas of theBayesian approach tomodelling,
which is based upon the expression of knowledge in terms of a probability distribu-
tion. It seeks to maximise the probability of a model, given some data. More about
the Bayesian approach to modelling, especially in the context of dynamic system
identification, can be found in, e.g., [14].

Bayes’ theorem (AppendixA) connects a prior belief expressed as a prior probabil-
ity distribution with a posterior probability distribution. The posterior, i.e. posterior
probability distribution, is inferred from combining the information present in the
prior, i.e., the prior probability distribution, with that of the information gained from
the data known as likelihood:

Posterior = Likelihood × Prior

Evidence
. (1.4)

The evidence, also known as the marginal likelihood, is acting as a normalising
constant to ensure that the probability sums to unity.

Let us illustrate Bayes’ modelling on an example of function modelling from
the input measurements Z = [z1, z2, . . . zN ] ∈ R

D×N and a vector of the corre-
sponding output measurements y = [y1, y2, . . . yN ]T ∈ R

N forming the data D =
{(zi , yi )|i = 1, . . . , N } = {(Z, y)}. We are looking for a function f to describe the
input–output relation between the data pairs zi , yi . The Bayesian modelling of func-
tion f = f (z, w), where random variables w are the function parameters, can be
pursued with Bayes’ theorem.

The goal is to infer a probability distribution over the model parameters that is
conditional on the data:

p(w|D) = p(D|w)p(w)

p(D)
, (1.5)

where the probability density functions are as follows: p(D|w) is the likelihood,
p(w) is the parameters’ prior, p(D) is the evidence and p(w|D) is the parameters’
posterior. The posterior distribution can be seen as the product of the likelihood and
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the prior, and captures everything we know about the parameters. Bayesian model
inference in general does not contain any optimisation procedure.

The Gaussian process regression framework [7, 12] joins the idea of the kernel
methods with the Bayesian modelling methods.

GP modelling not only utilises the principles of Bayesian modelling, as we will
see in the continuation, but also its vocabulary. For example, the expression ‘prior’,
which expresses prior belief, is often used not only for a prior probability distribution,
but also generally for various prior beliefs and knowledge. In general ‘prior’, means
before the observations have been made [15].

1.1.2 Gaussian-Process Regression

Before GP regression is explained, let us take a look at what GP is.

Gaussian Process

The Gaussian process is a generalisation of the Gaussian or normal probability dis-
tribution, where the sample function generated over time { f (z1), f (z2), . . . , f (zN )}
has the property that any finite set of function values is jointly normally distrib-
uted. The random variables represent the value of the random function f (z) at the
location z.

GPs can be viewed as a collection of random variables f (zi )with a joint Gaussian
distribution for any finite subset. GP is therefore a stochastic process containing
random variables with a normal probability distribution. It is a Gaussian random
function, fully described by its mean function and covariance function.

p( f (z1), . . . , f (zN )|z1, . . . , zN ) = N (m f ,� f ), (1.6)

where
m f = E( f (z1), f (z2), . . . , f (zN )) and � f = cov( f (z1), f (z2), . . . , f (zN )), and
p( f (z1), . . . , f (zN )|z1, . . . , zN ) means the joint probability density function of
f (z1), . . . , f (zN ) given z1, . . . , zN .
Note that no distinction is made in this book between the notation for random

variable and the values that the random variable can take. This simplifies the notation,
provided that the interpretation is clear from the context.

GP Model

Let us return to the regression problem from the previous section, this time to solve
it with GP regression.

There are two perspectives from which GP modelling can be seen. The first per-
spective is the input–output functionmodelling perspective, called the function-space
view in [7], and it can be explained as follows.

Rather than claiming that the input–output function f (z) relates to some models
of a specific mathematical structure, a GP is used to represent f (z) indirectly, based
directly on the data. In the case of GP regression, instead of parameterising the
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function f (z), initial knowledge or belief about the function, called a prior, is placed
directly on the space of all possible functions f (z). All the candidate functions for
f (z) represented with GP can represent the nonlinear mapping from the input z to
the output y. The GP prior represents the modeller’s beliefs about the mapping, for
example, smoothness assumptions.

This prior is combined with the likelihood of the identification, also training, set
of N observed input–output data pairs, {(zi , yi )|i = 1, . . . , N }, to provide us with
the posterior distribution for the model predictions by applying Bayes’ theorem. We
will explain the model-selection procedure in more detail in Chap. 2.

As the function f is represented, i.e. modelled, with a random function, which is
a Gaussian process, the model is called the Gaussian process model. The GP model
represents a mapping between the deterministic input data z and the corresponding
random variable with normal distribution at the output y = f (z).

A GP model is therefore completely described by its mean function m f and
covariance function C

m fi (zi ) = E( f (zi ))

C(zi , z j ) = E(( f (zi ) − m fi )( f (z j ) − m f j )) = cov( f (zi ), f (z j )). (1.7)

Any finite set of values from random function f (Z) = [ f (z1), . . . , f (zN )]T is jointly
Gaussian distributed and can be written as

p( f (Z)) = N (m f ,� f ). (1.8)

The function that is GP is denoted as

f (Z) ∼ GP(m f ,� f ). (1.9)

If we do not have prior information about the mean function of the GP model,
then we set m f ≡ 0. In general, the mean values can be removed from the mean
function, i.e., m f ≡ 0, and added later if necessary, see Sect. 2.4.4.

A covariance matrix � f can then be generated from evaluating the covariance
function given all the pairs of measured data. The elements �i j of the covariance
matrix � f are covariances between the values of the functions f (zi ) and f (z j )

corresponding to the arguments zi and z j :

�i j = cov( f (zi ), f (z j )) = C(zi , z j ). (1.10)

This means that the covariance between the random variables that represent the
outputs, i.e. the functions of the arguments numbers i and j , equal the function
called the covariance function between the arguments numbers i and j .

From the second perspective, GP modelling is viewed as a kernel method using
Bayesian inference. A covariance function is in fact a kernel function. The relation in
Eq. (1.10) derives from a property of the kernel methods [7]. Note that the covariance
function is denoted with C(·) in this book so as to distinguish it from the kernel

http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
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functions used with other methods, even though it plays exactly the same role. The
other reason is to distinguish the covariance function from the time instant of a
sampled system, which is denoted by k.

Another property of GP regression that is common to the kernel methods is that
more emphasis is given to the data itself, rather than to the selection of the model
structure, which is common to methods using basis functions for modelling.

Any function C(zi , z j ) can be a covariance function, providing that it generates
a positive, semi-definite, covariance matrix � f . The covariance function C(zi , z j )

can be interpreted as a measure of the correlation between the function values f (zi )

and f (z j ). For systems modelling, it is usually composed of two main parts:

C(zi , z j ) = C f (zi , z j ) + Cn(zi , z j ), (1.11)

where C f represents the functional part and describes the unknown system we are
modelling and Cn represents the noise part and describes the model of the measure-
ment noise which can be derived based on the Gaussian likelihood [16].

For the noise part in Eq. (1.11), it is most common to use the covariance function
that has a constant value that is different from zero in the case of the same arguments,
which is presuming white Gaussian noise. The choice of the covariance function for
the functional part in Eq. (1.11) also depends on the stationarity of the stochastic
process. A stationary process is a stochastic process whose joint probability distri-
bution does not change when shifted in time or space. Assuming the stationarity of
the data set, the most commonly used covariance function is the squared exponential
covariance function. Some other possible choices for the covariance functions [7]
are the Matérn class of covariance functions, exponential, rational quadratic, etc. In
the case of assuming a non-stationary data set, the polynomial covariance function
can be used. These covariance functions will be discussed in Sect. 2.3.3 in the next
chapter.

For example, the composite covariance function composed of the squared expo-
nential covariance function for the functional part and the constant covariance for
the noise is therefore

C(zi , z j ) = σ2
f exp

[
−1

2

D∑

d=1

wd(zid − z jd)
2

]
+ σ2

nδi j , (1.12)

where wd , σ f and σn are the hyperparameters of the covariance function, D is the
input dimension, and δi j = 1 if i = j and0 otherwise. δi j is called theKronecker delta
function. The name hyperparameters originates from the kernel methods, because a
covariance function is a kernel function.

Briefly About Modelling

We continue to consider the system

y = f (z) + ν (1.13)

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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with the white Gaussian noise ν ∼ N (0,σ2
n), with the variance σ2

n and the vector of
regressors z from the operating spaceRD . The estimate of the function f is uncertain
due to finiteness of measurements y and the presence of noise. The Bayesian frame-
work enables us to express this uncertainty with probability distributions, requiring
the concept of distributions over functions.

Within this framework, we have [y1, . . . , yN ]T ∼ N (0, K) with

K = � f + σ2
nI, (1.14)

where � f is the covariance matrix for the noise-free f of the system described with
Eq. (1.13) and I is the N × N identity matrix. The elements of � f are defined as in
Eq. (1.10).

After the data for modelling is collectedD = {(zi , yi )|i = 1, . . . , N } = {(Z, y)},
and prior belief in the form of the mean function and the covariance function is
selected, then the posterior GP model is inferred. It is not the aim of this section to
explain the GP model identification or training in detail, rather to point out some of
its specifics.

Following the Bayesian modelling framework we are looking for the posterior
distribution over f , which for the given data D and hyperparameters θ is

p( f |Z, y,θ) = p(y| f, Z,θ)p( f |θ)

p(y|Z,θ)
, (1.15)

where p(y| f, Z,θ) is the likelihood, p( f |θ) is the function f prior for the given
hyperparameters θ, p(y|Z,θ) is the evidence and p( f |Z, y,θ) is the posterior dis-
tribution over f .

The implementation of Bayesian inference requires evaluation of several integrals
which may be analytically intractable. One solution to the problem of intractable
expressions is to adopt some sort of analytical or numerical approximation.

One of the more efficient methods for approximation is estimating the hyperpa-
rameters with the maximisation of the evidence. More details about the evidence or
marginal-likelihood maximisation will be explained in Sect. 2.4.1.

The prior distribution over the function f prior is set as a GP model and also the
posterior is a GP model:

f ∼ GP(m f , K). (1.16)

The posterior GP model is described with

μ(z∗) = E f ( f (z∗)|Z, y,θ) (1.17)

σ2(z∗) = var f ( f (z∗)|Z, y,θ), (1.18)

where z∗ is an arbitrary vector, which is called the validation or test input data.

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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Prediction

After the model is identified, the regression task is to predict a new output estimate ŷ,
denoted here as y∗, of the GPmodel at the input data z∗ using the relation y∗ = f (z∗).
As we presume that the hyperparameter estimates θ̂ after modelling are known, we
will no longer condition on them for notational convenience.

The overall problem of prediction in the Bayesian framework corresponds to
inferring the posterior p( f (z∗)) and making the prediction probability distribution
p(y∗|D, z∗) of the new output estimate y∗, given the training data D and a new
input data z∗. Due to the nature of our prior, the predictive distribution of y∗ can
be obtained from the application of conditional probability instead of applying the
Bayes’ theorem. The conditional probability can be interpreted as [17]

p(y∗|D, K, z∗) = p([yT, y∗]T|K, Z, z∗)
p(y|K, Z)

. (1.19)

Using Eq. (A.10) fromAppendix A the prediction probability distribution function is

p([yT, y∗]T|D, K, z∗) = 1

(2π)
N+1
2 |KN+1| 1

2

e− 1
2 ([yT,y∗]K−1

N+1[yT,y∗]T). (1.20)

At this point, we show how the covariance matrix KN+1 is updated through the intro-
duction of a new input data. For the collection of random variables {y1, . . . , yN , y∗}
we can write:

y, y∗ ∼ N (0, KN+1) (1.21)

with the covariance matrix

KN+1 =

⎡

⎢⎢⎢⎢⎣

K k(z∗)

kT(z∗) κ(z∗)

⎤

⎥⎥⎥⎥⎦
, (1.22)

where y = [y1, . . . , yN ]T is an N × 1 vector of training targets, k(z∗) = [C(z1, z∗),
. . . , C(zN , z∗)]T is the N × 1 vector of covariances between the training input data
and the test input data, and κ(z∗) = C(z∗, z∗) is the autocovariance of the test input
data.

We can write

p(y∗|D, K, z∗) = |K| 1
2

(2π)
1
2 |KN+1| 1

2

e− 1
2 ([yT,y∗]K−1

N+1[yT,y∗]T−yTK−1y). (1.23)
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Finally, the prediction probability distribution fromEq. (1.23) is Gaussian and can
be written as a normal distribution with the following mean and variance [5, 7]:

E(y∗) = μ(z∗) = kT(z∗)K−1y (1.24)

var(y∗) = σ2(z∗) = κ(z∗) − kT(z∗)K−1k(z∗). (1.25)

The vector kT(z∗) K−1 in Eq. (1.24) can be interpreted as a vector of smoothing
terms that weight the training output data y to make a prediction at the test point z∗.
For the stationary covariance function like Eq. (1.12), the following holds: if the new
input data is far away from the data points, the term kT(z∗) K−1 k(z∗) in Eq. (1.25)
will be small, so that the predicted variance σ2(z∗) will be large. The regions of the
input space where there is few data or there is corruption with noise are, in this way,
indicated by a higher variance.

The solution to the problem with a scalar input value z depicted in Fig. 1.1 is
illustrated in Fig. 1.2. The smoothing of the noisy points is illustrated in Fig. 1.3,
where the predictedmean values smooth the noisymeasurements denoted by crosses.
For a clearer presentation a GP model posterior in three dimensions is depicted in
Fig. 1.4.
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Fig. 1.2 Gaussian prediction at the new points z1 and z2, conditioned on the training points denoted
by crosses. The training points are taken from the function denoted by the full line with the addition
of some noise
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Fig. 1.3 Using GP models for regression: in addition to the mean value (prediction), we obtain a
95% confidence interval for the underlying function f (z) (shown in grey)
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Fig. 1.4 Presentation of the GP model posterior where the normal predictive distribution is deter-
mined for every input data in the interval z ∈ [−7.5, 7.5]

The describedGP regression is just awalk through the procedure ofGPmodelling,
which will be discussed and explained in the following chapter. However, before this
an illustrative example will demonstrate the use of the explained procedure.
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Example 1.1 Nonlinear function modelling
This example illustrates the application ofmodelling with a GPmodel on a regres-

sion problemwith a one-dimensional input data. The function to bemodelled is f (z):

y = f (z) + ν = z3 + ν, (1.26)

where z is the independent variable in the interval z ∈ [−1.5, 2] and ν is the white
noisewith the normal distribution,mean valueμν = 0 and varianceσ2

ν = 0.01,which
is added to the function values. Nine non-uniformly distributed training pairs con-
taining input–output data points are sampled from the nonlinear function described
with Eq. (1.26) for the corresponding independent variable. The function without
noise f (z) and the training points are depicted in Fig. 1.5.

The used covariance function in Eq. (1.12) is composed of the squared exponential
covariance function with a single input variable for the functional part and a constant
function, representing the white noise, for the noise part:

C(zi , z j ) = σ2
f exp

[
−1

2
w(zi − z j )

2

]
+ σ2

nδi j . (1.27)

The prior mean function is set to 0. The details of the hyperparameters’ selection
with the evidence maximisation are avoided here for the sake of simplicity. The
obtained hyperparameter values after optimisation are: σ2

f = 1.57, w = 13.4 and
σ2

n = 0.01.
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Fig. 1.5 Training data points and underlying function to be modelled
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Fig. 1.6 Comparison of the original function and GP model identified on nine data points. While
the dots in the upper figure represent training target points, the dots in the lower figure represent
the absolute differences between the training target points and the function to be modelled, which
in fact are absolute values of noise for the target points

The results of modelling are given in Fig. 1.6, from which it is clear that the
model approximates well to the function f (z) in the intervals −0.3 < z < 0.2 and
1.4 < z < 1.7, which are well populated with training points. The model also pre-
dicts relatively well in the interval 0.2 < z < 1.4, which lies between the previously
mentioned intervals. However, the variance of the model prediction in this interval is
higher and, consequently, the confidence of the prediction is lower. In other intervals
that are not well populated with data from the function f (z) with additive noise,
the obtained GP model has to extrapolate from the training data and the prior mean
function in order to make the prediction. Consequently, the error between the origi-
nal function and the mean value of the GP model predictions is increasing with the
distance from the training points, as is the prediction variance in these intervals due
to the selection of the stationary covariance function for modelling. This is fairly
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obvious in the interval z < −0.3. The predicted values smooth the noisy training
data when the prediction is drawn for the same value of the input variable as was
used for the training.

1.2 Relevance

System identification, hereafter referred to as identification, is composed of methods
to build mathematical models of dynamic systems from measured data. It is one of
the scientific pillars used for dynamic-systems analysis and control design.

A temporal component is introduced in comparison to the regression problem
introduced in the previous section. The identification of a dynamic system means
that we are looking for a relationship between past observations and future output
values. Identification can be interpreted as the concatenation of a mapping from
measured data to a regression vector, followed by a linear or a nonlinear mapping
from the regression vector to the output space [18].

For the black-box identification, where in principle no prior knowledge is used,
a selected set of delayed samples of inputs and outputs forms the regression vector.
Variousmachine-learningmethods and statisticalmethods are employed to determine
the nonlinear mapping from the regression vector to the output space. More details
will be presented in Chap. 2.

One of the possible methods for a description of the nonlinear mapping used in
identification is GP models. It is straightforward to employ GP models for discrete-
time modelling of dynamic systems within the prediction-error framework [15].

What is the rationale for using GP models in system identification?
Many dynamic systems are often considered as complex; however, simplified

input–output behaviour representations are sufficient for certain purposes, e.g. feed-
back control design, prediction models for supervisory control, etc.

GP models have a few properties, already listed at the beginning of this chapter,
that make them relevant for modelling of dynamic systems from data.

First, the optimisation of a complex model structure can be avoided due to the
nonparametric nature of GPmodels. The problem of structure determination, so well
known in other popular methods like neural networks and fuzzymodelling, is relaxed
if not completely avoided.

Second, a Bayesian treatment, more specifically, model selection using marginal
likelihood, reduces the risk of overfitting. Such a potential for model overfitting
is present with all methods where the number of parameters to be optimised is
relatively high and the amount of identification or training data is not large enough
with respect to the number of parameters. The potential of overfitting increases with
the complexity of the model structure.

Next, limited amounts of data relative to the number of selected regressors, data
corrupted with noise and measurement errors and the need for a measure of model-
prediction confidence could be the reasons to select identification with the GPmodel.
If there is not enough data or it is heavily corrupted with noise, even the GP model

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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cannot perform well. But in that case the inadequacy of the model and the identifi-
cation data is indicated through a higher variance of the predictions if the GP model
uses a stationary covariance function.

The prediction variance is one of the main differences between the GP model and
other black-box models. It can be used effectively in the usefulness validation, where
a lack of confidence in the model prediction can serve as the grounds to reject the
model as not being useful. The prediction variance can also be used in a falseness
validation, whether via specific performance measures or through the observation of
confidence limits around the mean values of the model’s predictions. Chapter2 will
provide more details on model validation.

It is important to be aware of the fact that a model is always a model and GP
models represent yet another step in the approximation of reality.

Another fact to be aware of is that GP models are not to be considered as an
alternative to other black-box system-identification methods, but rather as a com-
plementary method, where the context of the problem at hand requires or suits its
utility.

Numerous papers, most of which have been published since 2000, describe the use
of GP models for modelling of dynamic systems. These publications have explored
the use of GP models for various applications:

• dynamic systems modelling, e.g., [19–22]
• time-series prediction, e.g., [23–26]
• dynamic systems control, e.g., [27–33]
• fault detection, e.g., [34–36],
• state estimation, e.g., [25, 37],
• smoothing, e.g., [37, 38].

The ability to provide information about the confidence of the model’s predic-
tion made GP models attractive for modelling case studies in various domains like:
chemical engineering [39] and process control [40], biomedical engineering [41],
biological systems [42], environmental systems [24], power systems [43] and engi-
neering [44], motion recognition [22], etc., to list just a selection. It is worth noting
that the utility of GP modelling could also be interesting for use in other domains
and applications.

1.3 Outline of the Book

This book consists of six chapters.
The first chapter introduces GP models and provides a simple, illustrative exam-

ple of modelling of a static mapping function. Next, a brief historical overview of
developments in the field of GP models for dynamic systems identification is pre-
sented. The chapter continues with a discussion about the rationale and the relevance
of using GP modelling for system identification and control design.

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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The next chapter talks about system identificationwithGPmodels. After outlining
the complete procedure for system identification, the chapter is focused on issues
that are specific to modelling based on GPs. The issues emphasised here are the
setting-up of the model, model selection and validation of the identified model. The
system identification is illustrated on the bioreactor benchmark model.

TheGPmodelling framework enables incorporation of prior knowledge of various
kinds. Chapter3 shows the application of GP models in block-oriented nonlinear
models, how the local linear dynamic models can be incorporated into GP models
and how GPmodels can be used in the context of the paradigm of linear models with
varying parameters.

Chapter4 describes a range of approaches to GP model-based control system
design. The described methods are only those that have been published in the liter-
ature. The selection contains control based on an inverse dynamics model, optimal
and model-predictive control and various adaptive control design methods.

The trends, challenges and research opportunities related to GP model-based
control-systems design are indicated in Chap.5.

Three case studies of practical applications are given in Chap.6. The case studies
are as follows:

• A gas–liquid separator is used to demonstrate dynamic system identification and
model-predictive control design.

• An urban-traffic case study shows time-series modelling and prediction for signal
modelling and reconstruction.

• Forecasting the ozone concentration in the air demonstrates the application of
online modelling.
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Chapter 2
System Identification with GP Models

In this chapter, the framework for system identification with GPmodels is explained.
After the description of the identification problem, the explanation follows the system
identification framework that consists of roughly six stages:

1. defining the purpose of the model,
2. selection of the set of models,
3. design of the experiment,
4. realisation of the experiment and the data processing,
5. training of the model and
6. validation of the model.

The model identification is always an iterative process. Returning to some previous
procedure step is possible at any step in the identification process, and this is usually
necessary.

The listed stages are given in the sections describing the model’s purpose
(Sect. 2.1), the experiment design and data processing (Sect. 2.2), the model setup
(Sect. 2.3), the model selection (Sect. 2.4), the model validation (Sect. 2.6), the
dynamic model simulation (Sect. 2.7) and ends with an illustrative example of non-
linear system identification with a GP model (Sect. 2.8).

The identification problem [1, 2] is as follows: For a given set of past observations,
i.e. delayed samples of input and output signals that form a regression vector, we
would like to find a relationship with future output values. As already mentioned in
the previous chapter, this relation can be presented as the concatenation of a mapping
from the measured data to a regression vector, followed by a nonlinear mapping from
the regression vector to the output space

y(k) = f (z(k),θ) + ν(k), (2.1)
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where
z(k) = ϕ(y(k − 1), y(k − 2), . . . , u(k − 1), u(k − 2), . . .), (2.2)

k is the sampling instant,
f is a nonlinear mapping from the regression vector z to the output space,
θ is the finite-dimensional parameter vector,
ν(k) represents the noise and accounts for the fact that the next output value y(k)

will not be an exact function of past data,
ϕ is a nonlinear mapping from the finite-dimensional vector of the measurements
to the regression vector z, and its components are referred to as regressors,
y(k − i), i = 1, 2, . . . , k − 1 are the delayed samples of themeasured output signal
and
u(k − i), i = 1, 2, . . . , k − 1 are the delayed samples of themeasured input signal.

The temporal or time component is inevitably present when dealing with dynamic
systems. Instead of considering time as an extra input variable to the model, the
time is embedded into regressors in the form of delayed samples of input and output
signals. In our notation the time, usually denoted with t, has been substituted for
k, where k represents the kth subsequent time-equidistant instant sampled with the
sample period Ts.

The identification problem has thus to be decomposed into two tasks: (a) the
selection of the regression vector z(k) and (b) the selection of the mapping f from
the space of the regressors to the output space.

When the mapping f is presumed linear, we talk about the identification of lin-
ear dynamic systems. The more general case is when the mapping is nonlinear.
While there are numerous methods for the identification of linear dynamic systems
frommeasured data, the nonlinear systems identification requires more sophisticated
approaches.

In general, the identification methods for nonlinear systems can be grouped into
those for parametric and those for nonparametric system identification. While para-
metric system identification deals with the estimation of parameters for a known
structure of the mathematical model, nonparametric system identification identifies
the model of an unknown system without structural information.

Nonparametric system identification can be divided further [3]. The first group
of methods is that where the system is approximated by a linear or nonlinear com-
bination of some basis functions φi with l coefficients w = [w1, w2, . . . , wl]T to be
optimised

f (z, w) = F(φi(z), w), (2.3)

where F is a function representing the nonlinear combination of basis functions.
The most commonly seen choices in identification practice include artificial neural
networks (ANNs), fuzzy models and Volterra-series models, which can be seen as
universal approximators.

Let us briefly discuss the use of methods where the nonlinear system is approxi-
mated by the combination of basis functions. The problem of nonparametric system
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identification is translated into the problem of a suitable basis function selection and
of the coefficients’ estimation,which can be considered further as a parameter estima-
tion problem. The approach is sensitive to the choice of basis function. Depending on
the nonlinearity, a fixed basis function approach could need a relatively large number
of terms to approximate the unknown nonlinear system. The increase in the number
of terms with the increase in the unknown system’s complexity is called the ‘curse of
dimensionality’ [4]—the exponential growth of the modelled volume with the input
space dimension [5]—leading to (a) a model with a large number of basis functions
with corresponding parameters and (b) a lot of data needed for a system description.
An example of such models is an ANN. The local model network (LMN) [4], a form
of the fuzzy model, which we address in Sect. 3.3, reduces this problem, but has
problems with a description of the off-equilibrium regions of the dynamic system
[4, 6].

The second possibility is to estimate the unknown nonlinear system locally, point
by point. Representatives of these methods are kernel methods like least-square
support vector machines [7]. These methods circumvent the curse of dimensionality
in the sense that they do not contain basis functions. These methods are considered
local because any of them is actually a weighted average based on measurements in
the neighbourhood of the point where the system is estimated [3].

Nevertheless, both possibilities, the one with basis functions and the one that is
point-by-point, are based on the amount of measured data in the neighbourhood of
the point where the system is identified. If the dimension of the problem is high, the
amount of data necessary for training increases.

The curse of dimensionality is not an issue for linear and parametric nonlinear
system identification. In such cases, it is not important whether the measured data
used for the identification is distributed locally or far away from the point where the
unknown system is identified.

For the nonparametric identification methods that estimate the unknown system
locally, only local data is useful. For kernel methods, this depends on the kernel
selection. Data points that are far away provide little value for these methods [3].
This means that local approaches would not perform well when modelling large
regions with only a limited amount of data available.

As an alternative to methods for the identification of nonlinear dynamic systems
that are strongly affected by the curse of dimensionality, the GPmodel was proposed
in [6]. In this context, the unknown system to be identified at a given point and
the data obtained at other points are assumed to be a joint GP with a mean and a
covariance matrix that has some hyperparameters.

The idea of usingGPmodels for system identification differs frombothmentioned
possibilities of nonlinear system identification that can be described as the local
average approaches [3] because it is a probabilistic method. GP models provide a
posteriori distribution. Using this distribution, a probabilistic estimate at a point of
interest can be made based on the training data that can be close or far away from this
point. This prediction is presumed to beGaussian, characterised by a predictivemean
and a predictive variance. As we have seen in the previous chapter, the predictive
variance can be interpreted as a level of confidence in the predictive mean. This is

http://dx.doi.org/10.1007/978-3-319-21021-6_3
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important, especially in the case when the predictive mean is not sufficiently close
to the ground truth.

In other words, due to its probabilistic nature the GP model provides information
about its estimate over the entire space defined by the regressors. The GP model is,
therefore, not constrained to the space where the measured data is available.

Furthermore, the GP approach to modelling alleviates any model bias by not
focusing on a single dynamics model, but by using a probabilistic dynamics model,
a distribution over all plausible dynamics models that could have generated the
observed experience. The probabilistic model is used to faithfully express and rep-
resents the uncertainty about the learned dynamics. We use a probabilistic model for
the deterministic system. The probabilistic model does not necessarily imply that we
assume a stochastic system. In the case of modelling, the deterministic system the
probabilistic model is solely used to describe the uncertainty about the model itself.
In the extreme case of a test input data z∗ at the exact location zi of a training input
data, the prediction of the probabilistic model will be absolutely certain about the
corresponding function value p(f (z∗)) = δ(f (zi)).

When using GP models for identification, it is important that we are also aware
of the disadvantages [3] in this context.

The first one is the computational complexity due to the inverse of a high-
dimensional covariance matrix during the training. The computational complexity
measured with the number of computer operations rises with the third power of the
number of identification points N and is denoted with O(N3), while the number of
computer operations for the prediction mean is O(N) and for the prediction vari-
anceO(N2). The issue of overcoming the computational complexity is addressed in
Sect. 2.5.

The second is that the noise that corrupts the measurement used for the system
identification does not always have a Gaussian distribution. The hyperparameters of
the GP model are frequently optimised to maximise the marginal likelihood condi-
tioned on the measured data where the assumption is that the marginal likelihood is
Gaussian. In the case of non-Gaussian noise, this assumption is not correct and it is
not known whether the maximum likelihood is achieved. However, this is exactly the
same issue with any other known parametric or nonparametric method for system
identification. In the case of non-Gaussian noise, the data can be transformed in the
form that will be better modelled by the GPs. More details about transformations,
called also GP warping (Sect. 2.3.3), can be found in [8, 9].

The third disadvantage is that the performance of GP models for system identi-
fication depends on the selection of training data and the covariance function with
hyperparameters, which is system dependent. Again, this disadvantage can, in one
form or another, be met with any method for system identification where the selec-
tion of the basis function or the system structure and the corresponding parameter
estimation is system dependent.
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2.1 The Model Purpose

Themodel purpose specifies the intended use of the model and has a major impact on
the level of detail of the model. The decision for the use of a specific model derives,
besides the model purpose, also from the limitations met during the identification
process.

In general, dynamic system models can be used for [10]

• prediction,
• simulation,
• optimisation,
• analysis,
• control and
• fault detection.

Prediction means that on the basis of previous samples of the process input signal
u(k − i) and the process output signal y(k − i) the model predicts one or several
steps into the future. There are two possibilities: the model is built to directly predict
h steps into the future or the same model is used to predict a further step ahead by
replacing the data at instant k with the data at instant k + 1 and using the prediction
ŷ(k) from the previous prediction step instead of the measured y(k). This is then
repeated indefinitely. The latter possibility is equivalent to simulation. Simulation
therefore means that only on the basis of previous samples of the process input signal
u(k − i), and initial conditions for a certain number of samples of output signals, the
model simulates future output values. Name predictionwill, in our case, mostlymean
a one-step-ahead prediction.

Both of these sorts of models can be used for the optimisation of systems, systems
analysis, control and fault detection [10]. When a model is used for optimisation, the
issues of optimisation duration and the disturbance of the process’s normal operation,
which frequently occur when an optimisation is carried out in the real world, are
circumvented.

The procedure of identification can also be considered as a form of system analy-
sis. Based on the model’s form some process properties, like input–output behaviour,
stationary properties, etc., can be inferred from the identified model.

Control design relies on a model of the process to be controlled. The form of
the model depends on the control design method, but it has to be kept in mind that
it is the closed-loop system performance containing the designed controller that is
evaluated on the performance and not the process model itself. Nevertheless, there
are control algorithms for which the closed-loop performance is strongly dependent
on the model quality. Usually, the models used for control design have to be accurate
in terms of some particular properties, e.g. range around the crossover frequency of
the closed-loop system.

The idea of fault detection is to compare the process behaviour for the time being
with its nominal behaviour, which is commonly represented with a process model.
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Fault detection is a model-based strategy and the focus of the fault detection also
determines the model properties.

Later in the text, some of these modelling applications will be highlighted in the
context of GP applications.

2.2 Obtaining Data—Design of the Experiment,
the Experiment Itself and Data Processing

The data describing an unknown system is very important in any black-box identi-
fication. The data can be obtained from an experiment and is processed afterwards.
It is usually collected with measurements on the physical system of interest or, in
special cases, from computer simulations. An example of such a special case is when
identification is used for complexity reduction of a theoretically obtained model.

Unless the system to be identified does not allow controlled experimentation, the
experiment needs to be carefully designed. In the case when experimentation is not
possible, the safety of the system or its environment might be jeopardised by the
experimentation and, consequently, the data needs to be collected from the daily
operation.

The design of the experiment and the experiment itself are important parts of the
identification procedure. The quality of themodel depends on the system information
contained in the measurement data, regardless of the identification method. The
design of the experiment for the nonlinear system identification is described in more
details in [10–13]. Only the main issues are highlighted in this section.

As already mentioned, the Gaussian process modelling approach relies on the
relations among the input–output data and not on an approximation with basis func-
tions. Consequently, this means that the distribution of the identification data within
the process operating region is crucial for the quality of themodel. Model predictions
can only be highly confident if the input data to the model lies in the regions where
the training data is available. The GPmodel provides good predictions when used for
interpolation, but these are not necessarily good enough when used for extrapolation,
which is indicated by the large variances of the model predictions.

Consequently, the data for the model training should be chosen reasonably, which
can be obstructed by the nature of the process, e.g. limitations in the experimental
design in industrial processes and the physical limitations of the system.

The experiment has to be pursued in such a way that the experiments provide sets
of data that describe how the system behaves over its entire range of operation.

Here we list a number of issues that need to be addressed when the experiment is
designed for the acquisition of data and subsequent data processing. The list is not
exhaustive. Instead, it is given as a reminder of the important issues that engineers
need to address, but the reader is, again, referred to exploit the details in [10–12].
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Let us highlight the most important points.

Nonlinearity test. A nonlinearity test should be pursued to see whether a linear
or nonlinear system is to be modelled. This is important to know, not only for
GP models identification, but also for other methods as well. This can be done
by a test of the superposition and homogeneity [12] or by checking the frequency
response. The test of the superposition can be done with step changes of the
input signal in different operating regions and checking the responses, while the
frequency response test can be done by checking the output frequency response
for sub-harmonic components when a harmonic signal excites the input.

Sampling frequency. For a good description of the process, the influential vari-
ables and a suitable sample time must be chosen. A rule of thumb is that the
sampling frequency should be high enough to capture all the interesting dynam-
ics of the system to be modelled. However, in the case that it is too high, problems
with numerical ill-conditioning occur in the process of identification. The sam-
pling frequency is therefore a compromise that is usually achieved iteratively.

Selection of excitation signals. The main issues that need to be addressed with
the selection of the excitation signals are as follows.

Purpose. The selection of the excitation signals [10, 13] needs to be done
based on the purpose of the modelling. For example, if the purpose of the
model identification is control design, then good data information content is
needed around the regions determinedwith the envisaged closed-loop set-point
signals.

Size of the training set. The maximum amount of training data should be care-
fully selected due to the trade-off between the complexity of the computation
and the information content.

Range of input signals. The input signals should be selected to excite the non-
linear dynamic system across the entire operating region. It is important to
realise that it is the range of the input space that is important, i.e. the space
determined with the input regressors, and not just the range of the input and
output signals and their rates.

Data distribution. The input signals should be selected to populate the region
with data homogenously and with sufficient density. A uniform data distribu-
tion over the region of interest is the ultimate goal.

Prior knowledge. The ‘design of experiment’ requires some prior knowledge
about the process. An iterative procedure is necessary, in which the design of
experiment and model identification are interlaced.

Examples of signals. Signals that can be used for the system identification are
the amplitude-modulated PRBS (Pseudo-random Binary Sequence) signals.
There are different ways to obtain these kinds of signals [10, 12], but it is
important to homogenously cover the input spacewith samples of these signals.

If the system is unstable in any way or poorly damped, it might be necessary to
conduct the experiment in a closed loop [12].
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Data preprocessing. Some of the procedures that are important for the quality of
the model before the data is used for the modelling are as follows.

Filtering. Aliasing, the effect that resultswhen the signal reconstructed from the
samples is different from the original continuous signal, which can be avoided
with analogue pre-filtering and digital filtering, can be used to remove some
low-frequency disturbances [12].

Removing data redundancy. A large amount of data in certain regions, most
frequently the regions around the equilibria of a nonlinear system, dominates
the data in other regions and may lead to the poor performance of the model in
these regions. A possible solution to this problem is addressed in Sect. 2.5.2.

Removing outliers. Data outliers are not very problematic with GP models due
to the smoothing nature of GP models [14].

Scaling. To cancel the influence of differentmeasuring scales, the preprocessing
of the measured data can be pursued, e.g. centering and scaling, here referred
to as normalisation. Normalisation of the input and output signals helps with
the convergence of the parameter optimisation that is part of the identification
procedure.

2.3 Model Setup

In our case the selection of theGPmodel is presumed. This approach can be beneficial
when the information about the system exists in the form of input–output data, when
the data is corrupted by noise andmeasurement errors, when some information about
the confidence in what we take as the model prediction is required and when there is
a relatively small amount of data with respect to the selected number of regressors.

After the type of model is selected, the model has to be set up. In the case of
the GP model, this means selecting the model regressors, the mean function and the
covariance function.

2.3.1 Model Structure

This and the following subsection deal with the choice of suitable regressors. In the
first subsection differentmodel structures are discussed,while in the second,methods
for the selection of regressors are discussed. The selection of the covariance function
is described in the third subsection.

It is mainly nonlinear models that are discussed in the context of GP modelling
in general. There are various model structures for nonlinear, black-box systems that
can also be used with GPmodels. An overview of the structures for nonlinear models
is given in [1, 2]. The true noise properties that cause uncertainties in the identified
model are usually unknown in the black-box identification and therefore different
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model structures should be seen as reasonable candidate models and not as model
structures reflecting the true noise descriptions.

The subsequently used nomenclature for nonlinear models is taken from [1]. The
single-input single-output case is described in the continuation, but models can be
easily extended to the multiple-input multiple-output case. The nonlinear, black-box
models are divided into a number of different groups depending on the choice of
regressors. Based on this choice we can divide the models into input–output models
and state-space models. The prefix N for nonlinear is added to the names for different
model structures. Input–output models that can be utilised for GP models are as
follows:

NFIR (nonlinear finite impulse response) models, which use only the input values
u(k − i) as the regressors and are usually considered as deterministic input values
in GP models. Since the regressors are only input values, the NFIR model is always
stable, which is particularly important in the nonlinear case where the stability issue
is a complex one. NFIR models are well suited for applications like [15] control,
dynamic system identification, noise cancellation, nonstationary time-series mod-
elling, adaptive equalisation of a communication channel and other signal processing
applications. An example of the GP-NFIR model structure can be found in [16]. A
block diagram of the GP-NFIR model is shown in Fig. 2.1.

NARX (nonlinear autoregressivemodel with exogenous input) models, which use
the input values u(k − i) and the measured output values y(k − i) as the regressors
and are usually considered as deterministic input values in GP models. The NARX
model, also known as the equation-error or series-parallel model, is a prediction
model.

ŷ(k) = f (y(k − 1), y(k − 2), . . . , y(k − n), u(k − 1),

u(k − 2), . . . , u(k − m)) + ν, (2.4)

where n is the maximum lag in the output values, m is the maximum lag in the
input values and ν is the white Gaussian noise. The NAR model is the special case
of NARX model without the exogenous input and uses only the measured output
values y(k − i). The GP-NARXmodel was introduced in [17] and it is schematically
shown in Fig. 2.2.

Fig. 2.1 GP-NFIR model,
where the output predictions
are functions of previous
measurements of input
signals
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Fig. 2.2 GP series-parallel or equation-error or NARX model, where the output predictions are
functions of previous measurements of the input and output signals

NOE (nonlinear output error) models, which use the input values u(k − i) and
the output estimates ŷ(k − i) as the regressors. The NOE model, also known as the
parallel model, is a simulation model.

ŷ(k) = f (ŷ(k − 1), ŷ(k − 2), . . . , ŷ(k − n), u(k − 1),

u(k − 2), . . . , u(k − m)) + ν. (2.5)

In the case of GP-NOEmodels ŷ(k) is a normal distribution. When the normal distri-
bution and its delayed versions are used as the regressors, the output of a nonlinear
model is not a normal distribution anymore, and therefore output predictions are
only approximations. The GP-NOE model is discussed in [18] and it is schemati-
cally shown in Fig. 2.3.
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GP

model
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ν

Fig. 2.3 GP parallel or output-error or NOE model, where the output predictions are functions
of previous measurements of the input signal only and delayed predictive distributions ŷ, or their
approximations, are fed back to the input. q−1 denotes the backshift operator. The time shift operator
q influences the instant in the following way: q−1y(k) = y(k − 1)
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In general nonlinear system identification, there are other input–output model
structures that have not yet been explored within the context of GP models like
NARMAX (nonlinear autoregressive and moving average model with exogenous
input) and NBJ (nonlinear Box–Jenkins) [1].

State-space models: State-space models are frequently used in dynamic sys-
tems modelling. Their main feature is the vector of internal variables called the
states, which are regressors for these kinds of models. State-space regressors are less
restricted in their internal structure. This implies that in general it might be possi-
ble to obtain a more efficient model with a smaller number of regressors using a
state-space model [1].

The following model, described by a state-space equation, is considered:

x(k + 1) = f (x(k), u(k)) + ν1(k) (2.6)

y(k) = g(x(k), u(k)) + ν2(k) (2.7)

where x ∈ R
n is a vector of states, y ∈ R is a measurement output, u ∈ R is an

input, ν1 ∈ R
n and ν2 ∈ R are some white Gaussian noise sequences. The noise

enters the system at two places. ν1 is called the process noise and ν2 is called
the measurement noise, f is the transition or system function and g is called the
measurement function. In our case both functions can be modelled with GP models,
so f ∼ GP f and g ∼ GPg . Figure2.4 shows a state-spacemodel based onGPmodels.

The system identification task for the GP state-space model is concerned with f in
particular and can be described as finding the state-transition probability conditioned
on the observed input and output values [19]

p(x(k + 1)|x(k), u(k), y(k)); u(k) = [u(k), . . . , u(1)]T, y(k) = [y(k), . . . , y(1)]T.
(2.8)
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Fig. 2.4 State-space model. q−1 denotes the backshift operator
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The system function g can often be assumed to be known. Such an example is the
situation where g corresponds to a sensor model, where we know which of the states
the sensor is measuring. This then simplifies the identification task. It is mentioned
in [20] that using models that are too flexible for both f and g can result in problems
of non-identifiability.

While using the state-space structure is common, the modelling with GP state-
spacemodels [21] is still a field of active research, and so the state-of-the-art is briefly
reviewed here. At present, a state-space model of a dynamic system that involves GP
models appears in the literature mainly in the context of an unknown state estimation
from noisy measurements, i.e. filtering and smoothing. More results, also in the
context of modelling for prediction, are to be expected in the future.

In the context of filtering and smoothing, the states x̂(k) are estimated from
the measurements y(k). More precisely, the posterior distribution of the states
p(x(k)|y(k)) is to be found from measurements of y(k). If the used data history
is up to and including y(k), i.e. y(k) = [y(k), . . . , y(1)]T, this is called filtering. If
we process the entire set of measurement data, then smoothing is taking place. Such
an inference is usually made with Bayesian filters, like a Kalman filter [22] in the
case of linear functions f and g or its nonlinear versions when at least one of the
functions f and g is nonlinear.

GP models are used in the context of Bayesian filters, i.e. unscented and extended
Kalman filters in [23] and in the context of an assumed density filter in [24]. A GP
model with a state-space structure and without external input u appears in [24, 25],
where GP models of the functions f and g are obtained from presumed available
observations of the states as the identification or training data. These two references
describe how the inference of states can be made for dynamic systems after the
functions f and g are identified.

We have to keep in mind that variables with a normal distribution at the input
do not keep a normal distribution at the output of a nonlinear function. In the case
of nonlinear functions, we deal with approximations of posterior distributions. Nev-
ertheless, good results for the inference of posterior distributions p(x(k)|y(k)) are
reported in [24, 25].

Other methods for the inference of the states x(k) using GP models have been
reported, like particle filters, e.g. [26–29], or variational inference, e.g. [30].

Authors of [21] learn a state-space model without input u with GPs by finding a
posterior estimate of the latent variables and hyperparameters. The model in [21] is
used for motion recognition.

The other situation is when the observations of states are not available for train-
ing. Filtering and smoothing in this case is described in [31, 32]. To learn the GP
models for the functions f and g in such a case, they are parametrised by pseudo
training sets, which are similar to the pseudo training sets used in so-called sparse GP
approximations [33], which are described in Sect. 2.5.2. The system identification
determines the appropriate hyperparameters for both GP models, such that the target
time series y(k) can be explained. The expectation–maximisation algorithm used to
determine the parameters is iterated between two steps. In the first a posterior distrib-
ution p(Zx|y(k),θ) on the hidden states Zx = [x(k), . . . , x(1)] for a fixed parameter
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setting θ is determined, and in the second the parameters θ∗ of the GP state-space
model that maximise the expected log likelihood E(ln p(Zx|y(k),θ)) are searched,
where the expectation is taken with respect to p(Zx|y(k),θ) from the first step. The
log likelihood is decomposed into [32]

E(ln p(Zx|y(k),θ)) = E(ln p(x(1)|θ)

+
N∑

k=2

ln p(x(k)|x(k − 1),θ)︸ ︷︷ ︸
Transition

+
N∑

k=1

ln p(y(k)|x(k),θ)︸ ︷︷ ︸
Measurement

) (2.9)

In contrast to the listed methods that tend to model the GP using a finite set of
identification data points and identifying functions f and g, the method reported in
[20] marginalises the transition function f using sampling with the particle Markov
chainMonte Carlo (MCMC)method. Consequently, the identification of f is avoided
for the states’ estimation.

State-space models utilising GP models can also be found for continuous-
time models. References [34–37] describe methods of the states’ inference in the
continuous-time domain. They deal mainly with linear transition functions to retain
the normal distributions on states or combine them in hybrid models with first-
principle models. The identification of a discrete-time linear GP state-space model
is described in [38]. The signal processing aspect of GP modelling in the spatio-
temporal domain is reviewed in [37].

The interested reader who wants more information about states estimation using
GP models will find it in the references listed in this section.

2.3.2 Selection of Regressors

A very important step in the model setup is the selection of the model order. The
problem of order determination in the case of input–output models is equivalent to
the selection of the relevant input variables for the mapping function f (·) in Eq. (2.1).
Therefore, the problem is actually the problem of selecting the regressors or input
variables in statistics and system theory terminology, or features in the machine-
learning terminology. As pointed out in [10], it is important to understand that in the
case of the identification, the previous input values u(k − i) and the previous output
values y(k − i) are considered as separate regressors. Nevertheless, subsequent input
values, e.g. y(k − 1) and y(k − 2), are typically correlated. This correlation indicates
redundancy, but these subsequent input values may both be relevant, so we cannot
dismiss any of them. This complicates the order selection problem.

Most of the methods for system identification start with the assumption that the
regressors or the input variables in general are known in advance. Nevertheless, it is
crucial to obtain a good model that the appropriate regressors are selected. Here we
review the selection of regressors from the viewpoint of selection-independent and
relevant input variables to the mapping function.
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From the identification point of view, the regressors should be independent of each
other and must carry as much information as possible for the output value prediction.
If the input data is not independent, the information about the output data is doubled,
which results in larger model dimensions and a more difficult search for the optimal
model. The same is true if the regressors do not carry information about the output
data and so represent redundant regressors.

Our goal is to select only as many regressors as are really necessary. Every addi-
tional regressor increases the complexity of the model and makes the model optimi-
sation more demanding. Nevertheless, optimal input selection is often an intractable
task, and an efficient input selection algorithm is always an important element in
many modelling applications.

A quick look at the literature reveals plenty of methods and algorithms for regres-
sor selection. A thorough overview of these methods and algorithms would take
up too much space, so only a general overview is presented and a survey of the
literature is listed.

Various authors divide the methods differently. We adopt the division of the
regressors’ selection into three major groups [39–42]: wrappers orwrapper methods,
embedded methods and filter methods.

Wrapper methods are the so-called brute-force methods for regressor selection.
The basic idea behind these methods is that they form a kind of wrapper around the
system model, which is considered as a black box. No prior knowledge or internal
state of the model is considered. The search for the optimal vector of regressors is
initiated from some basic set of regressors. After the model optimisation and cross-
validation, the regressors are added to or taken from the model. Successful models,
according to selected performance criteria, are kept, while poorly performingmodels
are rejected.

The wrapper methods are very general and easy to implement. Nevertheless, in
the case of a large number of regressor candidates the methods require lots of com-
putational effort, so various search or optimisation methods are used. Some of these
methods or groups of methods are [42] forward selection, backward elimination,
nested subset, exhaustive global search, heuristic global search, single-variable rank-
ing and other ranking methods. The wrapper methods are also known by the names
validation-based regressor selection or exhaustive search for best regressors [43].

Embedded methods have the regressor selection built into themodel optimisation
procedure. For example, if a certain sort of model has a property that the values
of model’s parameters correspond to the importance of the used regressors, then
properly selected regressors with lower importance can be eliminated. This property
is called automatic relevance determination—ARD [44]. GP models possess this
property for certain covariance functions, e.g. squared exponential covariance with
hyperparameters describing the scales for each regressor. TheARDproperty assumes
that the global minimum of the parameter optimisation cost function is achieved.
Some other embedded methods are coupled with model optimisation, e.g. the direct
optimisation method, or are weight-based, e.g. stepwise regression, recursive feature
elimination.
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Filter methods do not rely on the model structure we identify like the other two
groups of methods. The measure of relevance for the regressors or combinations of
regressors is extracted directly from the identification data. The relevant regressors
are selected based on this measure. The relevance measure is usually computed
based on the statistical properties of identification data, e.g. correlations for linear
systems, conditional probabilities, or basedonmeasures from information theory, e.g.
information entropy, mutual information, or based on other properties, e.g. mapping
function smoothness. These methods are attractive because they are computationally
efficient in comparison with the wrapper and embedded methods. Computational
efficiency comes from the fact that multiple optimisation runs are not necessary and
from the relatively straightforward computation of the filter method measures.

In the case when the signals from which regressors are to be selected are known,
the problem is downsized to the problem of lag or model-order selection. If we
eliminate the dead time from the responses, it is often assumed that regressors that
have a smaller lag are more relevant for the prediction. This can be a substantial aid
for the regressor selection algorithm. The assumption about the smoothness of the
regressors of the mapping function is also frequently met in filter methods. Filter
methods are the method of He and Asada [12, 45], and the false nearest neighbours
method [46].

When it comes to regressor selection, it is also important to touch on embedding
theory [47],whichdescribes the theory ofmapping continuous-timedynamic systems
to discrete-time dynamic models. In the case that prior knowledge about the order
of the continuous-time dynamic model is available, or presumed, the non-minimal
realisation of the discrete-time dynamic model might be required to capture the
dynamic of the nonlinear system. The non-minimal realisation means the order of
the discrete-timemodel is higher than the order known by prior. This is in accordance
with Taken’s embedding theorem [48], which determines the necessary order of the
model obtained from sampled input–output data.

2.3.3 Covariance Functions

The choice of kernel function, which in the context of GP modelling is called the
covariance function, is of fundamental importance for successful modelling with
kernels. The covariance function reflects the correlations between different training
data observations. The parameters of the covariance functions must be determined
in order to obtain accurate model predictions. More information on the topic of
covariance functions’ selection and its use in GP models can be found in [49, 50].
Here we provide an overview of this topic.

The prior over mapping functions that is the Gaussian process is specified by
its mean and covariance matrix and the covariance function is used to generate this
covariance matrix. The covariance matrix reflects the relationship between the data
and the prior knowledge or the assumptions of the system to be modelled. The ele-
ments of the covariance matrix are obtained with covariance functions, i.e. kernel
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functions. The hyperparameters of the covariance functions must be sought to match
the behaviour of the model with the original system. However, before the hyper-
parameters are determined, a suitable covariance function must be selected. When
selecting the covariance function, we need to be aware of the inherent assumptions
relating to the regression problem that we discuss [50]. The first one is that the col-
lected training data must represent the characteristics of the function to be modelled.
The second one is that measurements of a real system contain noise, and therefore
a noise model needs to be incorporated into the model. The third assumption is that
two data points close together in the input space are likely to have a greater correla-
tion than two points that are distant. We assume that similar input values are likely
to result in similar target values and, consequently, the training points near to a test
point should be informative about the desired prediction [50]. It is the covariance
function that defines the nearness of the individual data points.

We are not so much interested in the covariance between the input and output
values or the covariance between pairs of different input values. We are interested in
the covariance of pairs of the output values, which is presumed through the relation-
ship between pairs of the input values, as described with Eq. (1.10). Two data points
that are close together in the input space are to be informative about each other’s
respective targets and expose a high covariance between these targets. Consequently,
two data points that are distant have a low covariance between two corresponding
targets.

The covariance function and its hyperparameters can also be selected to reflect
the prior knowledge about the lengthscale property. This means that we can select
the covariance function, where the similarity between nearby input data decays more
quickly or slowly with their distance.

The covariance functionmust generate a positive, semi-definite, covariancematrix
[49], which limits the choice of functions to be covariance functions. A positive-
definite covariance function will ensure a positive-definite covariance matrix, which
guarantees the existence of a valid Gaussian process.

A number of valid covariance functions have been defined in the literature, see [49]
for an overview. Most commonly, they are divided into stationary and nonstationary
covariance functions. The stationary covariance functions are those that are functions
of the distance between the input data and therefore invariant to translations in the
input space.

Stationary covariance functions are more commonly used for implementation and
interpretability reasons. Nevertheless, there are some cases, e.g. the system changes
its behaviour during operation, when a nonstationary covariance function might be
a better choice.

Another property that is of importance only for stationary covariance functions is
a smoothness property of the Gaussian process prior determined by the covariance
function. The selection of the covariance function influences the mean-square con-
tinuity [49] and differentiability [49] of the functions describing the system to be
modelled.

http://dx.doi.org/10.1007/978-3-319-21021-6_1
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For systems modelling, the covariance function is usually composed of two main
parts:

C(zi, zj) = Cf (zi, zj) + Cn(zi, zj), (2.10)

where Cf represents the functional part and describes the unknown system we are
modelling and Cn represents the noise part and describes the model of the noise.

It is often assumed that the noise ν has an independent, identically distributed
Gaussian distribution with zero mean and variance σ2

n ; ν ∼ N (0,σ2
n). This kind of

noise is called white Gaussian noise. This means that there is no cross-covariance
between the noise and the system input data and it affects only the diagonal elements
of the covariance matrix

Cn(zi, zj) = σ2
nδij (2.11)

and δij = 1 if i = j and 0 otherwise, which essentially encodes that the measurement
noise is independent.

The functions Cf (zi, zj) and Cn(zi, zj) can be selected separately, because the
sum of two nonnegative definite functions gives a nonnegative definite function. An
alternative for noise is that it is encoded in the likelihood [51], as we will see later
in the text (Eq. (2.26)).

When the noise is not modelled as white noise, it can be modelled differently, e.g.
as an input-dependent noise model like ARMA noise [52, 53].

Let us list the most common stationary and nonstationary covariance functions
that can be used with GP modelling.

Stationary Covariance Functions

Constant covariance function
The simplest covariance function is the one that has the same value over the whole
domain. This is the constant covariance function given by

Cf (zi, zj) = σ2
f . (2.12)

The only hyperparameterσ2
f represents the scaling factor of the possible variations

of the function. The function is illustrated in Fig. 2.5. Due to the simplicity of
the constant covariance function, it is normally used in combination with other
covariance functions.

Squared exponential covariance function
This is one of the most commonly used covariance functions in Gaussian process
modelling when the function to be modelled is assumed to exhibit smooth and
continuous behaviour with a high correlation between the output data and the
input data in close proximity.
A squared exponential covariance function is also called a Gaussian covariance
function. It is defined by

Cf (zi, zj) = σ2
f exp

(
− r2

2l2

)
. (2.13)
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Fig. 2.5 Constant
covariance function of two
one-dimensional variables
with the hyperparameter
σf = 1

Fig. 2.6 Isotropic squared
exponential covariance
function of two
one-dimensional variables
with the hyperparameters
σf = 1 and l = 1

The hyperparameter σ2
f represents the scaling factor of the possible variations of

the function or the vertical scaling factor and the hyperparameter l is called the
horizontal scaling factor and determines the relative weight on distance for the
input variable z. The variable r is the input distance measure and is r = |zi − zj|.
The function is illustrated in Fig. 2.6.
Samples of functions with different hyperparameters are given in Fig. 2.7.
The covariance function, as represented with Eq. (2.13), decays monotonically
with r. These kinds of functions are called isotropic covariance functions [49].
Anisotropic versions of covariance functions can be created by setting r2(zi, zj) =
(zi − zj)

T�−1(zi − zj) for some positive, semi-definite matrix �−1:
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Fig. 2.7 Squared exponential covariance function with different hyperparameters (left figure) and
random sample functions from the GP model with squared exponential covariance function (right
figure)

Cf (zi, zj) = σ2
f exp

[
−1

2
(zi − zj)

T�−1(zi − zj)

]

= σ2
f exp

[
−1

2

D∑

d=1

wd(zdi − zdj)
2

]
, (2.14)

where wd = 1
l2d
; d = 1, . . . , D.

If �−1 is diagonal, �−1 = diag([l−2
1 , . . . , l−2

D ]) this implements the use of dif-
ferent length scales on different regressors and can be used to assess the relative
importance of the contributions made by each regressor through comparison of
their lengthscale hyperparameters. This is a property called Automatic Relevance
Determination (ARD).
The ARD property was first introduced in [54, 55] in the context of a Bayesian
neural network implementation. The ARD property can be used to optimise the
structure, i.e. the regressor selection, of the GP model.
See [49] for a discussion on the use of the non-diagonal matrix �−1.
It must be kept in mind that in the case of dynamic systems identification the input
dimension is high and this makes setting the assumptions on themapping function
to be modelled somehow difficult. A squared exponential covariance function is
therefore frequently used because smooth and continuous input–output charac-
teristics are expected, commonly from lots of dynamic systems, even though such
assumptions are sometimes unrealistic, as argued in [56].
It is shown in [24, 51] that a GP model with a squared exponential covariance
function corresponds to a universal function approximator.

Exponential covariance function
An exponential covariance function is used when the function to be modelled is
assumed to be continuous, but not smooth and non-differentiable in the mean-
square sense [49].



40 2 System Identification with GP Models

It is defined by

Cf (zi, zj) = σ2
f exp

(
−(

r

l
)d

)
for 0 < d ≤ 2. (2.15)

The hyperparameter σ2
f represents the scaling factor of the possible variations of

the function or the vertical scaling factor, the hyperparameter l or the horizontal
scaling factor determines the relativeweight ondistance for the input variable z and
the hyperparameter d determines the exponent. The variable r is the input distance
measure and is r = |zi − zj|. The function is illustrated in Fig. 2.8. Samples of
functions with different hyperparameters are given in Fig. 2.9.

Fig. 2.8 Exponential covariance function of two one-dimensional variables with the hyperparame-
ters σ2

f = 1, l = 1 and d = 1
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Fig. 2.9 Exponential covariance function with different hyperparameters (left figure) and random
sample functions from the GP model with an exponential covariance function (right figure)
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Rational quadratic covariance function
The rational quadratic covariance function is used when the function to be mod-
elled is assumed to be continuous and differentiable in the mean-square sense
[49]. Therefore, it is not the appropriate choice when the function to be modelled
contains a discontinuity or is discontinuous in its first few derivatives. The rational
quadratic covariance function can be seen as a scale mixture or an infinite sum
of squared exponential covariance functions with different characteristic length
scales.
It is defined by

Cf (zi, zj) = σ2
f

(
1 + r2

2αl2

)−α

. (2.16)

The hyperparameter σ2
f represents the scaling factor of the possible variations of

the function or the vertical scaling factor, the hyperparameter l or the horizontal
scaling factor determines the relative weight on distance for the input variable z
and α is a positive hyperparameter. The variable r is the input distance measure
and is r = |zi − zj|. The function is illustrated in Fig. 2.10. Samples of functions
with different hyperparameters are given in Fig. 2.11.
The ARD version of the rational quadratic covariance function is

Cf (zi, zj) = σ2
f

(
1 + 1

2
(zi − zj)

T�−1(zi − zj)

)−α

. (2.17)

Matérn covariance functions
The Matérn covariance function is used when assumptions about the function to
be modelled are less stringent regarding the smoothness or differentiability in the
mean-square sense.

Fig. 2.10 Isotropic rational
quadratic covariance
function of two
one-dimensional variables
with the hyperparameters
σf = 1, l = 1 and α = 1
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Fig. 2.11 Rational quadratic covariance function with different hyperparameters (left figure)
and random sample functions from the GP model with rational quadratic covariance function
(right figure)

It is defined by

Cf (zi, zj) = σ2
f

(
21−d

Γ (d)

)(√
2dr

l

)d

Kd

(√
2dr

l

)
. (2.18)

The hyperparameter σ2
f represents the scaling factor of the possible variations of

the function or the vertical scaling factor, the hyperparameter l or the horizontal
scaling factor determines the relative weight on distance for the input variable z,
Kd is a modified Bessel function and the hyperparameter d can be seen to control
the differentiability of the modelled mapping function. The variable r is the input
distance measure and is r = |zi − zj|. Often, d is fixed to be d = 3

2 or d = 5
2 .

Increasing the value of d makes the sample function smoother. In [49] it is stated
that in the cases where d > 5

2 it is probably difficult to distinguish between the
properties of the sample functions in the case of noisy training data.

Fig. 2.12 Matérn covariance
function of two
one-dimensional variables
with the hyperparameters
σf = 1, l = 1 and d = 3/2
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Fig. 2.13 Matérn covariance function with different hyperparameters (left figure) and random
sample functions from the GP model with the Matérn covariance function (right figure)

The function is illustrated in Fig. 2.12. Samples of functions with different hyper-
parameters are given in Fig. 2.13.

Periodic covariance functions
A periodic covariance function does not have a large value only between two
data points that are close together, but also between data points that are on a
fixed distance, i.e. period. There exist many periodic covariance functions. A
representative one is defined by

Cf (zi, zj) = σ2
f exp

(
− 2

l2
sin2

(
π

Tp
r

))
(2.19)

It can be used for the modelling of functions that repeat themselves exactly. The
hyperparameter σ2

f represents the scaling factor of the possible variations of the
function or the vertical scaling factor, the hyperparameter l or the horizontal scal-
ing factor determines the relative weight on distance for the input variable z and
the hyperparameter Tp defines the period. The variable r is the input distance
measure and is r = |zi − zj|.
The function is illustrated in Fig. 2.14. Samples of functions with different hyper-
parameters are given in Fig. 2.15.

Nonstationary Covariance Function

Linear Covariance Function
A linear covariance function is used when the function to be modelled is assumed
to be linear.
It is defined by

Cf (zi, zj) = σ2
f (zi · zj + 1), (2.20)
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Fig. 2.14 Periodic covariance function of two one-dimensional variables with the hyperparameters
σf = 1, l = 1 and Tp = π
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Fig. 2.15 Periodic covariance function with different hyperparameters (left figure) and random
sample functions from the GP model with a periodic covariance function (right figure)

or without a bias term by

Cf (zi, zj) = σ2
f (zi · zj), (2.21)

The hyperparameter σ2
f represents the scaling factor of the possible variations of

the function or the vertical scaling factor. The function in Eq. (2.20) is illustrated
in Fig. 2.16 together with samples of functions with different hyperparameters.
The linear covariance function without a bias term can be generalised to

Cf (zi, zj) = zTi �−1zj. (2.22)

where�−1 is a general positive semi-definite matrix used on the components of z.
If�−1 is diagonal, we obtain a linear covariance function with the ARD property.
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Fig. 2.16 Linear covariance function of two one-dimensional variables with the hyperparameters
σ2

f = 1 (left figure) and random sample functions from theGaussian process with a linear covariance
function (right figure)
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Fig. 2.17 Polynomial covariance function of two one-dimensional variables with the hyperpara-
meters σf = 1, c = 1 and d = 10 (left figure) and random sample functions from the GP model
with a polynomial covariance function (right figure)

Polynomial covariance function
The polynomial covariance function is defined by

Cf (zi, zj) = (σ2
f zi · zj + c)d . (2.23)

The hyperparameter σ2
f represents the scaling factor of the possible variations of

the function or the vertical scaling factor, the hyperparameter c determines the
vertical bias and the hyperparameter d determines the exponent.
The polynomial covariance function is not thought to be very useful for regression
problems, as the prior variance will become very large with |z| as |z| > 1.
The function is illustrated in Fig. 2.17 together with samples of functions with
different hyperparameters.

Neural network covariance function
The neural network covariance function [49] is defined by
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Fig. 2.18 Neural network covariance function of two one-dimensional variables with the hyperpa-
rameter σf = 1 (left figure) and random sample functions from the GP model with a neural network
covariance function

Cf (zi, zj) = σ2
f

2

π
sin−1

⎛

⎜⎝
2z̃Ti �−1z̃j√

1 + 2z̃Ti �−1z̃i

√
1 + 2z̃Tj �−1z̃j

⎞

⎟⎠ , (2.24)

where z̃i = [1, zi] = [1, z1, . . . , zD]T, �−1 is the covariance matrix on compo-
nents of z and is often set as a unity matrix multiplied by l−2.
For neural networks, a more common sigmoid function, e.g. tanh(·), is not posi-
tive definite so it cannot be used as a covariance function [49].
The covariance function in Eq. (2.24) has been successfully applied to modelling
the input–output mapping function of the step form in [49].
This function is illustrated in Fig. 2.18 together with samples of functions with
different values of the hyperparameters.

The covariance functions can be manipulated in different ways to form a new
composite covariance function:

Sum of covariance functions
Asumof two kernels is also a kernel. Therefore, a sumof two covariance functions
C1(zi, zj) andC2(zi, zj) is a nonnegative definite functionC(zi, zj) = C1(zi, zj) +
C2(zi, zj) and consequently a covariance function. This property is, for example,
useful where a number of different characteristic length scales can be observed.
If you sum together two kernels, then the resulting kernel will have a high value if
either of the two summed kernels has a high value. An example is the summation
of a linear and a periodic covariance function for obtaining a kernel that can be
used for modelling functions that are periodic with an increasing mean, as we
move away from the origin.

Product of covariance functions
Similarly, a product of two kernels is also a kernel. Therefore, a product of two
covariance functions C1(zi, zj) and C2(zi, zj) is a nonnegative definite function
C(zi, zj) = C1(zi, zj) · C2(zi, zj) and consequently a covariance function. If you



2.3 Model Setup 47

multiply together two kernels, then the resulting kernel will have a high value only
if both of the two used kernels have a high value. An example is the multiplication
of a periodic and a squared exponential covariance function for obtaining a kernel
that can be used for modelling functions that do not repeat themselves exactly.

Vertical rescaling
This is the operation where a stationary covariance function is transformed into
a nonstationary one. Let it be g(zi) = a(zi)f (zi), where a(zi) is a deterministic
function, f (zi) is a random process and C1(zi, zj) = cov(f (zi), f (zj)). The new
covariance function is C(zi, zj) = cov(g(zi), g(zj)) = a(zi)C1(zi, zj)a(zj). This
method can be used to normalise kernels.

Convolution of covariance functions
A new covariance function can also be obtained with convolution. This operation
also converts a stationary covariance function into anonstationaryone. IfC2(zi, yi)

is an arbitrary fixed covariance function, C1(yi, yj) = cov(f (yi), f (yj)) and the
transformation is g(z) = ∫

C2(zi, yi)f (yi)dyi then the transformed new covari-
ance function is C(zi, zj) = cov(g(zi), g(zj)) = ∫

C2(zi, yi)C1(yi, yj)

C2(zj, yj)dyjdyi.
Warping—nonlinear mapping of covariance function

Another possibility is to employ an arbitrary nonlinear mapping, also known as
warping of the input to handle the nonstationary nonlinearity of the function
in tandem with a stationary covariance function. More on warping using the
parametric functions can be found in [8] and using the nonparametric functions in
[9]. This method can be also used to transform data when the noise that corrupts
measurement data does not have Gaussian distribution.

Composite covariance functions that are suited to the problem at hand can be devel-
oped using listed operations. An overview [57] gives further directions for the selec-
tion and combination of covariance functions. Examples of customary covariance
functions can be found in [58–62].

2.4 GP Model Selection

This section explains how we get from the Bayesian model selection to the opti-
misation of the hyperparameters for the selected covariance function explained in
Sect. 2.3 so that the GP model is a model of an unknown system.

Due to the probabilistic nature of the GP model, the model optimisation approach
where the model parameters and the structure are optimised by the minimisation of
a loss function defined in terms of model error only is not really applicable. Since
the GP is a Bayesian probabilistic method, a probabilistic approach to the model
selection is appropriate. The probabilistic approach to model selection is described
in the following subsection. According to [49], the term model selection covers
the selection of a covariance function for a particular model, the selection of the
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mean function, the choice of the hyperparameters and a comparison across different
families of models.

Several possibilities for hyperparameter determination exist. A very rare possi-
bility is that the hyperparameters are known in advance as prior knowledge. Almost
always, however, they must be determined from the training data.

In the following subsections, the background for hyperparameter selection is
described. First, the evidence or marginal likelihood maximisation is described. The
next subsection deals with the mathematical and computational implementations,
where the methods can be divided into direct and approximate implementations.

The alternative to the case where the set of identification data is available in
advance iswhen the identification data is collected online. This alternative is practical
when the unknown system is modelled as a time-varying model or as a method to
circumvent the computational burden due to a large amount of data being used for
the identification. In both cases, only the data with sufficient information content is
selected for the training process.

2.4.1 Bayesian Model Inference

Bayesian inference is a process in which a prior on the unknown quantity, i.e. an
input–output mapping function f , has to be specified. Next, the identification data
is observed. Afterwards, a posterior distribution over f is computed that refines the
prior by incorporating the observations, i.e. the identification data.

For example, the identification data for the GP-NARX model is

D = {(Z, y)},

y =

⎡

⎢⎢⎢⎢⎢⎢⎣

y(k)
...

y(k + i)
...

y(k + N)

⎤

⎥⎥⎥⎥⎥⎥⎦
, Z = [

z1, . . . , zi, . . . , zN
]
,

zi = [y(k + i − 1, . . . , y(k + 1 − n), u(k + i − 1), . . . , u(k + i − m)]T.

We set a GP prior for a function f , i.e. a presumption on the distribution of
the model candidates. We specify the prior mean function and the prior covariance
function. The prior mean function is often set as mf = 0.

Inference of the GP posterior [51] can be pursued in more levels based on the
unknowns to be inferred. There are at least two levels above the data D = {(Z, y)}:
one for inferring the distribution over function f and the second, on the top of it,
to determine the hyperparameters θ that specify the distribution over the function
values f . A further model inference level can be the level of different covariance
functions.

We start with the GP posterior of the function presuming that the data and the
hyperparameters are given:



2.4 GP Model Selection 49

p(f |Z, y,θ) = p(y|f , Z,θ)p(f |θ)

p(y|Z,θ)
, (2.25)

where p(y|f , Z,θ) is the likelihood of the function f and p(f |θ) is the GP prior on f .
The likelihood of the function f , with the assumption that the observations, i.e.

measurements, yi are conditionally independent given Z, is [51]

p(y|f , Z,θ) = p(y1, y2, . . . , yN |f (Z), Z,θ) =
N∏

i=1

p(yi|f (zi),θ)

=
N∏

i=1

N (yi|f (zi),σ
2
n) = N (y|f (Z),σ2

nI), (2.26)

where σ2
n is a variance of additive noise on the output identification data. The likeli-

hood in Eq. (2.26) encodes the assumed noise model.
The normalising constant in Eq. (2.25)

p(y|Z,θ) =
∫

p(y|Z, f ,θ)p(f |θ)df (2.27)

is the evidence or marginal likelihood. The evidence is the likelihood of the hyper-
parameters given the data after having marginalised out the function f .

Because we do not have the hyperparameters given, we have to infer them. The
next level is, therefore, to infer a posterior probability distribution over the hyperpa-
rameters θ that is conditional on the data D:

p(θ|Z, y) = p(y|Z,θ)p(θ)

p(y|Z)
, (2.28)

where p(θ) is the prior on the hyperparameters.
The evidence of Eq. (2.28) is

p(y|Z) =
∫

p(y|Z,θ)p(θ)dθ (2.29)

where we marginalise out the hyperparameters θ.
Note that in Bayesian inference there is no model overfitting to the identification

data common to other methods mentioned at the beginning of this chapter. This is
because in essence there is no data fitting in the Bayesian inference.

However, the integral in Eq. (2.29) is analytically intractable in most interest-
ing cases. A possible solution is to use numerical approximation methods, such
as the Markov chain Monte Carlo method, to obtain the posterior. Unfortunately,
significant computational efforts may be required to achieve a sufficiently accurate
approximation.
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In addition to the numerical approximation methods, another standard and gen-
eral practice for estimating the hyperparameters is the evidence maximisation with
regards to the hyperparameters. This approximation means that instead of a poste-
rior distribution over the hyperparameters p(θ|Z, y) we look for a point estimate θ̂.
This method has several names, among others it is called empirical Bayes or type-2
maximum likelihood [44]. Nevertheless, with this approximation we are not com-
pletely in line with the coherent Bayesian inference anymore.

Hyperparameters estimation via evidence maximisation is described in the next
section.

2.4.2 Marginal Likelihood—Evidence Maximisation

Using evidence maximisation is based on the presumption that the most likely values
of the hyperparameters are noticeably more likely than other values. This means that
the posterior distribution of hyperparameters is unimodal and is described with a
narrow Gaussian function. This is usually valid for a larger number of identification
datapoints relative to the number of hyperparameters. For the smaller number of
datapoints relative to the number of hyperparameters, the posterior distribution is
usually not unimodal.

The values of the hyperparameters depend on the data-at-hand and it is difficult
to select their prior distribution. If a uniform prior distribution is selected, which
means that any values for the hyperparameters are equally possible a priori, then the
hyperparameters’ posterior distribution is proportional to the marginal likelihood in
Eq. (2.25), that is,

p(θ|Z, y) ∝ p(y|Z,θ). (2.30)

This means that the maximum a posteriori (MAP) estimate of the hyperparameters
θ equals the maximum marginal likelihood estimate of Eq. (2.27) [51].

The hyperparameters θ are therefore obtained with the maximisation of evidence
or marginal likelihood in Eq. (2.25) on the first level of inference with respect to the
hyperparameters:

p(y|Z,θ) = 1

(2π)
N
2 |K| 1

2

e− 1
2 yTK−1y. (2.31)

with the N × N covariance matrix K of the identification or training data.
Due to the mathematical properties of the logarithm function for the numerical

scaling purposes, the logarithm of the evidence is used as the objective function for
the optimisation:

ln p(y|Z, θ) = �(θ) = −

complexity term
︷ ︸︸ ︷
1

2
ln(|K|) −

data−fit term︷ ︸︸ ︷
1

2
yTK−1y −

normalisation const.︷ ︸︸ ︷
N

2
ln(2π) , (2.32)
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where � is the value of the logarithm of the evidence or marginal likelihood. Equa-
tion (2.32) also shows interpretations of its three terms.

The posterior model we obtain with evidence maximisation trades off data fit and
model complexity. Hence, it avoids overfitting [49, 51] by implementing Occam’s
razor, which tells us to use the simplest model that explains the data.

Maximising the evidence using Eq. (2.32) is a nonlinear, non-convex optimisation
problem. Nevertheless, even though a global optimum of this optimisation problem
has not necessarily been found, the GP model can always explain the data [51].

The fact that the posterior GP model is obtained with optimisation can be, on one
hand, considered as a disadvantage, becauseBayesian inference is not pursued strictly
all the way to the end. On the other hand, however, a lot of people involved in system
identification are very familiar with optimisation-based methods for experimental
modelling, which brings GP modelling closer to their attention. This might not be
the case with full Bayesian inference.

The following sections describe some possibilities for the optimisation imple-
mentation.

2.4.2.1 Deterministic Optimisation Methods

Deterministic optimisation methods are well known and are widely used in system
identification. Here, we are not going into a detailed description. An overview of
these methods can be found in many references, e.g. [10].

In the case of using one of the gradient optimisation methods, the computation of
the partial derivatives of marginal likelihood with respect to each of the hyperpara-
meters is required:

∇(�(θ)) = ∂ ln p(y|Z,θ)

∂θi
= −1

2
trace

(
K−1 ∂K

∂θi

)
+ 1

2
yTK−1 ∂K

∂θi
K−1y. (2.33)

The computation of the partial derivatives involves the computation of the inverse of
the N × N covariance matrix K during every iteration. This means that the compu-
tational complexity is O(N3). However, there are alternative approaches, and some
of them will be touched upon in Sect. 2.5.2.

A frequently used method for optimising the cost function is a conjugate gra-
dient method—a Polack–Ribiere version utilised in tandem with the Wolfe-Powell
stopping conditions [49]. Compared with numerical approximation methods of the
Monte Carlo type used for obtaining the hyperparameters’ posterior, this conjugate
gradient approach can find a reasonable approximation to a local maximum after a
relatively acceptable number of evaluations.

The trust-region optimisation method is proposed as an alternative by [63], where
the Hessian matrix is simplified and then the trust-region algorithm is used for the
GP hyperparameters’ optimisation.

A property of deterministic optimisation methods is that their result heav-
ily depends on the initial values of the hyperparameters, especially for complex
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multidimensional systems, where the objective function has many local optima.
Therefore, whatever optimisation method is used it should be run repeatedly with
various initial values of the hyperparameters. While the space of possible values is
huge, the initial values are often chosen randomly. Therefore, stochastic optimisation
methods can be considered as an alternative approach. Three stochastic algorithms
are described in the next subsection: genetic algorithms, differential evolution and
particle swarm optimisation.

2.4.2.2 Stochastic Optimisation Methods

Stochastic optimisation methods are used as an alternative to deterministic optimi-
sation methods when local extremes are expected in the optimisation of hyperpara-
meters. The following description is adopted from [64].

Evolutionary algorithms (EAs) are generic, population-based, stochastic optimi-
sation algorithms inspired by biological evolution. They use mechanisms similar
to those known from the evolution of species: reproduction, mutation, recombina-
tion and selection. Candidate solutions to the optimisation problem play the role of
individuals in a population, and the objective function determines the environment
within which the solutions ‘live’. Simulated evolution of the population then takes
place after the repeated application of the above operators.

Evolutionary algorithms [65] perform well at approximating solutions to diverse
types of problems because they make no assumptions about the underlying fitness
landscape; this generality is shown by their success in fields as diverse as science,
engineering, economics, social sciences and art.

In most real-world applications of evolutionary algorithms, computational com-
plexity is a prohibiting factor. In fact, this computational complicity is due to a
objective function evaluation. In our case, as was shown in the previous section, an
evaluation of the objective function contains an inversion of the covariance matrix,
of which the computational time rises with the third power of the amount of data.
However, this ‘inconvenience’ is unfortunately inescapable without an approxima-
tion.

The most commonly used evolutionary algorithms for numerical optimisation,
such as maximisation of the logarithmic marginal likelihood, are genetic algorithm
with real numbers representation, differential evolution and particle swarm optimi-
sation.

Genetic algorithm (GA) is a flexible search technique [65] used in computing to
find exact or approximate solutions to optimisation and search problems in many
areas. Traditionally, the solutions are represented as binary strings of 0s and 1s,
but other encodings are also possible. The simulated evolution usually starts from
a population of randomly generated individuals and proceeds in generations. In
each generation, the fitness of every individual in the population is evaluated,
and multiple individuals are stochastically selected from the current population
(based on their fitness) andmodified (recombined and possibly randomlymutated)
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to form a new population. The new population is then used in the next generation
of the algorithm. Commonly, the algorithm terminates when either a maximum
number of generations have been iterated, or a satisfactory fitness level has been
reached for the population. If the algorithm has terminated due to a maximum
number of generations, a satisfactory solution may or may not have been reached.
Examples of GP model optimisation with a GA can be found in [66, 67].

Differential evolution (DE) is a method for numerical optimisation without
explicit knowledge of the gradients. It was presented by Storn and Price [68]
and works on multidimensional real-valued functions that are not necessarily
continuous or differentiable. DE searches for a solution to a problem by main-
taining a population of candidate solutions and creating new candidate solutions
by combining existing ones according to its simple formulae of vector crossover
and mutation, and then keeping whichever candidate solution has the best score
or fitness on the optimisation problem at hand. In this way, the optimisation prob-
lem is treated as a black box that merely provides a measure of quality given a
candidate solution and the gradient is therefore not needed. More details about
DE can be found in [69].
Example of GP model optimisation with DE can be found in [64].

Particle swarm optimisation (PSO) is a method proposed by Kennedy and
Eberhart [70] that is motivated by the social behaviour of organisms such as bird
flocking and fish schooling. Like DE it is used for numerical optimisation with-
out explicit knowledge of the gradients. PSO provides a population-based search
procedure in which individuals called particles change their position (state) with
time. In a PSO system, particles ‘fly’ around in a multidimensional search space.
During flight, each particle adjusts its position according to its own experience and
the experience of a neighbouring particle, making use of the best position encoun-
tered by itself and its neighbour. Thus, a PSO system combines local search with
global search, attempting to balance exploration and exploitation. Further details
about PSO can be found in [71].
Examples of GP model optimisation with a PSO can be found in [64, 72].

Example 2.1 (CO2 concentration modelling) This example compares different sto-
chastic optimisation methods and is adopted from [64].

To assess the potential of evolutionary algorithms in the optimisation of GPmodel
hyperparameters, a problem concerning the concentration of CO2 in the atmosphere
from [49] was chosen. The data consists of monthly average atmospheric CO2 con-
centrations derived from in situ air samples collected at the Mauna Loa Observatory,
Hawaii, between 1959 and 2009 (with some missing data).1 The goal is to model the
CO2 concentration as a function of time.

Although the data is one-dimensional, and therefore easy to visualise, a com-
plex covariance function is used. It is derived by combining several kinds of simple
covariance functions. First, a squared exponential covariance function in Eq. (2.13)
is used to model the long-term smooth rising trend. With the product of a periodic

1The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.

http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2
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of Eq. (2.19) and the squared exponential covariance function of Eq. (2.13), a sea-
sonal component is modelled. To model the medium-term irregularities, a rational
quadratic covariance function in Eq. (2.16) is used. Finally, the noise is modelled as
the sum of a squared exponential and a constant covariance function of Eq. (2.12).

C(zi, zj) = C1(zi, zj) + C2(zi, zj) + C3(zi, zj) + C4(zi, zj),

C1(zi, zj) = θ212 exp

(
− r2

2θ211

)
,

C2(zi, zj) = θ222 exp

(
− r2

2θ221

)
θ224 exp

(
− 2

θ223
sin2

(
π

θ25
r

))
, (2.34)

C3(zi, zj) = θ232 exp

(
1 + r2

2θ33θ231

)−θ33

,

C4(zi, zj) = θ242 exp

(
− r2

2θ241

)
+ θ243δij.

This complex covariance function involves 13 hyperparameters. Note that in [49] the
covariance function involves only 11 hyperparameters due to the fixed period of the
periodic covariance function to one year.

For differential evolution an implementation from [69], for particle swarm opti-
misation an implementation from [73], and for genetic algorithms an implementation
from [74] were used. These methods were compared to a commonly used determin-
istic conjugate gradient method (CG) as a frequently used deterministic optimisation
method for GP modelling.

All the stochastic algorithms had the same population size, number of generations
and number of solution evaluations. The population size was set to 50 individuals,
the number of generations to 2000 and the number of iterations to 10. Although the
tested algorithms have various properties, the fairness of experimental evaluationwas
tried to be guaranteed. The parameters of these algorithms were tuned in preliminary
experiments. For a comparison of the tested stochastic methods with the conjugate
gradient method, the same number of evaluations was used with it as well. Thus the
conjugate gradient method was executed 10 times with 100,000 solution evaluations
available. Thatmeans, in one iteration, the conjugate gradient methods are repeatedly
executed with random initial values and possibly restarted until all the available
evaluations are spent.

For each algorithm the following statistics were calculated: minimum, maximum,
average and standard deviation. They are given in Table2.1.

Figure2.19 shows the performance traces of each algorithm averaged over 10
runs. At first sight, it appears that the DE and PSO perform similarly and a lot
better than the GA and CG. The DE and PSO reached a very similar maximum
value that was very close to the result from [49]. However, the PSO reached a lower
minimum value, which means it has a larger variance than the DE. In other words,
using the DE will more probably find an optimal value or at least a value near to it.
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Table 2.1 Statistical values—maximum, minimum, average and standard deviation—of 10 itera-
tions for each algorithm: CG, GA, DE, PSO

CG GA DE PSO

Maximum −598.8627 −639.0114 −142.2658 −142.4529

Minimum −638.9760 −703.9570 −176.2658 −216.9546

Average −630.9088 −645.8582 −154.5382 −177.6854

Standard
deviation

12.5953 20.4178 11.3083 26.9605
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Fig. 2.19 Performance traces for the tested algorithms. Solid lines denote mean values, dashed
lines denote maximum and minimum values, grey areas present standard deviations

Unsatisfactory results obtained by the CG imply the difficulty of the chosen problem
for this traditional method.

However, Fig. 2.20, which shows the predictions of CO2 for the next 20 years
based on themodel obtained from the best hyperparameter values found with DE and
shown inTable2.2, confirms the superiority of theDE.While the best hyperparameter
values obtained by the PSO differ from the DE’s at most by 10−5, consequently the
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Fig. 2.20 Concentration of CO2 in the atmosphere and its predictions based on a GP model with
hyperparameters optimised using differential evolution

Table 2.2 Best hyperparameters of our experiment, which were obtained with the DE

i θi1 θi2 θi3 θi4 θi5

1 5.0000 5.0000

2 5.0000 −1.5668 0.2406 2.1831 2.4843

3 1.3454 −0.7789 5.0000

4 0.4580 −1.7163 −1.6161

log-marginal likelihood and the predictions of the PSO are very similar to those of
the DE.

Please note that our predictions are almost identical to the originals from [49],
but the log-marginal likelihood is smaller, due to the wider range of measurements
for training and the wider range of predictions used in our experiment.

2.4.3 Estimation and Model Structure

Up until now, we have not been taking into account the different model structures,
as listed in Sect. 2.3.1.

Let us explore the differences between the NARX andNOE general kinds of mod-
els, not only GP models in particular, with an emphasis on modelling for simulation,
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and therefore training in a parallel configuration as described in [18]. This is of
particular interest in dynamic systems identification. The NFIR model can in this
context be taken as a special case of the NARX model.

Consider again the system with added white Gaussian noise

y(k) = f (z(k)) + ν (2.35)

where z is a vector of regressors at the time instant k and ν is the measurement
noise, also the observation noise, at output y at the time instant k. If there is no
noise in the output measurements, then the NARX and NOE models are the same
and the differences between them do not matter. Nevertheless, noise always exists
in real-life measurements. In the NARX model, these measurements are contained
within the regressors that are delayed samples of the output signal. This means that
when the NARX model is identified the errors-in-variables problem occurs. There
are structures with other noise models that are more complex.

The problem of learning GP models with noisy input variables is investigated in
[75]. Another possible solution to this problem is the automated filtering of input and
output signals. This solution is equivalent to the optimisation of a noise filter, i.e. a
filter that filters white noise to the one that corresponds to the measurement noise.
In system identification this method is known as the instrumental variables method
[2]. A similar principle in the context of GP models is described in [19].

If, on the other hand, the model is trained without using delayed measurements as
the regressors, i.e. an output-error model, then it is assumed that the noise is entering
the output signal after the system.

For a dynamic system of order n, the one-step-ahead prediction is calculated with
the previous process output values as described with Eq. (2.4)

ŷ(k) = f (y(k − 1), y(k − 2), . . . , y(k − n), u(k − 1),

u(k − 2), . . . , u(k − m)) + ν,

while the simulation is evaluated with the previous model’s output estimates as
described with Eq. (2.5)

ŷ(k) = f (ŷ(k − 1), ŷ(k − 2), . . . , ŷ(k − n), u(k − 1),

u(k − 2), . . . , u(k − m)) + ν.

In the first case, we have a feedforward prediction, while in the second case we
have a recurrent one and, in the case of nonlinear system’smodellingwithGPmodels,
an approximation of the prediction distribution. A simulation is required whenever
the process output cannot be measured during the operation, which is always when
the system is simulated independently from the real system. This is frequently the
case for the design of fault detection and control systems.

Nevertheless, the NARX model is by far the most applied model for dynamic
systems, not because it is realistic, but because it is easier to train than the NOE
model.
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In the NARX case, the model is trained based on loss functions that are dependent
on the prediction error, while in the NOE case the model is trained based on loss
functions that are dependent on the simulation error. The hyperplane of the loss
function is much more complicated in the second case. However, the model that
is used in the parallel configuration does not necessarily have to be trained in the
parallel configuration as well, if the noise assumptions are relaxed, which is often
the case in engineering practice. The disadvantage of using NARX models for the
simulation is the error accumulation, which does not happen with the prediction. In
extreme situations, the NARX model used for the simulation can become unstable,
regardless of a satisfactory one-step prediction performance.

The trade-offs between the advantages and disadvantages of the NARX and NOE
models need to be evaluated when the model is developed for a model simulation.

The case when GP models are used is specific. Since the output of the GP model
ŷ(k) is a normal distribution in the case of the NOEmodel, this output represents only
an approximation of the distribution that should appear on the output of a nonlinear
model. The level of the approximation can be very different, as will be discussed in
Sect. 2.6. It can range from the simplest case, where only expectations of the outputs
are fed back, to more informative analytical or numerical approximations.

General GP optimisation algorithms for parallel-series or the GP-NARX model
describedwith Eq. (2.4) and for parallel or GP-NOEmodel in Eq. (2.5) are as follows.

Optimisation algorithm for GP-NARX model:

Algorithm: OptimiseNARXmodel(Inputs)

set input data, target data, covariance function, initial hyperparameters
repeat
calculate −�(θ) and its derivative based on input data
{y(k − 1), y(k − 2), . . . , y(k − n), u(k − 1), u(k − 2), . . . , u(k − m)}
change hyperparameters

until −�(θ) is minimal

Optimisation algorithm for GP-NOE model:

Algorithm: OptimiseNOEmodel(Inputs)

set input data, target data, covariance function, initial hyperparameters
repeat
calculate the model simulation response
calculate −�(θ) and its derivative based on input data
{ŷ(k − 1), ŷ(k − 2), . . . , ŷ(k − n), u(k − 1), u(k − 2), . . . , u(k − m)}
change hyperparameters

until −�(θ) is minimal
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The difference between considering the prediction and simulation error has a
major impact on the complexity of the optimisation. This difference is illustrated in
the following example.

Example 2.2 (Difference in GP-NARX and GP-NOE optimisation) The difference in
the optimisation for the GP-NARX and GP-NOEmodels is illustrated with an exam-
ple where two loss functions are calculated. The input and output data is obtained
from the selected dynamic GP model of the first order. The regressors are delayed
samples of the output and input signals, y(k − i) and u(k − i), respectively, in the
case of the GP-NARXmodel; and delayed samples of expectations of the output pre-
dictions E(ŷ(k)) and delayed samples of the input signals u(k − i) in the case of the
GP-NOEmodel. This means that the simplest possible approximation has been used
in this example where no prediction distribution is propagated through the model.
Even though this is the simplest approximation, the main differences between the
model structures are noticeable.

Since there are two regressors and the GP model uses squared exponential and
constant covariance functions, there are four hyperparameters in this process.

We fix the two hyperparameters that are parameters that control the variances σ2
f

andσ2
n and calculate the surfaces of the loss functions for theGP-NARXandGP-NOE

models, when the two remaining hyperparameters controlling the two regressors are
varied. The loss function is a negative logarithm of the marginal likelihood in both
cases, but in the case of the GP-NARX model the output observations are used for
the calculation of the loss function and in the case of the GP-NOE model the mean
values of the output predictions are used for the calculation of the loss function. The
results can be seen in Fig. 2.21.

Figure2.21 shows that not only the loss functions surfaces, but also the optimal
hyperparameters for the GP-NARX and GP-NOE models are significantly different.
It is apparent that the optimisation of the model parameters for the prediction is a
much easier task than the optimisation of the model parameters for simulation.

2.4.4 Selection of Mean Function

We have mentioned in several places that the zero mean function is often presumed
as the prior mean function of the GP model. This is quite common with system
identification where the identification and validation data is preprocessed to ensure,
among others, a zero mean. Nevertheless, this is not necessary and in some cases
an explicit modelling of the mean function is required. The mean function can be
specified using explicit basis functions. The following text is summarised from [49],
but the topic is also elaborated in [76].

There are three main ways that the mean function can be used together with GP
models:

1. The mean function is fixed and deterministic, which is usually the case when
it is determined before the identification. An example would be when the data
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Fig. 2.21 NARX (left) and NOE (right) model loss functions (top) and their contour plots (bottom)
with black crosses at the positions of the minima

is detrended during the preprocessing. In this case, the usual zero mean GP is
applied to the difference between the measurements and the fixed mean function.
Using

f (z) ∼ GP(mf (z), C(zi, zj)), (2.36)

the predictive mean becomes

E(y∗
f ) = mf (z∗) + k(z∗)K−1(y − mf (z)), (2.37)

where K = �f + σ2
nI and the predictive variance is according to Eq. (1.25).

2. The mean function is identified as a deterministic function that is a combination
of a few preselected fixed basis functions with the coefficients collected in vector
β. We can write

g(z) = f (z) + φ(z)Tβ, where f (z) ∼ GP(0, C(zi, zj)), (2.38)

where f (z) is a zero mean GP, φ(z) is a vector of fixed basis functions and β are
the additional coefficients to be identified together with the hyperparameters.

3. The mean function is identified as a stochastic function with a Gaussian prior
on β so that p(β) = N (b, B). We get another GP with the covariance function
expanded with uncertainty in the parameters of the mean:

g(z) ∼ GP(φ(z)Tb, C(zi, zj) + φ(zi)
TBφ(zj)

T). (2.39)

http://dx.doi.org/10.1007/978-3-319-21021-6_1
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The objective function that is used for the identification of the hyperparameters
and the mean function parameters is expanded from Eq. (2.32) with B set to 0 in
the case of deterministic β:

ln p(y|Z, b, B)

= −1

2
ln(|K + �TB�|) − 1

2
(�Tb − y)T(K + �TB�)−1(�Tb − y)

− N

2
ln(2π), (2.40)

where the matrix � collects the vectors φ(z) for all the identification regression
vectors.
The predictions are obtained as

E(y∗
g) = E(y∗

f ) + RTE(β),

cov(y∗
g) = cov(y∗

f ) + RT(B−1 + �(Z)K−1�(Z)T)R,
(2.41)

where R = (�(Z∗) − �(Z)K−1k(Z∗, Z)) and E(β) = (B−1 + �(Z)K−1

�(Z)T)−1(�(Z)K−1y + B−1b).

In cases when the prior knowledge about B is vague, which means that B−1

approaches to the matrix of zeros, which is elaborated in [49].

2.4.5 Asymptotic Properties of GP Models

In model identification, it is important that the model is consistent. This means that
the posterior distribution concentrates around the true distribution of the parameters
as more and more data is observed or the sample size increases. The theory on
consistency of GP models with sufficient conditions for the posterior consistency
of GP regression is explained in [76] and reviewed in [49], with further references
describing studies in various general settings in both listed references.

As stated in [76], these sufficient conditions are difficult to validate and may not
be intuitive when applied to concrete models. In [77], the alternative concept of
the so-called information consistency for GP regression models is described. The
consistency of the information is checked with the information criterion that is the
Césaro average of the sequence of prediction errors. See [76, 77] for more details
and the background theory.



62 2 System Identification with GP Models

2.5 Computational Implementation

A noticeable drawback of the system identification with GP models is the computa-
tion time necessary for the modelling. GP regression, on which system identification
is based, involves several matrix computations. This increases the number of oper-
ations with the third power of the number of input data, i.e. O(N3), such as matrix
inversion and the calculation of the log determinant of the used covariance matrix.
This computational greed restricts the number of training data to at most a few
thousand cases on modern workstations.

A common approach to computing the objective function from Eq. (2.32) and its
gradient makes use of the Cholesky decomposition [49] of K to computeα = K−1y.

The training algorithm in pseudocode is as follows:

Algorithm: GP training(Z, y, C, initial θ)

repeat
change hyperparameters θ
compute K(θ) = [C(zp, zq)]N×N

compute Cholesky decomposition L = chol(K)

solve Lγ = y for γ and LTα = γ for α to get α = K−1y
compute �(θ) and ∇�(θ) using α

until −�(θ) is minimal

2.5.1 Direct Implementation

One option to deal with the computational implementation is to approach the compu-
tation problem from the utilised hardware technology point of view. Since hardware
capabilities are increasing every day, this approach might seem inefficient when
looking over the longer term, but it is undoubtedly effective in the short term.

Parallel processing [78] is a popular way to deal with a large amount of data and
a large number of computations. The authors of [79] envision the future computing
systems as being hybrid computers, where the two major types of integrated com-
ponents will be multi-core central processing units (CPUs) and massively parallel
accelerators.While the ‘standard’CPUswill continue to provide userswithmore and
more computing power [80], many computer scientists will migrate towards general-
processing graphics processing unit (GPGPU) applications [81], using graphics-card
processors as the parallel accelerators for memory-dense, floating-point-intensive
applications. The graphics processing unit (GPU) is, therefore, currently a low-cost,
high-performance computing alternative to larger, stand-alone, parallel computer
systems. An accelerated linear algebra package exploiting the hybrid computation
paradigm is currently under development [82].
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The concept of a GPGPU processor evolved from the needs of 3D-graphics-
intensive applications. This need dictated the design of a processor such that more
transistors were dedicated to the data processing than to the control and data caching,
as in a regular CPU. Next, the processor was designed to be able to execute a data-
parallel algorithm on a stream of data, which is the reason why GPGPU processors
are sometimes called ‘stream processors’. The currently dominant architectures for
GPGPU computing are the nVidia CUDA [83] and the AMD APP (formerly ATI
Stream) [84].

Some computation acceleration results for kernel methods are reported in
[85, 86], while some preliminary results for GP modelling computation with a GPU
are reported in [87].

The intrinsic parallel structure of a GPU allows a significant speed-up in com-
parison to the single-processor architecture. Although it is relatively easy to set up
and perform basic operations, it quickly becomes more complex when dealing with
more demanding numerical problems. Additionally, special care must be taken when
performing memory operations:

• due to the relatively slow memory transfer, data transfers between the host system
and the GPU device shall be as few as possible, and shall be asynchronous if
possible;

• improper kernel code design with respect to the operation on different memory
types (main GPU memory, shared memory, constant memory, texture memory)
and ignoring memory access coalescing on the GPU device can cause a significant
performance loss; and

• shared memory is organised into banks and accessing elements not consecutively
will cause a bank conflict.

The modern NVIDIA GPUs come with an application programming interface
(API), which had to be integrated into the implemented code, for example, Matlab’s
MEX functions. Additionally, several other programming libraries had to be used in
order to implement the time-critical operations, such as the matrix factorisation and
the inverse. The code makes use of CUBLAS, which is NVIDIA’s implementation
of the popular BLAS library [83, 88, 89] and of the CULA premium libraries [90],
which provide a CUDA-accelerated implementation of linear algebra routines from
the LAPACK library [91], including the time-critical Cholesky decomposition. Addi-
tionally, several other matrix operations had to be implemented as custom CUDA
kernels.

As hardware capabilities are improving constantly and research on efficient algo-
rithms is on-going, the presented hardware solutionsmight not be of long-term value.
However, they offer a state-of-the-art, affordable, hardware configuration that might
help to circumvent the computational issue in an intermediate time frame before
more efficient algorithms or better technology arrive.
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2.5.2 Indirect Implementation

To overcome the computational limitation issues and make use of the method also
for large-scale dataset applications, a lot of authors have suggested various approx-
imations, e.g. [92–94]. However, the research in this field is still active. A unified
view of approximations of GP with a comparison of the methods is provided in [95]
and some newer developments are compared in [96, 97].

Section2.5 mentions that the computational demand of the GP regression direct
implementation increases with the third power of the size of training set—O(n3).
This is due to the calculation of the covariance matrix inverse in

α = K−1y (2.42)

or better finding the solution to the linear system of equations

Kα = y (2.43)

forα. This becomes an issue when wework on problems that involve large quantities
of trainingdata, e.g.more than a couple of thousand for thepresently available average
computation power. Consequently, the developments of methods designed to reduce
the computational demands of the GP modelling approach have received a great deal
of attention.

These so-called approximation methods can, in general, be divided as follows:

• fast matrix-vector multiplication (MVM) methods, which use efficient computa-
tional methods for solving the system of linear equations. An example would be
the use of iterative methods such as conjugate gradients;

• sparse matrix methods, which approximate the covariance matrix. The idea of
the sparse matrix methods is to reduce the rank of the covariance matrix, i.e. the
number of linearly independent rows, and to keep as much information contained
in the training set as possible.

Figure2.22 shows a schematic representation of an overview of the approximation
methods.

Fast Matrix-Vector Multiplication

MVMmethods treat all the identification data and build a full covariance matrix K of
sizeN × N , but use various, more efficient computation methods or their approxima-
tions for the calculation of computationally demanding expressions, i.e. the inverse
of the covariance matrix and the logarithm of the covariance matrix determinant. An
overview of the MVM methods is given in [98].

An example of such a method for solving the problem described with Eq. (2.43)
is the conjugate gradient optimisation method, which reduces the computational
demand of one iteration down to the order ofO(N2) [49], but an approximate solution
can be obtained if the algorithm is terminated after k iterations, which results in an
overall computational demand of O(kN2).
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FAST MATRIX-VECTOR MULTIPLICATION METHODS

SPARSE MATRIX METHODS

Greedy algorithm
Optimisation-based data
selection
On-line selection

- Windowing
- Sequential selection
-On-line local model
clustering

Data selection

Subset of Data - SoD
Subset of Regressors -
SoR
Deterministic Training
Conditional - DTC
Partially/Fully Independent
Training Conditional -
PITC/FITC
Local models

Approximation methods

Fig. 2.22 Schematic representation of an overview of the approximationmethods for GPmodelling

Some other methods that reduce the number of computations of the covariance
matrix inverse and the logarithm of the covariance determinant can be found in
[99–101].

The MVM methods are the most efficient when the number of data is relatively
small. However, these methods are also necessary with large amounts of data in order
to decrease the computer memory demand during optimisation.

Sparse Matrix Methods

The fundamental property of the sparse matrix methods is that only a subset of the
variables is treated exactly, with the remaining variables given some approximate,
but computationally cheaper, approach. This is the most straightforward method for
reducing the computational burden.

The first step in constructing a reduced rank or a sparse version of the covariance
matrix K is the selection of a subset of datapoints. The selection of this ‘active’
subset of data, or active dataset, also called the induction variables, is something in
common to all sparse matrix methods.

The second step is the approximation or treatment of the used latent stochastic
variables that are to be treated exactly, by the GP model framework and of the
remaining variables that are to be approximated by a less computationally demanding
method. The used subset is of size M 	 N , where N is the size of the overall training
dataset.

Only the active dataset is used for GP modelling. The rest of the N − M data is
treated differently using different approximation methods.

First, we list themethods for the selection of data to be included in the active subset
and, second, we list the approximation methods. However, it needs to be emphasised
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that a number of other sparse matrix methods have appeared in recent years as this
is a field of active research.

Methods for Data Selection

As only the active dataset is to be treated fully in the sparse model, the process of
determining which data points are to be included is critical to the success of the
approximation [50]. One possible strategy is to build the subset of data through the
manual selection of data points based on a preliminary knowledge of the system to
be modelled. However, this is difficult where the preliminary knowledge about the
system to be modelled is limited and when the system contains complex, multidi-
mensional nonlinearities, which is a common situation with systems identification.

It makes sense to search the active dataset based on a selected criterion. The
criterion-based evaluation of all the possible combinations of an active dataset of
dimension M is not viable, because of the N !

M!(N−M)! combinations. There have been a
lot of methods developed based on different criteria to overcome the computational
issue.

Greedy algorithm is one of the more popular methods. Apart from the random
selection of data points, with limited applicability, greedy approximation methods
[102] have been shown to have great potential. The idea of these methods is that
the active dataset is selected and updated according to some criterion. Such an
algorithm would initiate with an empty active set I, with the remaining set R
containing all the indexed training observations. Then, using an iterative method,
each indexed training example is added to the active set in turn and the selection
criterion is evaluated. If the criterion is met, the training example under review
will be included in the active set.
Various authors, e.g. [102–104], have suggested different criteria for the selection
of data.
This method can be used with most of the approximation methods. The question
that arises is what kind of selection criteria should be used to determine the active
subset of data. Some of the selection criteria are those used in the following meth-
ods: informative vector machine [102], informative gain [105], sparse spectral
sampling [106], iterative sparse [103] and matching pursuit [104].

Optimisation-based data selection Greedy methods select the active dataset out
of the available identification data. A method is proposed in [33] called Sparse
Pseudo-input Gaussian Processes (SPGP), which does not select the datasetI, but
optimises it. This means that the active dataset I can at the end of the optimisation
contain arbitrary data. Optimisation of this arbitrary data, called pseudo-inputs,
is pursued simultaneously with the optimisation of the hyperparameters based on
the log-marginal likelihood loss function. This is perceived as an advantage of
this method.
Based on the same idea, the authors of [107] have proposed a new sparse matrix
method called Sparse Spectrum Gaussian Process Regression (SSGP), which is
based on a spectral representation of GP.
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Because of the increased number of optimisation parameters, both methods are
susceptible to overfitting, particularly when there is no available information on
the initial values of the hyperparameters and the pseudo-inputs. To overcome
this issue, a variational method is proposed in [108]. This method maximises the
lower boundary of the log-marginal likelihood instead of the exact value when it
optimises the active dataset I and the hyperparameters.

Online data selection In the case that the GP model is identified based on the
incoming data stream that provides new information about the modelled system
online, online identification, or training, methods are in place.
Online data selection can be roughly divided as follows.

Windowing is a method where the most recent m data is used for the identifi-
cation. The active dataset I is therefore composed of the most recent m data,
which are all weighted equally for the optimisation. The windowing method
is called also the time-stamp method. Examples of using windowing in the GP
modelling context can be found in [109–111].
The situation is different with the method of forgetting, where the signifi-
cance of the data is decreasing, usually exponentially, with age. The forgetting
method is also called the weight-decay method [110]. When the data point
significance is below the threshold, the data point is discarded. The forgetting
method is still closely related to the pure windowing.

Sequential selection follows the idea that the size of the active dataset I has to
be constrained, which is implementedwith a selected criterion for the inclusion
of data. This criterion is similar to that used by the greedy method, but in this
case each data point is evaluated separately with already-selected data in the
active dataset I and not with those in the remaining dataset R, as is the case
with the greedy method. The criterion that has been proposed in [103], on the
other hand, is based on a change of the mean value of the posterior distribution
when a new data point is included in themodel. Following this idea, the authors
of [112] proposed the method for online training, which also enables the online
optimisation of the hyperparameters.

Online model clustering Slightly different from the other methods for online
data selection is the method described in [113]. This method is based on the
online clustering of data, where these clusters of data are used for the identifi-
cation of local GP models. The advantage of this method is its computational
speed, because online clustering is computationally much less demanding than
online GP model training. Nevertheless, the quality of the prediction could be
slightly worse in comparison with using data selection methods.

Methods for Approximation

The idea behind sparse matrix methods is to change the joint prior distribution of the
identification and validation data p(f ∗; f ) from Eq. (2.44) so that the computation of
the predictive distribution based on the validation data from Eq. (2.45) is less time
consuming.

p(f ∗; f ) = N
(

0,

[
K k(z∗)

kT(z∗) κ(z∗)

])
, (2.44)
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where ∗ denotes the validation data.

p(f ∗|y) = N (
k(z∗)K−1y,κ(z∗) − kT(z∗)K−1k(z∗)

)
(2.45)

We divide the approximation methods into five groups.

Subset of data (SoD) method appears to be the most straightforward method for
a sparse matrix approximation, where the active set of the data M is selected
from the whole training data set of size N . The equations for the calculation of the
predictions and the optimisation remain unchangedby themethod.The calculation
method for such a method depends only on the dataset of size M and is therefore
O(M3), where M < N . The efficiency of this method depends very much on the
selection of the subset of data, while the remaining dataset is discarded rather
than approximated. Nevertheless, with carefully selected data the method may
still provide a good approximation to the GP model with complete dataset and is
consequently frequently used in comparison with the more sophisticated sparse
methods.

Subset of regressors (SoR) method takes advantage of the equivalence between
the GP model’s mean predictor and that of a finite-dimensional, generalised,
linear regression model. Consequently, the SoR model is a finite, linear-in-the-
parametersmodel with a particular prior knowledge put on theweights. In contrast
to the SoDmethod, the SoRmethod is to employ allN datapoints of the training set
in the approximation. Themajor disadvantage of the SoRmethod is that, due to its
basis upon a linear-in-the-parameters model, the GP model becomes degenerate
and restricts the variety of possible functions that will be plausible under the
posterior [96]. The main disadvantage of this degeneracy is that the predictive
distributions of theGPmodel can becomeunreasonable. The computation demand
of the SoR method isO(M2N) for the initial matrix computations, andO(M) and
O(M2) for the calculation of the predictive mean and variance, respectively.

Deterministic training conditional (DTC)method applies themodel of the entire
N size dataset and therefore does not use a degeneratedmodel like the SoRmethod
does. The obtained GP model represents only M < N function values, but uses
the entire dataset so that it projects M input values to N dimensions. The compu-
tational method for the DTCmethod is, like in the case of SoR method,O(M2N),
for the initial matrix computations, and O(M) and O(M2) for the calculation of
the predictive mean and variance, respectively. The method was initially named
projected latent variables [105], but is also known as projected processes [49].
The predictive mean value when using the DTC method is identical to that of
using the SoR method. The predictive variance is never less than the variance
when using the SoR method. The computation demand of the DTC method is the
same as that of the SoR method.

Partially and fully independent training conditional (PITC, FITC) The previ-
ously described methods use exclusively identification data for the input–output
mapping function modelling, so the covariance matrix for the training conditional
distribution p(f |u) is zero. Another possibility is that the covariance matrix has
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a block-diagonal form, with data obtained from the covariance matrix of the com-
plete dataset. This means that we assume conditional independence, which is
assumed in previously described methods for only a part of the modelled func-
tion values. Such a method is called Partially Independent Training Conditional
(PITC).
The PITC method’s computational demand depends on the used block-diagonal
form. In the case of l = N

M blocks of size M × M, as in [114] the computational
demand is O(NM2).
A special form of the PITC method is the approximation method called Fully
Independent Training Conditional (FITC), which was proposed in [33], where
it was named the SPGP method. The name FITC comes from the fact that the
training set function observations are presumed to be completely independent.
The FITC method is almost identical to the PITC method, except for the fact
that the covariances on a diagonal of the covariance matrix are exact. This means
that instead of approximated prior variances the exact prior variances are on the
covariance matrix diagonal.
The predictive distribution obtained with the FITC method is identical to the pre-
dictive distribution obtained with the PITC method. The computational demand
is equal to those of the SoR, DTC and PITC methods.

Local models An alternative approach to the listedmethods for the approximation
of the covariance matrix or the model likelihood is the method that replaces one
GP model with local models. The obtained model is known as a mixture of GP
models or mixture of GP experts. This method does not match exactly to the
listed ones, because the local models replace the entire GP model. Some research
about using local models for an approximation in the context of dynamic systems
modelling can be found in [113, 115, 116].
The idea of the method is based on the divide-and-conquer principle. The method
divides the dataset of N identification data into l = N

M subsets or clusters of size
M. The data in these clusters is used as the identification data for separate, locally
valid GP models. The various local-model-based methods differ, among others,
in the way in which the various existing clustering methods are pursued.
The hyperparameters can be optimised for each of the local models separately
or for all the local GP models together. The latter is an interesting option only
when M is small enough. Combination of posterior distributions of local models
into one distribution that represents the model prediction is another difference
between the various methods.

All the listed approximation methods have comparable computational demands.
The overview in [96] shows that the obtained predictive mean values are very similar,
while the predictive variances are quite different. Therefore, it is sensible to decide
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before selecting an approximation method, whether the information about the exact
model’s predictive variance is important, or we are focused more on the model’s
predictive mean value.

The SoR method is appropriate in the case that the predictive variance is not
very important, because the predictive variance approximation is computationally
the simplest one.

In the case, however, that the accurate information about the predictive variance
is important, it is sensible to use one of the more advanced approximation methods,
i.e. DTC, PITC or FITC.

In the case of computationally simpler identification problems, which are those
with the smaller number of identification data, it is sensible to use the SoD method.
It competes well with the more advanced approximation methods.

Another aspect interesting for the approximation-method selection is the imple-
mentation of the method, the computational demand for the model identification and
the demand necessary for the obtained model prediction.

It is verymuchworth considering a combination ofmethods, like the one proposed
in [97]. This approach combines the SoD method for the model training and the
FITC method for the model prediction. It uses the selected active dataset I and
the hyperparameters obtained with the SoD method to save computational time for
the hyperparameters’ optimisation, which for the SoD method is O(M3), instead of
O(NM2) for the FITC method.

2.5.3 Evolving GP Models

In this section, an approach to the online training of GP models is described. Such
an approach is needed when the dynamic system to be identified is represented as a
time-varying one or when the training data is not available for the whole region of
interest, and so not all the dynamics of the system can be trained at once. In these
cases, themodel needs to be constantly adapted in accordance with the new operating
region and/or the changing dynamics. Such an approach can be used in environments
that are constantly changing. For this purpose, a method for the online adaptation
of GP models is proposed in [117], and the models obtained with this method are
named Evolving GP models.

Evolving systems [118] are self-developing systems inspired by the idea of system
model evolution in a dynamically changing and evolving environment. They differ
from other traditional adaptive systems known from control theory [119, 120] in
that they online adapt both the structure and parameter values of the model using the
incoming data [118].

The term evolving is used in the sense of the iterative adaptation of the structure
of the GP model and the hyperparameter values. This term was introduced in the



2.5 Computational Implementation 71

1990s for neural networks [121], in 2001 for fuzzy rule-based systems [122] and in
2002 for neuro-fuzzy systems [123].

TheGPmodels dependon the data and the covariance function.More precisely, the
data is defined with various regressor variables, in short regressors, and correspond-
ing observations grouped in the so-called basis vectors. The covariance function is
defined with the type and hyperparameter values.

Therefore, there are at least four parts that can evolve

• the regressors,
• the basis vectors,
• the type of covariance function and
• the hyperparameter values.

The ideas of the online adaptation of GP models can be found in literature imple-
mented mainly as online data selection, e.g. [111, 124], online data selection and
hyperparameters determination, e.g. [125], and active learning for control, e.g. [117,
126]. A method that does not select an active dataset for GP model identification,
but only iteratively corrects the identified model’s predictive mean and variance with
new data, is proposed in, e.g. [127, 128]. The criterion for the correction is based on
the prediction error.

As already stated in Sect. 2.5, the training of GPmodels for a large amount of data
is very time consuming. The condition under which the evolving GP model does not
‘decay in time’ with in-streaming data is the so-called persistent excitation condition,
which means that the in-streaming signal has enough information content. This can
be achieved so that only a subset of the most informative data, the so-called basis
vectors set, is used. With a type or a combination of various types of covariance
functions a prior knowledge of the system is included in the model. Nevertheless,
by optimising the hyperparameter values the model response evolves closer to the
response of the real system. However, in dynamic, nonlinear systems, where the non-
linear mapping between the input and output data cannot be easily formulated, the
squared exponential covariance function is frequently used, assuming the smooth-
ness and stationarity of the system. This means that the covariance function may be
kept fixed and does not need to evolve. Nevertheless, the structure-discovery algo-
rithm described in [129] can be used for the online covariance function selection.
Furthermore, the squared exponential covariance function can be used with ARD,
which is able to find the influential regressors [49]. With the optimisation of the
hyperparameter values, the noninfluential regressors have smaller values and, as a
consequence, they have a smaller influence on the result. Therefore, all the avail-
able regressors can be used and, as a result, only the set of basis vectors and the
hyperparameter values remain to be evolved.

The general concept of evolving GP models, presented in [117], with a fixed
covariance function and regression vector, contains the following steps:
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Algorithm: ModelEvolving(z∗, y∗)

comment: Add new input data z∗ to the informative dataset I
1. I ← Add(I, z∗)
if length(I) > maxLength

then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

comment: Calculate the information gain for each data point in I
2. iGains ← InformationGain(I)

comment: Remove worst data from I
3. I ← RemoveWorst(I, iGains)

comment: Calculate hyperparameter values θ

4. θ ← CalcHypVal(I,θ)

comment: Update covariance matrix

5. K ← UpdateCovMat(I,θ)

These basic steps are repeated for every incoming sample of data until there is no
more available data or until a requirement to stop the process is received.

To keep the subset of the most informative data small enough to process all the
steps before new data arrives, the maximum length of the subset should be set with
the parameter maxLength. This means that the parameter maxLength is a design
parameter.

Operations in the pseudocode can be implemented in various ways. There are
two critical operations: the calculation of the information gain and the calculation
of the hyperparameter values. Both of these operations can be implemented using
variouswell-knownmethods. For the information gain calculation, any data selection
criterion from online learning methods for GP models can be used, e.g. [103, 105],
etc. Also, for the hyperparameter value calculation any suitable optimisation method
or even some heuristic method can be used. Our implementation of the operations in
the concept is described below.

First, the basic elements and some operations will be described. The core of the
concept is a set of the most informative data. Actually, it is a subset of the data that
was already considered. It is denoted as I and defined as

I ⊂ D. (2.46)

To operate with the set I two basic operations are needed: adding elements and
removing elements. Both operations are very straightforward. Adding the new ele-
ment ζ+ to the set I is defined as

I+ = {I, ζ+ }
, (2.47)

where I+ is a new, extended set of the most informative data. Removing the ith
element ζi from the set I is defined as
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I− = {ζ1, . . . , ζi−1, ζi+1, . . . , ζM} , (2.48)

where M is the number of elements in the set I.
The main operations of the algorithm are implemented as follows:

1. Add(I, z∗): Adds new data to the set of the most informative data I. It is imple-
mented in such a way that it adds new data z∗ to I only when the data contributes
new information to the current model. This improves the robustness of the algo-
rithm. The contribution of the data, according to the current model, is scored on
the prediction distribution for z∗. If the absolute difference between the predic-
tion mean value μ(z∗) and the measured value y(z∗) is greater than the pre-set
threshold, this means the current model cannot predict the prediction based on z∗
accurately enough. Therefore, z∗ should be added to I.
If the absolute difference |y(z∗) − μ(z∗)| is small enough, the prediction variance
is also taken into consideration. If the prediction variance σ2(z∗) is smaller than the
pre-set threshold, it can be considered that the model is also confident enough in
its prediction; therefore, there is no need to include the new data. If the prediction
variance is high, the model is not confident in the prediction. This means that the
model does not have enough information in that region; therefore, z∗ should be
added to I.
To summarise, z∗ is added only when the absolute difference between the predic-
tion mean value μ(z∗) and the measured value y(z∗) or the prediction variance
σ2(z∗) is greater than the pre-set thresholds for the mean value and variance,
respectively.
Thresholds can be set heuristically and are, therefore, design parameters. If the
condition is fulfilled, z∗ is added toI using Eq. (2.47). This operation as suchmight
not be necessary, but it avoids any unnecessary updates of I, which improves the
computational efficiency of the algorithm.

Procedure 1: Add(I, z∗, y(z∗))

comment: Prediction of the GP model is calculated

if |y(z∗) − μ(z∗)| > thresholdμ AND σ2(z∗) > thresholdσ2

then

{
comment: Adding z∗ to I using Eq. (2.47)

I ← {I, z∗ }

return (I)

2. InformationGain(I): Calculates the information gain for each element in I.
Actually, it calculates the log-marginal likelihood for each subsetI− of sizeM − 1,
where M is the number of elements in I. It should be noted that this operation is
performed only when the subset I has exceeded the pre-set size L. A higher log-
marginal likelihood means a higher information gain for the processed element
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in I. As calculated for the subset without the data for which the information gain
is to be calculated, it should be inverted. Therefore, it is multiplied by −1, so that
a higher log-marginal likelihood means a lower information gain.
This principle is in its essence the Bayesian information criteria (BIC) [44]:

BIC = −2 ln p(I−|θ) + (D + 2) ln(M)

= −2�̃(I−,θ) + (D + 2) ln(M), (2.49)

where D + 2 is the number of hyperparameters to be estimated.
In the case of a time series, forgetting is also used. It is implemented as exponential
forgetting

�̃(I−,θ) = λi−c · �(I−,θ) (2.50)

where λ ∈ [0, 1] is the forgetting factor, i is the current sequence number, c is the
number of the sequence when the currently considered data was added to I, �̃ is
the log-marginal likelihood considering the exponential forgetting and I− is the
subset of I of size M − 1. The forgetting can be easily turned off by setting λ = 1.

Procedure 2: InformationGain(I)

for i ← 1 to Length(I)

do

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

comment: removing ith element from I using Eq. (2.48)

I− ← {ζ1, . . . , ζi−1, ζi+1, . . . , ζM}
comment: calculating information gain using Eq. (2.50)

iGains[i] ← −�̃(I−,θ)

return (iGains)

3. RemoveWorst(I, iGains): Removes element with the worst
information gain from the set I. It is performed simply using
Eq. (2.48).

Procedure 3: RemoveWorst(I, iGains)

ind ← −1
min ← ∞
for i ← 1 to Length(iGains)

do

⎧
⎨

⎩

if iGains[i] < min

then
{

ind ← i
min ← iGains[i]

comment: removing indth element from I using Eq. (2.48)

I ← {ζ1, . . . , ζind−1, ζind+1, . . . , ζM}
return (I)



2.5 Computational Implementation 75

4. CalcHypVal(I,θ): Hyperparameter values are calculated by maximising the
marginal log likelihood. This can be done with any suitable optimisation method
off-line or with iterative calculations online.
In the off-line case, the evolving method downgrades to the so-called online mod-
elling with a fixed set of input data, examples can be found in [7, 76].
5. UpdateCovMat(I,θ): Updates the covariance matrix when I or θ have
changed.
Updates the covariance matrix and its inversion. If the hyperparameter values have
changed, both the covariance matrix K and its inversion K−1 must be fully recal-
culated. However, in cases when only I has changed, the covariance matrix and
its inversion can be updated more efficiently. The covariance matrix is updated by
appending k(z∗) and kT(z∗) as presented in Eq. (2.51) and removing the ith row
and column if the ith data was removed from I, as shown in Eq. (2.52).

K+ =

⎡

⎢⎢⎢⎣

K1,1 · · · K1,M k1
...

. . .
...

...

KM,1 · · · KM,M kM

k1 · · · kM κ

⎤

⎥⎥⎥⎦ , (2.51)

where k is the vector of covariances between the data in the active dataset I and
the new data z+ and κ is the autocovariance of z+.

K− =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1,1 · · · K1,i−1 K1,i+1 · · · K1,M
...

. . .
...

...
. . .

...

Ki−1,1 · · · Ki−1,i−1 Ki−1,i+1 · · · Ki−1,M

K1+1,1 · · · Ki+1,i−1 Ki+1,i+1 · · · Ki+1,M
...

. . .
...

...
. . .

...

KM,1 · · · KM,i−1 KM,i+1 · · · KM,M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.52)

As the Cholesky decomposition is used for the calculation of the covariancematrix
inversion, it can be updated in a similarway as updating the covariancematrix using
the rank-1 update and downdate operations [130]. First, the Cholesky decomposi-
tion is updated by k(z∗) and later downdated by k(zi) if the ith data was removed
from I, which is relatively efficient (O(M2)).

2.6 Validation

Validation concerns the level of agreement between the mathematical model and the
system under investigation [131] and it is many times underemphasised despite its
importance. The model validation in the context of identification is the phase follow-
ing themodel selection,where the regressors, covariance function,mean function and



76 2 System Identification with GP Models

hyperparameters are selected. Validation is eliminated in a full Bayesian approach
where these elements are not selected by optimisation but integrated out. Never-
theless, the GP model selection, which is based on evidence or marginal likelihood
maximisation, requires this phase too. In validation, we are concerned with evaluat-
ing the performance of the model based on datasets different from those used for the
modelling.

The data that is used for modelling is called identification data, also estimation
data, which are names common to identification literature. An identification dataset
can be, depending on the model used, split into the subset of data used for the
parameters’ estimation, and the subset of data for the structure identification as well
as the model order and regressors. The purpose of this division is to use the other
subset of data for monitoring the performance during the identification for model
structure reduction. The data for evaluating the performance, which is different from
that used for the identification, is called validation data.

This division of data subsets is referred to differently in machine-learning liter-
ature, though the purpose is the same. The data for parameter estimation is called
training data, the data for monitoring the performance is called validation data and
the data used for the validation of the obtained final model is called test data. It
has to be noted that this division can also be met in the literature describing system
identification, e.g. [10].

The concept of splitting empirical data into separate sets for identification and
validation is generally known as cross-validation. An analysis of importance to use
separate sets for validation also in the context of GP classification is done in [132],
but can be generalised also for regression.

The quality of the model that is in the focus of the validation can be represented
by several features. Their overview can be found in [131, 133]. The most important
are the model plausibility, model falseness and model purposiveness, explained as
follows.

Model plausibility expresses themodel’s conformitywith the prior process knowl-
edge by answering two questions: whether the model ‘looks logical’ and whether
the model ‘behaves logical’. The first question addresses the model structure, which
in the case of GP models means mainly the plausibility of the hyperparameters. The
second one is concerned with the responses at the model’s output to typical events
on the input, which can be validated with a visual inspection of the responses, as is
the case with other black-box models.

Model falseness reflects the agreement between the process and themodel’s output
or the process input and the output of the inversemodel. The comparison can bemade
in two ways, both applicable to GP models: qualitatively, i.e. by visual inspection of
the differences in the responses between the model and the process, or quantitatively,
i.e. through the evaluation of the performance measures, some of them listed later in
the section.

Model purposiveness or usefulness tells us whether or not the model satisfies
its purpose, which means the model is validated when the problem that motivated
the modelling exercise can be solved using the obtained model. Here, again, the
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prediction variance can be used, e.g. when the prediction confidence is too low, the
model can be labelled as not purposive.

As already mentioned in Sect. 2.1, various purposes are served with two sorts of
models: for prediction, i.e. one-step-ahead prediction, and for simulation. Section2.3
described different model structures in this context. Nevertheless, it is a very com-
mon practice to train the model for prediction and to call out its purpose during
the validation, where especially the dynamic system model is often validated for
simulation.

The cross-validation concept requires a relatively large amount of data. This is
provided by properly designed experiments, which are, commonly, repeated if the
amount of data does not correspond to the modelling needs. That is why the exper-
iment design and the experiments themselves are very important parts of system
identification.

However, for cases where the amount of empirical data is limited and new exper-
iments cannot be pursued, methods have been suggested that seek to maximise the
exploitation of the available data.A lot of research to solve this problemhas been done
in machine learning. Here, we highlight only some more frequently used methods
for the more efficient use of the identification data.

One such method is k-fold cross-validation where the available empirical data is
partitioned into k data subsets. Each subset is then used in turn as a dataset for the
evaluation of the model trained on the other k − 1 data subsets. The overall error rate
is taken as the average of these k data subset evaluations.

The extreme version of the k-fold cross-validation is when only a single obser-
vation, data piece, of the overall data is to be left out and used as an evaluation
example. The remaining data is used for training. The method is called leave-one-
out-validation (LOO). It is a method that can be used for small datasets.

While GP model validation in the context of one-step-ahead prediction is elab-
orated already in [49], where marginal likelihood is discussed in detail, cross-
validation, especially leave-one-out cross-validation (LOO-CV), is described. The
expression ‘validation’ in the listed terms is used here in the machine-learning sense
and not in the system identification sense, where the validation data is a separate and
fresh dataset.

We have mentioned that model falseness can be evaluated with different perfor-
mance measures. There exists an abundance of performance measures, each suited
for a different purpose with the emphasis on a different property and with different
expressiveness. Here we list only a few that serve our purposes.

A commonly used performance measure, especially when the model is identified
using a method that is based on a square error, is the mean-squared error (MSE):

MSE = 1

N

N∑

i=1

(yi − E(ŷi))
2, (2.53)
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where yi and ŷi are the system’s output measurement, i.e. observation and model’s
output in ith step, respectively. The model’s output can be, based on investigation, a
posterior probability distribution of a prediction or a simulation.

The measure that normalises the mean-squared error between the mean of the
model’s output and the measured output of the process by the variance of the output
values of the validation dataset is the standardised mean-squared error (SMSE):

SMSE = 1

N

∑N
i=1(yi − E(ŷi))

2

σ2
y

, (2.54)

where yi and ŷi are the system’s output measurement, i.e. observation and themodel’s
output in the ith step.

The mean relative square error (MRSE) is calculated by taking the square root of
the measure MSE divided by the average of output measurements:

MRSE =
√√√√

∑N
i=1(yi − E(ŷi))2∑N

i=1 y2i
. (2.55)

Some authors call this performance measure the relative-root-mean-square error
(RRMSE).

The performance measures described with Eqs. (2.53)–(2.55) deal with the mean
values of outputs and do not take the entire output distribution into account.

The performance measures such as the log predictive density error (LPD)
[134, 135] can be used for evaluating GP models, taking into account not only
the mean of the model prediction, but also the entire distribution:

LPD = 1

2
ln(2π) + 1

2N

N∑

i=1

(
ln(σ2

i ) + (yi − E(ŷi))
2

σ2
i

)
(2.56)

whereσ2
i is themodel’s output variance in the ith step. The performancemeasureLPD

weights the output error E(ŷi) − yi more heavily when it is accompanied by a smaller
output varianceσ2

i , thus penalising the overconfidentmodel’s output valuesmore than
the acknowledged bad model’s output values, indicated by a higher variance.

The mean standardised log loss (MSLL) [49] is obtained by subtracting the loss
of the model that predicts using a Gaussian with the mean E(y) and the variance σ2

y
of the measured data from the model LPD and taking the mean of the obtained result

MSLL = 1

2N

N∑

i=1

[
ln(σ2

i ) + (yi − E(ŷi))
2

σ2
i

]
− 1

2N

N∑

i=1

[
ln(σ2

y ) + (yi − E(y))2

σ2
y

]
.

(2.57)

The MSLL is approximately zero for simple models and negative for better ones.
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The smaller the listed measures are, the better the model response is, irrespective
of whether it is a prediction or simulation.

The variance of the GP model predictions on a validation signal can be a plausi-
bility measure itself, as it indicates whether the model operates in the region where
the identification data were available. Nevertheless, it should be used carefully and
in combinations with other validation tools, as predictions with a small variance are
not necessarily good, as will be shown in the example at the end of this chapter.

To avoid the computational complexity of cross-validation, alternative methods
of evaluating validation errors have been developed. These include the use of various
information criteria methods, such as the final prediction error information criterion,
or Akaike’s information criterion [44], where the normalised log likelihood is used
as the prediction error criterion

AIC = −2 ln(p(D|θML)) + 2n, (2.58)

where n is a number of adjustable parameters in the model and θML is the maximum
likelihood solution for θ, or Akaike’s Bayesian information criterion [44] that uses
the marginal likelihood of the observed data D given the model:

BIC = −2 ln(p(D|θMAP)) + n lnN, (2.59)

where N is the number of data and θMAP is the value of θ at the mode of the posterior
distribution. Statistical hypothesis tests can also be used for the model validation.
See [2] or [10] for more information on these validation strategies.

The quality of the obtained model can also be evaluated based on a residual
analysis. Residuals are the differences between the most likely model’s output values
and the measured output values of the system to be modelled. Residual analysis [2] is
evaluating statistics of residuals like correlation tests, whiteness tests and analyses of
average generalisation errors. It is often used with methods that are concern mainly
with the model’s posterior mean values.

The authors of [12] discuss methods for the validation of prediction models in the
context of neural networks with the residual analysis. They also provide a discussion
on the visualisation of predictions, which is also a useful method with the validation
of simulation models.

Criteria that are concerned mainly with the model’s posterior mean values do
not take account the entire posterior distributions as in a fully Bayesian approach
[44, 49], which is explained in Sects. 1.1 and 2.4.1.

Since a more than fair portion of dynamic system models is validated for simula-
tion purposes, the next section is devoted to the implementation of amodel simulation
in the context of GP models.

http://dx.doi.org/10.1007/978-3-319-21021-6_1
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2.7 Dynamic Model Simulation

The simulation of dynamic systemmodels can be used for the evaluation of themodel
behaviour or for the model validation. Simulation is a multistep-ahead prediction
when the number of steps in the prediction horizon is infinite or at least as large as
the time horizon of interest for the foreseen analysis of the model’s behaviour.

There are two implementation options for the simulation or multistep-ahead pre-
diction:

• a direct method, where different models are learnt for every perceived horizon h or
• an iterative method, where the one-step-ahead prediction is iteratively repeated.

The problemof the directmethod is that the horizon needs to be known andfixed in
advance. In the case that the horizon is changed, themodel, or bettermodels, has to be
learnt again. The second issue with the direct method is that highly nonlinear systems
need a large horizon and, consequently, a large amount of learning data [135]. An
example of using the direct method for multistep-ahead prediction is given in [66].

The iterative method for Gaussian process models of dynamic systems means
that the current output estimate depends on previous model estimations and on the
measured inputs.

ŷ(k) = f (ŷ(k − 1), ŷ(k − 2), . . . , ŷ(k − n), u(k − 1), u(k − 2), . . . , u(k − m)),

(2.60)

where the regression vector is composed of the previous model estimations ŷ and
measured input values u up to a given lag. The model is therefore treated as a model
with a NOE structure.

When only the mean values of the model predicted values are fed back, the sim-
ulation is named naive. However, when we want to obtain a more realistic picture
of the dynamic model multistep-ahead prediction, we have to take into account the
uncertainty of future predictions, which provide the ‘input data’ for estimating fur-
ther means and uncertainties. A partial overview of the results given in [136] is given
as follows.

In the case of a multistep-ahead prediction, we wish to make a prediction at z∗, but
this time the input vector z∗ contains uncertain input values fed back from the outputs.
Within a Gaussian approximation, the input values can be described by the normal
distribution z∗ ∼ N (μz∗ , �z∗), where μz∗ and �z∗ are the vector and the matrix of
the input mean values and variances, respectively. To obtain a prediction, we need
to integrate the predictive distribution p(y∗|z∗,D) over the input data distribution,
that is

p(y∗|μz∗ ,�z∗ ,D) =
∫

p(y∗|z∗,D)p(z∗)dz∗, (2.61)

where

p(y∗|z∗,D) = 1√
2πσ2(z∗)

exp

[
− (y∗ − μ(z∗))2

σ2(z∗)

]
. (2.62)
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Since p(y∗|z∗,D) is in general a nonlinear function of z∗, the new predictive distrib-
ution p(y∗|(μy∗ ,�y∗ ,D)) is not Gaussian and this integral cannot be solved without
using an approximation. In other words, when the Gaussian distribution is propa-
gated through a nonlinear model, it is not a Gaussian distribution at the output of the
model.

Approximations can be roughly divided into numerical methods, for example
Monte Carlo methods, and analytical methods.

2.7.1 Numerical Approximation

Eq. (2.61) can be solved by performing a numerical approximation of the integral,
using a simple Monte Carlo approach:

p(y∗|μz∗ ,�z∗ ,D) ≈ 1

S

S∑

i=1

p(y∗|z∗i,D) (2.63)

where S is a number of samples and z∗i is a sample from the input data distribution
p(z∗). The output distribution is therefore not a Gaussian, but can be seen as a
Gaussian mixture:

p(y∗|μz∗ ,�z∗ ,D) ≈ 1

S

S∑

i=1

N (μ(z∗i),σ2(z∗i)). (2.64)

When applying this approximation in a simulation, itmeans that in every following
time step it can happen that we sample a more complicated Gaussian mixture, so
the algorithm has to be implemented efficiently. See [135] for hints on an efficient
numerical implementation for multistep-ahead prediction.

Other numerical approximations that have been used for the uncertainty prop-
agation, mainly in the context of state-space models, are sequential Monte Carlo
methods, e.g. [20, 26, 28].

2.7.2 Analytical Approximation of Statistical Moments
with a Taylor Expansion

In order to achieve computational simplicity, an analytical approximation that con-
sists of computing only the first two moments, namely, the mean and variance of
p(y∗|z∗,D) can be used.

The mean and variance of the predictive distribution which in general is a non-
Gaussian predictive distribution, are approximated with a Gaussian approximation,
such that
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p(y∗|μz∗ ,�z∗ ,D) ≈ N (μ∗,σ2∗). (2.65)

The predictive mean and variance at the model’s output corresponding to a noisy
input value z∗ are obtained by solving [136]

μ∗ = E(μ(μz∗)), (2.66)

σ2∗ = E(σ2(μz∗)) + var(μ(μz∗))

= E(σ2(μz∗)) + E(μ2(μz∗)) − (E(μ(μz∗)))2, (2.67)

where μ(μz∗) and σ2(μz∗) denote the mean and variance of the Gaussian predictive
distribution in the case when there are no uncertain input values, respectively.

Instead of working with the expressions of μ(μz∗) and σ2(μz∗), Eqs. (2.66) and
(2.67) are solved by approximating directly μ∗ and σ2∗ using their first- and second-
order Taylor expansions, respectively, around μz∗ . The second-order expansion is
required in order to get a correction term for the new variance. This is a relatively
rough approximation.

Consequently, within a Gaussian approximation and a Taylor expansion μ∗ and
σ2∗ around z∗ = μz∗ , the predictive distribution is again Gaussian with a mean and
variance [136]

μ∗ = E(μ(μz∗)) ≈ k(μz∗)TK−1y, (2.68)

σ2∗ = E(σ2(μz∗)) + var(μ(μz∗))

≈ σ2(μz∗) + 1

2
tr

(
∂2σ2(z∗)
∂z∗∂z∗T

∣∣∣∣
z∗=μz∗

�z∗

)

+ ∂μ(z∗)
∂z∗

∣∣∣∣
T

z∗=μz∗
�z∗

∂μ(z∗)
∂z∗

∣∣∣∣∣
z∗=μz∗

. (2.69)

Equations (2.68) and (2.69) can be applied in a calculation of the multistep-ahead
prediction with the propagation of uncertainty. For a more detailed derivation, see
[136] and for further details see Appendix B.

2.7.3 Unscented Transformation

The unscented transformation also does not make assumption about the structural
nature of the model. It estimates the posterior distribution applying a given nonlinear
transformation to a probability distribution that is characterised only in terms of a
mean value and covariance.

The unscented transformation takes a finite number of ‘sigma points’ with the
same statistical moments as the input probability distribution, and then maps these
sigma points through the mean of the probabilistic dynamics model to obtain the
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transformed set of points. Themean and covariance are then set to that of theweighted
statistics of the transformed dataset to give an unbiased prediction.

More details of applying the unscented transformation and GP models in the
context of state-space models and Kalman filtering are in [27].

2.7.4 Analytical Approximation with Exact Matching
of Statistical Moments

The alternative approach to approximation is that instead of an approximation of the
entire mean and variance, only the integral of Eq. (2.61) is approximated. A simula-
tion with this kind of approximation is named exact. In every time step, the model
prediction is based on stochastic input data that has a normal distribution and the
prediction is a Gaussian mixture, which is approximated with a normal distribution,
as depicted in Fig. 2.23 [51] for the case of one input variable for demonstration
purposes.
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Fig. 2.23 GP prediction at a stochastic input variable. The input distribution p(z) is the figure
on the bottom right. The figure on the right shows the mean function (full line) and the 95%
confidence interval (shaded) based on the training data points (points with zero confidence interval
in the figure). To determine the expected function value, we average over both the input distribution
(bottom right) and the function distribution (GP model). The shaded distribution represents the
exact distribution over the function values. The exact predictive distribution (dashed line in the left
figure) is approximated by a Gaussian (full line in the left figure) that possesses the mean and the
covariance of the exact predictive distribution (known as moment matching)
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The expressions for mean and variance are Eqs. (2.66) and (2.67):

μ∗ = E(μ(μz∗)),

σ2∗ = E(σ2(μz∗)) + var(μ(μz∗))

= E(σ2(μz∗)) + E(μ2(μz∗)) − (E(μ(μz∗)))2.

which can be derived further using

E(ζ(z∗)) =
∫

ζ(z∗)p(z∗)dz∗ (2.70)

for each of the components in Eqs. (2.66) and (2.67), with ζ(z∗) denoting a particular
component of these equations.

μ∗ =
∫

μ(μz∗)p(z∗)dz∗

=
∫

k(z∗)K−1yp(z∗)dz∗, (2.71)

σ2∗ =
∫

(κ(z∗) − kT(z∗)K−1k(z∗))p(z∗)dz∗

+
∫

kT(z∗)K−1yyT(K−1)Tk(z∗)p(z∗)dz∗

− (μ∗)2. (2.72)

The exact derivations for particular covariance functions can be found in [135]. The
final results for the case of single and multiple outputs for squared exponential and
linear covariance functions can be found in Appendix B.

Predictions for a sparse GP, namely, the FITC, also named SPGP, method in the
case of uncertain, i.e. stochastic, input values are introduced in [137] and for the SoR
and DTC methods, together with other predictions for stochastic methods in [138].

2.7.5 Propagation of Uncertainty

The iterative, multistep-ahead prediction is made by feeding back the mean of the
predictive distribution as well as the variance of the predictive distribution at each
time step, thus taking the uncertainty attached to each intermediate prediction into
account. In this way, each input variable for which we wish to predict becomes a
normally distributed random variable. Nevertheless, this is an approximation of the
Gaussian mixture at the output of the model. The illustration of such a dynamic
model simulation is given in Fig. 2.24.
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Fig. 2.24 Block scheme of dynamic system simulation with the iterative method where variance
is propagated through the model

These results presume the iterative method, where a one-step-ahead prediction is
iteratively repeated. Note that when predicting ahead in time and propagating the
uncertainty, the exogenous inputs u are usually assumed to be known and are treated
like a deterministic approach. This is also the situation shown in Fig. 2.24. However,
the following explanation is general and presumes stochastic input variables.

As with [139], in the case of function observations only, we can predict h steps
ahead and propagate the uncertainty of the successive predictions by considering each
feedback data y(k + h − i) as aGaussian randomvariable, resulting in anD × 1; D =
n + m input into the model z(k + h) = [y(k + h − 1), . . . , y(k + h − n), u(k + h −
1), . . . , u(k + h − m)]T ∼ N (μz,�z) at each time step with the mean

μz =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

μy(k + h − 1)
...

μy(k + h − n)

μu(k + h − 1)
...

μu(k + h − m)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.73)
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and the covariance matrix

�z =
⎡

⎢⎣
var(y(k + h − 1)) · · · cov(u(k + h − m), y(k + h − 1))

...
. . .

...

cov(y(k + h − 1), u(k + h − m)) · · · var(u(k + h − m))

⎤

⎥⎦ ,

(2.74)

where the mean values and variances for each entry are computed using one of the
approximation methods described beforehand with the equations given in Appen-
dix B.

In general, at time sample k + l, we have the random input vector z(k + l)
= [y(k + l − 1), . . . , y(k + l − n), u(k + h − 1), . . . , u(k + h − m)]T ∼ N (μz,�z)

with the vector of means μz formed by the mean of the predictive distribution
of the lagged output data and input data y(k + l − τ ), τ = 1, . . . , n; u(k + l − τ ),
τ = 1, . . . , m and the diagonal elements of the D × D; D = n + m input covariance
matrix�z containing the corresponding predictive covariances. The cross-covariance
terms cov(y(k + l − i), u(k + l − j)), for i, j = 1, . . . , D with i �= j, are obtained
by computing cov(y(k + l), z(k + l)), disregarding the last, the oldest element of
z(k + l):

cov(y(k + l), z(k + l)) = E(y(k + l)z(k + l)) − E(y(k + l))E(z(k + l)). (2.75)

Again, the equations for calculating the cross-covariances can be found in Appen-
dix B.

2.7.6 When to Use Uncertainty Propagation?

The uncertainty propagation seems to be an issue mainly with two applications of
GP models. The first one is the simulation of dynamic system and the second one is
the inference of state-vector distribution in GP state-space model.

In the case of GP state-spacemodel of nonlinear systems, the uncertainty propaga-
tion is inevitable to get usable approximation of state-vector distribution. Therefore,
the rest of this discussion is devoted to uncertainty propagation in the case of the
dynamic system’s simulation.

A simulation is of major importance as the validation tool for systems identifica-
tion. However, as the uncertainty propagation extension to the GPmodelling method
adds a considerable level of complexity, it is worth discussing when uncertainty
propagation is best employed.

The uncertainty propagation usually has an effect to the shape of the predictive
distribution. It mainly affects, usually increases, its variance, because the predic-
tive distribution becomes wider. Nevertheless, it also affects the mean value. The
examples presented in [134, 135, 140] show that the differences between the means
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of naive and non-naive cases are usually not huge. It is difficult to argue for the
inclusion of uncertainty propagation purely for the sake of improving the quality of
the mean prediction. Nevertheless, the computational load for uncertainty propaga-
tion is considerable when a model with a large input dataset is employed.

The trade-off between the computational load and the accuracy of the predictive
distribution is certainly of importance for an engineer using GP models for dynamic
systems identification. The GP modelling approach results in models with an output
estimate in the form of a predictive distribution. Through the variance of this output
distribution, the GP model becomes more informative. The question is, however,
whether we are interested in a precise quantitative value of the predicted variance or
we are more interested in qualitative information that the predicted variance carries.

This issue is closely related to the issue of purposiveness of the dynamic system
model. In the case that the accurate model multistep-ahead prediction means and
variances are of importance for the accuracy of the final product for which the model
is developed, then the computational load needs to be taken into account. In general,
implementing uncertainty propagation would increase the robustness of the model’s
response. Thismeans that the increased variance, and improvedmean value, obtained
with the uncertainty propagation might have a greater chance of enveloping the real
response. Such cases would be some cases of predictive control where the mismatch
between the model predictions and the real system response makes a difference in
the optimisation of future control input values.

On the other hand, when the dynamic system model’s predictive variances are
used to determine whether the system’s output values are predicted outside the region
where the identification dataset was available, the qualitative information about the
predicted variance’s magnitude already serves the purpose. Therefore, the concept of
taking into account the uncertainty of the input values and propagating uncertainty
for subsequent predictions would not seem to be sensible for applications where the
focus is on predicted mean values.

A possible rule of thumb for uncertainty propagation use with the dynamic sys-
tem’s simulation is that the use is decided upon the importance of the exactness of
the variance’s magnitude. If the variance is to be actively employed in some manner,
such as in the design of control systems, the uncertainty propagation may prove to
be an important addition. In general, for a lot of the dynamic system’s application
for engineering purposes, a naive simulation will do.

2.8 An Example of GP Model Identification

Example 2.3 (Bioreactor identification) The purpose of this example, adapted from
[141], is to demonstrate the GPmodel identification procedure with a special empha-
sis on the utility of the prediction variance and other GP model-specific measures
for the model validation. The example illustrates how the model is selected. The
selected model is then used to demonstrate the influence of increased noise variance
on the system’s output, the behaviour of the model prediction in unmodelled regions
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and the behaviour of the model when a new, unmodelled input is introduced to the
system.

A second-order discrete bioreactor model [142, 143] is taken as the system to be
identified for demonstration purposes. With the selection of discrete model, the issue
of sampling time selection is avoided. In the bioreactor, the microorganisms grow
by consuming the substrate.

The bioreactor is given as discrete second-order dynamic system [142] with the
sampling time Ts = 0.5 s:

x1(k + 1) = x1(k) + 0.5
x1(k)x2(k)

x1(k) + x2(k)
− 0.5u(k)x1(k)

x2(k + 1) = x2(k) − 0.5
x1(k)x2(k)

x1(k) + x2(k)
− 0.5u(k)x2(k) + 0.05u(k) (2.76)

y(k) = x1(k) + ν(k)

where x1 is the concentration of the microorganisms and x2 is the concentration of
the substrate. The control input u is the output flow rate, which is limited between
0 ≤ u(k) ≤ 1. The output of the system y is the concentration of microorganisms,
which is corrupted bywhite Gaussian noise ν with a standard deviation σν = 0.0005.
Our task is to model this system with the GP model and validate the acquired model.
The purpose of the model is the simulation of the bioreactor.

In the experiment design, two separate identification and one validation input
signals are acquired, from which the identification and validation data are sampled.
Two separate identification signals are acquired so that one is used for the hyperpa-
rameter estimation and the other with structure, regressors and covariance function
selection. To acquire the first set of identification data, the system described with
Eq. (2.76) is excited with the signal u in the form of 4-seconds-long stairs with ran-
dom amplitude values between 0 ≤ u(k) ≤ 0.7. The second set of identification data
is obtained with the same kind of signal, but with stairs that last longer. Note that
the upper limit of both input signals is chosen so that a part of the operating region
remains unmodelled. Before the identification of the models, the signals are nor-
malised around a constant mean value, so that they had a maximum value of one and
a minimum value of minus one. From the normalised signals, 602 training points
are composed. Later, when the identification results are presented, the data will be
scaled into the original range and a constant value for the mean function is added.

The GP-NARX model structure is used for the model identification. The ith train-
ing point at the sample step k for the nth-order GP model is composed from the input
regressors:

zi = [y(k − 1), . . . , y(k − n), u(k − 1), . . . , u(k − m)]T

and the output value yi = y(k), where u and y are normalised input and output signals.
The GP-NOE model structure is going to be used for validation due to the model’s
purpose.
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The squared exponential covariance function with the ARD property described
with Eq. (2.14) is selected as the initial covariance function that is used for the
regressor selection procedure. The ARD property of the selected covariance function
ensures that different length scales on different regressors can be used to assess the
relative importance of the contributionsmade by each regressor through a comparison
of their lengthscale hyperparameters.

Cf (zi, zj) = σ2
f exp

[
−1

2
(zi − zj)

T�−1(zi − zj)

]

= σ2
f exp

[
−1

2

D∑

d=1

wd(zdi − zdj)
2

]
,

where wd = 1
l2d
; d = 1, . . . , D. The reason behind the selection of the squared expo-

nential covariance function is that we do not knowmuch about the mapping between
the input and the output data. Nevertheless, the prior knowledge about most phys-
ical systems, among which is the bioreactor, is that the mapping can be modelled
with stationary and smooth covariance functions. As we will see later the validation
results confirm this prior knowledge.

The regressor selection is done with validation-based regressor selection [144]
on the second set of data for identification, i.e. where a low-order model is expected
based on prior knowledge of the process. The fourth-, third- and second-ordermodels
are evaluated with a simulation to obtain an appropriate set of regressors.

All three initial GP models with the same number of delays in the input and
output values used for regressors, i.e. n = m, are evaluated with a simulation, where
the second identification dataset as well as the validation dataset is obtained by
simulating the system described with Eq. (2.76) using a different input signal u than
for obtaining the first set of identification data.

The results of the regressor selection procedure can be seen in Table2.3. The log
likelihood of the identifiedmodel �1 described with Eq. (2.32) is used as the objective
function for optimisation during the identification and performancemeasures SMSE,
Eq. (2.54) and MSLL, Eq. (2.57), are used for the validation of the simulated model
on the second set of identification data and on the validation data. The model has
been tested with a naive simulation and with a simulation based on the Monte Carlo
numerical approximation. The same conclusions can be drawn from the results of
both methods, because the obtained numerical results do not differ significantly. The
figures presented in the continuation show the results of the naive simulation.

From the performance measures used on the identification results, shown in the
first three rows of Table2.3, it can be seen that the differences between the identified
models in terms of the SMSE andMSLL values evaluating the model simulations on
the second set of data are slightly significant. The results on the second set of data
which have not been used for the hyperparameters estimation favour a simplermodel.
The second-order model is also favoured by the principle of Occam’s razor [49],
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Table 2.4 Values of log-marginal likelihood �1 for the prediction results on the first set of iden-
tification data and simulation performance measures for the second set of identification data for
different covariance functions with the best measure values in bold

2nd order model Ident. data

Covariance function �1 SMSE2 MSLL2

Squared exponential +
ARD

1603 7.8 × 10−4 −3.57

Matérn + ARD d = 3
2 1591 7.2 × 10−4 −3.54

Rational quadratic +
ARD

1603 4.1 × 10−3 −3.31

Linear + ARD 1281 1.7 × 10−2 −1.46

Matérn d = 3
2 1587 1.2 × 10−3 −2.03

Matérn d = 5
2 1597 1.7 × 10−3 −1.58

Neural network 1596 5.2 × 10−3 −1.00

Squared exponential 1600 1.6 × 10−3 −1.35

stating that the most simple explanation for the given problem should be used. The
results obtained on the validation data confirm these results.

The hyperparameters lzi reflect the relative importance of the regressors z(k − i)
and in all the model structures the regressor y(k − 1) exhibits a lower importance due
to the large value of the associated hyperparameter ly1 . The removal of this regressor
from the selected second-order model results in even better results. Note that the
variance of modelled noise is likely to be a small amount greater than the ground
truth. This effect is related to errors-in-variables problem.

This regressor selection procedure led us to the GP model with the following
regressors: y(k − 2), u(k − 1), u(k − 2).

Covariance function selection is illustrated with Table2.4, where the same perfor-
mance measures as for the regressors’ selection are gathered for different covariance
functions with and without the ARD property for the second-order model.

The squared exponential covariance function and Matérn covariance function
with the ARD property have the best results from the tested covariance functions.
Consequently, the squared exponential covariance function with the ARD property
is kept for the model.

The model validation is pursued with the dynamic model simulation according to
the purpose of the model. The naive simulation is selected in our case, because no
special accuracy needs are expressed for the posterior variance in the model purpose
and the obtained accuracy for mean values is acceptable. In this way, we are avoiding
computational complexity due to the propagation of uncertainty through the model,
at the cost of only a slightly lower accuracy for this case.

The simulation results on the validation data for the selected second-order model
can be seen in Fig. 2.25, where the model’s output and the noise-free target are
depicted. It can be seen that most of the time the value of the predicted standard
deviation σn is around 5 × 10−4, corresponding to the noise level present at the
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Fig. 2.25 Validation with simulation for the bioreactor GP model, |e| is the absolute value of the
error between the predicted mean and the true values

system’s output. The prediction variance increases at the steps where the input vari-
able u changes its value due to the small number of training points describing those
regions. Note that the error of the model’s predicted mean values remains inside the
95% confidence limits, defined within ±2σ, indicating the level of trust that can be
put in the prediction.

These model validation results will serve as the reference for the observation of
how different conditions can influence the model prediction and validation.

First, it will be shown how the model prediction changes when the model reaches
the unmodelled region of the system. As there is no identification data available
nearby, themodelmust extrapolate from the data describing the neighbouring regions
and the prior mean function in order to make the predictions. This worsens the
prediction mean, but is also accompanied by an increase of the prediction variance,
thus widening the model’s confidence limits. This effect can be observed in Fig. 2.26,
where the values of the control input were increased above the u(k) > 0.7 at time
t > 12 s.

Second, we would like to show how the increase in the system’s output noise
variance reflects in the identified model. For this purpose, the standard deviation of
the system’s output noise was increased to σν = 2 × 10−3. The set of control input
signals, used for generating the identification and validation data, is the same as in
the reference example. The second-order GP model is identified. The values of the
GP model’s hyperparameters can be seen in Table2.3.
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Fig. 2.26 GP model prediction in the unmodelled region

Themeanmodel prediction is satisfactory and the prediction variance is increased
at the expense of a higher output noise variance being predicted, as can be observed
from the simulation results on the validation data in Fig. 2.27. The estimation of the
system’s output noise is satisfactorily close to the real value, i.e. σn = 2.1 × 10−3,
which also shows that the value of the hyperparameter σ2

n tends to the value of the
system’s output noise when enough identification data is used. The value of SMSE
is slightly worse than in the reference example, as this model is identified with more
noise present in the identification, i.e. training, data. Also, the value of MSLL is
slightly worse as, despite the increased variance, the influence of the prediction error
prevails.

Finally,wewould like to showhow the unmodelled regressor influences themodel.
For this purpose, an additional control input signal v, not correlated to the input signal
u, was added to the system. The effect of this unmeasured input variable is the same
as the effect of the control input signal u and could represent an additional outlet or
leak of the system described with Eq. (2.76), which changes the description to

x1(k + 1) = x1(k) + 0.5
x1(k)x2(k)

x1(k) + x2(k)
− 0.5u(k)x1(k) − 0.5v(k)x1(k)

x2(k + 1) = x2(k) − 0.5
x1(k)x2(k)

x1(k) + x2(k)
− 0.5u(k)x2(k)

− 0.5v(k)x2(k) + 0.05u(k) + 0.05v(k)

y(k) = x1(k) + ν(k)

(2.77)



94 2 System Identification with GP Models

5 10 15 20 25 30 35 40 45 50 55 60
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time [s]

R
es

po
ns

e

Simulation result with more noise in identification signal, σν = 0.002

± 2σ
predicted mean
process response

5 10 15 20 25 30 35 40 45 50 55 60
0

0.005

0.01

Time [s]

|e
|, 

2σ

2σ
|e|

Fig. 2.27 Influence of the increased system’s output noise variance on the GP model

The reference GP model is used for the simulation, where the input signal v is not
present and therefore neglected for the identification of the model. The control input
signal in the form of a step v = 0.05 is introduced into the system at the simulation
time 30 s. The (non)influence of the unmodelled input signal on the prediction vari-
ance, when the model operates in the region with sufficient identification data, can
be seen in Fig. 2.28. The model’s simulation response from time t = 30 s worsens,
but the 95% confidence interval remains tight. This example shows that the vari-
ance, obtained with the model simulation, cannot be informative with respect to the
unaccounted influences on the system in the identification data. Note that the results
are different if the model prediction is pursued instead of the model simulation.

With the bioreactor example, the following properties of the GP model have been
illustrated:

1. The hyperparameters’ ARDproperty can be effectively used to reduce the number
of regressors of the identified model.

2. There are two possible causes for the increase of the prediction variance:

• the particular region of the system, where the model makes predictions, is
described with insufficient identification data; and

• the data describing particular regions contains more noise. In the example,
this has been shown for the whole region, but the same applies when the noise
is increased only in part of the system’s operating region.
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Fig. 2.28 Influence of the unmodelled input signal on the GP model prediction

These two causes cannot be easily distinguished without prior knowledge about
the identified system.

3. When the unmodelled influence is introduced to the system, the model simulation
response, including the variance, does not change.
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Chapter 3
Incorporation of Prior Knowledge

This chapter is devoted to the topic of incorporating prior knowledge into GPmodels.
The theory of dynamic systemsmodelling is mainly devoted to white-boxmodels,

i.e. first-principles models, or black-box models that are models identified from data.
Moreover, engineering practice is usually between these two extreme cases. In prac-
tice, grey-box models are frequently used, with these grey-box models having very
different levels of prior knowledge incorporated. The rest of the missing information
is obtained from the data.

From this point of view, it is important to know how a certain method can allow
prior knowledge to be incorporated. Various forms of prior knowledge can be incor-
porated into GP models.

3.1 Different Prior Knowledge and Its Incorporation

A GP model, as we have seen in the previous chapter, needs prior knowledge, prior
in short, in the different levels of inference to make the modelling procedure most
effective. The first priorwe have to place is the knowledge of the distributions over the
function we expect to model in the form of mean function and covariance function.
This prior over models can rule out or in certain models that might or might not be
optimal for the data at hand.

There are further kinds of prior knowledge used in the modelling process that are
not inherent only to GP modelling, but also general with respect to the identification
procedure. The selection of experiments, input datasets, preprocessing andmodelling
methods are only a few examples of prior knowledge that come together with the
modelling process itself.
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Yet another possibility is a combination of GP models with other kinds of models
to provide different forms of hybrid models. GP models may complement white-box
models as a supplement for parts of amodel, e.g. in [1] or [2], as amodel of stochastic
input, known as latent force model (LFM), e.g. in [3] or [4], or as a model of residuals
from white-box models, e.g. in [5] or [6].

The most of this chapter is devoted to kinds of prior knowledge, which have not
yet been elaborated up to this point, but can be important for a nonlinear systems
modelling process in practice.

A trainedGPmodel carries information about the observed system in the following
elements:

• input–output data D = {(Z, y)}, describing the input–output behaviour of the
system,

• the covariance function, which expresses the correlation between the data,
• the mean value of the input–output modelling function.

While the mean value selection has been elaborated in Sect. 2.4.4, this chapter is
devoted to two other possibilities for prior knowledge incorporation into the GP
model. The first possibility is either to change or to add extra data to the input–
output data set D. The second possibility is to appropriately change the covariance
function, so it expresses our different, stronger, prior beliefs about the system. This
enables the incorporation of useful knowledge regarding the dynamics of a system
into a probabilistic learning framework.

Further possibilities for prior knowledge incorporation exist, and examples are
given in [7].

3.1.1 Changing Input–Output Data

The first mentioned possibility for prior information incorporation is to change the
input–output data D in which the behaviour of the unknown system is contained in
explicit form, i.e. the system’s output as a function of the corresponding values of
regressors. There are several possibilities:

• Extra data points {(zi , yi )} can be added, reflecting some prior knowledge. Exam-
ples of these are static characteristics, e.g. equilibrium curves or hyperplanes, or
some boundary conditions, like hard constraints where a process has reached its
limits.

• A new regressor can be added to already-selected regressors, increasing the input
dimension of the model. Into this regressor, additional information about every
training data point in the data D is encoded, e.g. the state of the hysteresis of the
system for a particular training point (zi , yi ), as was given in [8, 9]. The selection
of regressors may be used to exercise the prior knowledge in nonlinear systems’
identification in general, not just for GP models.

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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Example 3.1 (Incorporation of known static characteristic)This example is intended
to show how easily the prior knowledge about a static characteristic can be incorpo-
rated into a GP model. The first-order nonlinear system [10]:

y(k + 1) = y(k)

1 + y2(k)
+ u(k)3 (3.1)

is utilised to illustrate themodelling. The sampling time Ts = 1s. The regressors u(k)

and y(k) are used for the modelling. An input signal of 30 points is generated first
with a random generator using no hold time. The input signal from which regressors
are generated is shown in Fig. 3.1 in the top-left figure. The validating simulation
response of the GPmodel of the system described with Eq. (3.1) and identified based
on these points is depicted in Fig. 3.1 in the top-right figure. It is clear that the
model has problems matching the behaviour of the original system, especially in the
stationary states.

Thirteen points of a known static input–output characteristic are then simply added
to the input and target vectors. These can be seen in Fig. 3.1 in the bottom-left figure.
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Fig. 3.1 Samples, marked by dots, taken from the input signal used for identification (top left) and
simulation response of the GP model to validation of the input signal (top right); samples, marked
by dots, from the static input–output characteristic that are concatenated to input and target data
(bottom left) and the simulation response of the GP model with the included prior knowledge to the
validation input signal (bottom right)
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The validation simulation of the GPmodel obtained with prior information about the
static characteristic is depicted in Fig. 3.1 in the bottom-right figure. The GP model
now behaves much better near the given stationary states.

3.1.2 Changing the Covariance Function

The role of the covariance function is to correlate the data constituting the GPmodel.
Our a priori knowledge is expressed through the choice of the covariance-function
family. The squared exponential function described with Eq. (2.13) or (2.14), for
example, is the most widely, sometimes blindly, used covariance function employed
for functional representation, as it represents common prior beliefs like the station-
arity and the smoothness of the prior GP model, and it is fairly easy to use. However,
if it is already known that the unknown system has some other properties that we
would like to express with the covariance function, like periodicity, non-stationarity,
it could be a good idea to choose the covariance function from a different function
family, see, e.g. [11] or [12] for the latter case.

Another possibility is to change the nature of the data in the input–output data
D so that it represents the derivative instead of the functional information. As the
derivative of the GP remains a GP [13], this is allowed if we appropriately adapt
the covariance function for the derivative data. This can be generalised to any linear
operation and is presented in a general form in [14]. We restrict our attention to the
derivative information since this is themost useful in the context of dynamic systems.

An example of the incorporation of derivatives is the knowledge of the state vari-
ables that are time derivatives of other state variables. Such an example is described
in [15].

Another example of including data with the derivative information is the inclu-
sion of linear local models. These linear local models can be combined with data
representing the signals of a modelled system. Such a GP model could be a useful
tool for combining local models, as it can replace the local models with the system’s
response samples in the regions where the local models are difficult to identify, e.g.
in the off-equilibrium regions of the dynamic system [16]. Another advantage of
incorporating the linear local models is a reduction of the size of the GP model,
which could reduce the training time of the model, as described in Sect. 3.3.1.

There is also a possibility that the noise present at the output of the system is not
white and Gaussian. If the parameters of the noise model are known, the ‘noise part’
of the covariance function can be adopted accordingly, as in [17].

3.1.3 Combination with the Presumed Structure

In a case we are familiar with, or where we would like to impose the structure of the
model, in the sense of explicit equations describing the model, two possibilities are
presented in this chapter.

http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
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The first one is the application of a Gaussian process framework for the modelling
of the Wiener and Hammerstein models, and the second one is the application of
GP models to develop a linear parameter-varying model, i.e. a linear model with
varying parameters that are described byGPmodels. Section3.2 describes theWiener
and Hammerstein models in the GP framework, and Sect. 3.3.2 describes the linear
parameter-varying models with GP models of varying parameters.

Other combinations of embedded, parallel or serial connections of first-principles
models and GP models are possible. An overview of the combinations of white-box
and black-box models, in general, is given in [18].

3.2 Wiener and Hammerstein GP Models

This section shows twomethods for modelling particular types of nonlinear dynamic
systems as GP models, namely, the Wiener and Hammerstein models.

Block-oriented structureswhere a nonlinear systemmodel is presented as a combi-
nation of static-nonlinear and dynamic-linear submodels are well known in dynamic
systems identification, e.g. [18, 19]. Depending on the position of the static nonlin-
earity and the dynamic-linear model, these structures are named the Wiener model,
the Hammerstein model or combinations like theWiener–Hammerstein, theWiener-
Hammerstein-Wiener model and similar. Prior knowledge in the form of a known
structure like the Wiener and Hammerstein models is attractive to the engineering
community.

There is a vast amount of literature on the topic of block-oriented, nonlinear sys-
tems identification. A selection of topics and an overview of the references can be
found in [20]. The idea of using nonparametric models, in particular kernel methods,
like support-vector machines, in block-oriented structures is not new and is doc-
umented in [20]. Moreover, regardless of the well-established methods relating to
this topic, new research and application results emerge continuously, because of the
facilitated analysis and control design of the nonlinear systems that are frequently
found in practice.

GP models are suited to the incorporation of structural prior knowledge about
the modelled system in the form of a block-oriented structure. Published examples
are listed as follows. GP models for modelling Wiener–Hammerstein models are
described in [21]. The identification of aWiener model with a GPmodel is described
in [22] or [23], with a study of the identification consistency in [24]. Hammerstein
models with GP models can be found in [25, 26] and for continuous-time systems
in [27].

The difficulty associated with Hammerstein and Wiener system identification is
the interaction between the linear and the nonlinear parts. If the nonlinear part is
identified at a separate stage, then the difficulty is alleviated. The following two
subsections present two different methods. The first one for modelling the Wiener
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model is a one-stage method and the second one, for modelling the Hammerstein
model, is based on two separate stages, which is a principle that might be attractive
for engineering practice as a complement to more general frameworks for the GP
modelling of block-oriented models like those in the references listed above.

3.2.1 GP Modelling Used in the Wiener Model

The structure of the Wiener model is composed of a linear dynamic block that
is followed by a nonlinear static block, as depicted in Fig. 3.2. This structure is
matched with a relatively small number of processes. One of them is the pH titration
process from chemical engineering. Another possibility is a dynamic system where
a nonlinearity exists in the sensor’s static characteristic.

No straightforward linear parametrisation exists for the structure of the Wiener
model [18], and when identified in one stage, methods different from the linear
identification are necessary in general.

In this section, the method from [23] is summarised, where the model to be iden-
tified is a combination of a linear state-space model and a nonparametric model
for the nonlinear block. The parameters of a linear model that are considered as
random variables and the nonlinear part are identified at the same time using a
Bayesian approach, i.e. the posterior density estimation algorithm. The method pro-
vides a posterior probability-density function estimate p(θ|D) of the parameters
θ of both blocks given the measured data D containing the output measurements
{yi |i = 1, . . . N } and the input measurements {ui |i = 1, . . . N }.

The noise enters the system, not only at the output of the nonlinear block, but also
internally to the linear dynamic part of the system. The method deals with a wide
range of nonlinear mappings, and there is no assumption that the nonlinearity is an
invertible and monotonic function. The Wiener model is presented as a system with
one input and one output, but the generalisation for multiple-input, multiple-output
models is straightforward.

Dynamic
linear
part

Static
nonlinear
part

u y

Fig. 3.2 Principial scheme of the Wiener model with a linear dynamic block and a nonlinear static
block. The system noise ν1 and the measurement noise ν2 are not measured
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The Wiener model is described in the state-space form as

x(k + 1) = Ax(k) + bu(k) + ν1(k), (3.2)

ξ = cx(k), (3.3)

y(k) = fs(ξ) + ν2(k), (3.4)

where ν1 ∼ N (0,�ν1) is the process noise, ν2 ∼ N (0,σ2
ν2) is the measurement

noise, x,ν1 ∈ R
n , u, ξ, y ∈ R are the input signal, the output from the linear block

and the output signal from the nonlinear block, respectively.
The elements of the vector c are fixed to c = [

1 0 . . . 0
]
without any loss of

generality. The system parameters A, b,�ν1,σ
2
ν2 and the hyperparameters of the

nonlinear mapping fs need to be identified with a Bayesian approach by considering
the parameters as random variables.

Based on the way that prior values are set to the system parameters A and b, the
utility of ARD may be exploited. See [23] for more details.

The nonlinear mapping fs is modelled as a GP model that is described by its
mean and covariance function. The linear mean function m f (ξ) = ξ, or any other
function, can be used with respect to the shape of the nonlinearity. One of the smooth
covariance functions, e.g. the squared exponential or theMatérn, is suggested because
the used data is affected by stochastic disturbances and, as a result, smooth regression
functions are favoured to avoid over-fitting. In the case of non-smooth nonlinearities
and a smooth covariance function, the nonlinearity is approximated with a smooth
function.

The posterior density of θ, which contains the system parameters of the linear part
and the hyperparameters of the nonlinear part, has to be found. The joint posterior
density of the parameters and the system states x is computed as

p(θ, x|D) = p(x|θ,D)p(θ|D). (3.5)

The density p(θ|D) is obtained by a straightforward marginalisation of Eq. (3.5).
As the posterior density p(θ, x|D) is analytically intractable, we have to use one

of the possible approximations. The proposed solution is to use an MCMC sampler
[28], a numerical approximation method, to solve the inference problem.

The standard Gibbs sampler, which targets some joint density by alternately sam-
pling from its conditionals [29], is problematic in our case when it comes to the state
inference. Consequently, a particle Gibbs sampler [30], a particle MCMCmethod, is
suggested. Furthermore, it should be noted that from the practitioner’s point of view,
if you understand the principle of MCMC, it is not necessary to understand all the
technical details of the particle MCMC to be able to use it as a component in this
identification procedure.
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The general algorithm for the identification of the Wiener system with particle
MCMC is as follows:

Algorithm: Wiener(D)

initialise the values of the system parameters and the GP model
set the initial trajectory of x
for i ← 1 to max Sample

do⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

run the algorithm for the sampling system parameters for the selected prior
sample the posteriori distribution of the hyperparameters
sample the posteriori distribution fs[i]
set the vector of samples of the system parameters and the GP model
run the conditional particle filter targeting the distribution of x
sample a selected trajectory of x for this iteration

The sampling steps in the algorithm are performed according to the principle of
the Gibbs sampling, except for the last step, which is performed according to the
particle Gibbs sampling [30].

The convergence analyses for this numerically intensive method are given in [23]
and with fewer assumptions in [24].

In the next example, the presented method is used for the identification of the
GP Wiener model. Even though the nonlinear system used for the example does
not exhibit problems like a non-monotonic nonlinear mapping function, it serves the
purpose to illustrate the utility of the identification method.

Example 3.2 (GP Wiener model) The nonlinear system [31] that is used in this
section for the illustration of the Wiener model’s identification in the framework of
the GP model is composed of the linear dynamic part

x(k + 1) =
[
1.414 −0.6065
1 0

]
x(k) +

[
0.5
0

]
u(k), (3.6)

ξ(k) = [
0.2088 0.1966

]
x(k) (3.7)

and the subsequent static nonlinearity

y = ξ√
0.1 + 0.9ξ2

. (3.8)

The sampling period of the signals is one time unit. The input signal u is a stochastic
signal with a hold time, i.e. the period of time for which the signal stays constant,
of 10 time units. White Gaussian noises N (0, 0.032I) and N (0, 0.022) are added
to the states of the linear part and to the output of the process as the process and
measurement noise, respectively.
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The identification data contains 729 data points and the particle MCMC method
uses 20,000 iterations and 15 particles. The model order is set to 2 and was obtained
using the backward-elimination method (Sect. 2.3.2), but other order-selection meth-
ods including exploiting the ARD utility, as described in [23], could be used.

The nonlinear part of the system ismodelledwith aGPmodel containing the linear
mean functionm f (ξ) = ξ. TheGPmodel should contain the covariance function that
reflects prior knowledge about the static nonlinearity. Because we are dealing with
stochastic disturbances at the output, the suggestion is that the covariance function for
the functional part of the GP model is a smooth covariance function in order to avoid
any modelling of the process-inherent noise. The squared exponential covariance
function described with Eq. (2.14) for the function part summed with Eq. (2.11) for
the noise part is used in our case, but other stationary covariance functions might
also be used for the function part

C(ξi , ξ j ) = σ2
f exp

(
− 1

2l2
(ξi − ξ j )

2

)
+ σ2

nδi j . (3.9)

The identification input and output signals are depicted in Fig. 3.3.
The predictions obtained from the model or its blocks can be found by averaging

over the posterior. In our case, the Wiener model parameters of the linear part and
the GP model of the nonlinear part are presented as the first and second moments,
i.e. the mean values and covariances that match the first and second moments of the
Gaussian mixtures of posterior realisations for each of the linear model parameters
and the GP model. The predictions for the models with the parameters and the
GP model obtained with the moment matching can be seen in Figs. 3.4 and 3.5.
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Fig. 3.3 Input and output signals used for the identification of the Wiener model

http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
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(dashed line)

The identified nonlinear part of the Wiener model with a good matching to the
original nonlinearity is shown in Fig. 3.4.

The Bode plot of the identified linear part, together with the original linear part,
is depicted in Fig. 3.5. As is clear from Figs. 3.4 and 3.5, the obtained model shows
a satisfactory performance.
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In the case of a validation with the simulation response of the model with an
input signal that is different from the one used for the identification, we have various
options. We can use the matched mean values and covariances for the linear model
parameters and the matched posterior mean functions and covariance functions of
the GP model to be used in the dynamic system simulation, taking account of the
uncertainties as described in Sect. 2.6 or, alternatively, use the simulation with the
Monte Carlo method.

3.2.2 GP Modelling Used in the Hammerstein Model

The Hammerstein structure consists of a nonlinear static block followed by a linear
dynamic block, as illustrated in Fig. 3.6. It is a frequently applied, nonlinear dynamic
systems modelling approach. This kind of model can be used where the actuator
dominates the system’s behaviour with its nonlinear static characteristic.

The structure of the Hammerstein model can be linearly parameterised, which
can be reflected in the choice of regressors when modelling with the linear model.
The idea behind this approach is to represent a static nonlinearity with a polynomial
approximation and, in this case, the overall input–output relationship is linear in
the parameters [18]. In the case of a GP model identification with a linear covari-
ance function, this approach requires the manual or automated selection of poly-
nomial regressors, which are at the same time also regressors of the complete GP
Hammerstein model. The GP model with a linear covariance function can, conse-
quently, be used to model the input–output relationship. The identification procedure
is mainly composed of the regressors’ selection, which might be a lengthy operation,
and the input–output identification, which are both tightly interconnected.

In the case that the nonlinearity requires a complicated polynomial representation,
a two-stage procedure might be an alternative choice. The two-stage procedure is
similar to engineering practice and consists initially of the identification of a static
nonlinearity, which is followed by the identification of the dynamic part. This is the
case we describe in the continuation.

There is no assumptionnecessary that the nonlinearity is an invertible ormonotonic
function. The white-noise disturbance with a normal distribution is presumed to be
at the output of the nonlinear block. The gain of the linear dynamic part is assumed
to be 1. If the situation is otherwise, the gain is joined with the static nonlinearity.

Dynamic
linear
part

Static
nonlinear
part

u y

Fig. 3.6 Principial scheme of the Hammerstein model with a linear dynamic block and a nonlinear
static block. The measurement noise ν is not measured

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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Modelling of the Static Part

The idea behind the method is that the GP-NFIR model of the entire system is
identified and used as the model of the static nonlinearity with appropriate values for
the regressors.

First, the GP-NFIR model of the entire system is made with identification data
pairs D = {(zi , yi )|i = 1, . . . , N }. The regressors are delayed samples of the input
signal u.

ŷ(k) = f (u(k − 1), u(k − 2), . . . , u(k − m)) + ν, (3.10)

where f represents the GP model of the entire system to be modelled without using
any knowledge of the block structure. Assuming that the number of regressors m
and the number of data N are large enough, the input–output mapping f can be
consistently described with such a model. Note that the number of regressors can
be relatively large to obtain a satisfactory model, but the model can be obtained
relatively quickly. This is one of the reasons why FIR models can often be found in
signal-processing applications.

Next, this GP-NFIR model can be considered as a model of the static nonlinearity
when using regressors that correspond to a constant signal at the input

u = u(k − 1) = u(k − 2) = · · · = u(k − m). (3.11)

Again, as was the case with the illustrative Example 3.2, the nonlinear system
was identified with a GP model with the composite covariance function described
with Eq. (3.9). The constant mean function m f = 0 is selected.

How is the GP model affected in the case of a nonlinearity, for which it gets
different values of the output data for the samevalues of the input data, e.g. hysteresis?
TheGPmodel can be interpreted as a linear smoother [32] and it averages the obtained
information, and therefore in the case of ambiguous output data, the GP model will
predict the distribution with the mean value corresponding to the average of the
output data.

Modelling of the Dynamic Part

When the GP model of static nonlinearity is obtained, the intermediate signal ξ̂ can
be inferred from the input signal with this model. The output of the GP model is
the predictive distribution that will form the input for the linear dynamic part of the
Hammerstein model.

These predictive distributions can be considered as an uncertain input signal for
the linear dynamic part. Therefore, we need to consider the learning of the dynamic
GP model using a linear covariance function with stochastic inputs.

The assumption is made that the input variables are independent and normally
distributed. The derivation for the general covariance function is given first, adopted
from [33].

We recall that the GP prior on fd , with a zero mean and covariance function
C(zi , z j ), implies that E(yi ) = 0 and cov(yi , y j ) = C(zi , z j ) (Eq. 1.10).

http://dx.doi.org/10.1007/978-3-319-21021-6_1
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In the situation where stochastic inputs are present, we have

yi = fd(zi ), (3.12)

with the regression vector

zi = μzi
+ νzi , (3.13)

where

νzi ∼ N (0,�zi ).

Given zi ∼ N (μzi
,�zi ), although the process in the general case is no longer

Gaussian, the mean and covariance function of the random process can still be deter-
mined. According to the law of iterated expectations, we can write [33]

E(yi |μzi
) = E(E(yi |zi )) = 0. (3.14)

The law of conditional variances says that

var(yi |μzi
) = E(var(yi |zi )) + var(E(yi |zi )) = E(var(yi |zi )). (3.15)

Extending this result to the covariances leads to [33]

cov(yi , y j |μzi
,μz j

) =
∫ ∫

C(zi , z j )p(zi , z j )dzi dz j , (3.16)

where a noise variation for each input, i.e.

p(zi ) = Nzi (μzi
,�zi ), (3.17)

p(z j ) = Nz j (μz j
,�z j ), (3.18)

is allowed.
Let C(μzi

,μz j
) denote the covariance function with stochastic inputs giving the

covariance between yi and y j . Assuming the input variables are independent, given
their characteristics, it can be defined as

C(μzi
,μz j

) =
∫ ∫

C(zi , z j )p(zi )p(z j )dzi dz j . (3.19)

This integral is not solvable for all possible covariance functions. But it can be solved
for the linear covariance function described with Eq. (2.22) as follows. The noise part
is, for reasons of convenience, omitted from the expressions.

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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Equation (3.19) with the linear covariance function can be written as

C(μzi
,μz j

) =
∫ ∫

zTi �−1z j p(zi )p(z j )dzi dz j . (3.20)

It can be integrated over zi first

∫
zi pT(zi )dziΨ = Ezi (zi )Ψ = μT

zi
Ψ, (3.21)

where Ψ = ∫
�−1z j p(z j )dz j ,

and the obtained result is integrated over z j

∫
μT

zi
�−1z j p(z j )dz j = μT

zi
�−1

∫
z j p(z j )dz j (3.22)

= μT
zi
�−1μz j

. (3.23)

The obtained result is the same as for data learning without the input uncertainty,
Eq. (2.22). This means that the same covariance function and learning procedure can
be pursued in the case of stochastic inputs using their mean values.

The obtained Hammerstein model has to be validated with a simulation. This is
also carried out in two stages:

• The input data samples are treated, as described with Eq. (3.11), to form the input
data for the static model of the nonlinear part. The output predictions of the GP
model are random variables that will be used as the input data for the dynamic part
of the Hammerstein model.

• The response of the dynamic part is simulated in such a way that the lagged sam-
ples of the output signals are fed back and used as regressors, together with the
lagged predictive distributions from the nonlinear staticmodel. This can be consid-
ered as making iterative predictions for uncertain input values, represented by the
stochastic inputs, as described in Sect. 2.6, with final expressions in Appendix B.

Next, we have an illustrative example where the presented procedures are used
for an identification of the GP Hammerstein model.

Example 3.3 (GP Hammerstein model) The nonlinear system that is used in this
section for an illustration of the Hammersteinmodel’s identification with a GPmodel
is composed of the static nonlinearity

ξ = u√
0.1 + 0.9u2

(3.24)

http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
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and the consequent linear dynamic part

y(k + 1) = 1.4138y(k) − 0.6065y(k − 1)

+ 0.1044ξ(k) + 0.0883ξ(k − 1). (3.25)

The sampling period is one time unit. The input signal u(k) is similar to the one in
Example 3.2, i.e. a random signal with a hold time, i.e. the period of time for which
the signal stays constant, of 10 time units. White Gaussian noise with the distribution
N (0, 0.022) is added to the output of the process as the measurement noise.

The two-stage identification procedure is divided into the following steps: the
modelling of the static part, the compensation of the static nonlinearity and the gen-
eration of the input signal for the linear system identification; and the identification
of the dynamic-linear part.

(a) The modelling of static part
The nonlinearity is assumed to be monotone. The static nonlinearity is identified

utilising GP-NFIR model identification with the GP model that has the composite
covariance function described with Eq. (3.9). The regression vector is composed of
20 lagged values of the input-signal samples with the forward selection of regressors
[34].

Figure3.7 shows an identified direct static part with the used measurements sam-
pled from the output and input signals, also shown in Fig. 3.7.

(b) The generation of the input signal for the linear system identification
The input data for the identification of the linear dynamic part, i.e. samples from

ξ̂, are obtained as predictions of the static GP model with samples from the input
signal u at its input. The predicted signal ξ̂ is depicted in Fig. 3.8. The outputs of
the static GP model are predictive distributions that are determined with the mean
values and the corresponding variances.

(c) The identification of the dynamic-linear part
The signals shown in Figs. 3.8 and 3.9 are used for training the GP model with a

linear covariance function.
The Bode plot of the identified linear part, together with the original linear part,

is depicted in Fig. 3.10.
The obtainedHammersteinmodelmay alternatively be validatedwith a simulation

using an input signal that is different to the one used for the identification, as described
in Sect. 2.6, but this is beyond the scope of this example.

The section presented two possible methods for the identification of the Wiener
andHammersteinmodels usingGaussian processes. Thesemodels can accommodate
noisy data as well as the uncertainties of the identified model, which is all reflected in
the shape of the predicted output distributions. The GPWiener and GP Hammerstein
models can be used for the design of robust, nonlinear control and other designs
where these kinds of nonlinear models with information about the uncertainty can
be utilised.

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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Fig. 3.7 Static part of the Hammerstein model scheme, upper part of figure; with input and output
signals used for modelling, which are same as those in Fig. 3.3, lower part of figure

3.3 Incorporation of Local Models

The identification of nonlinear dynamic systems from measured data has received
plenty of attention in the past few decades and numerous methods have been devel-
oped. Initially, methods with adaptive basis functions [18], like artificial neural net-
works and fuzzy logic models, and later methods with fixed basis functions [18],
so-called kernel methods, appeared. A number of them can be viewed as univer-
sal approximators. The main practical disadvantages of these black-box modelling
methods are [35]:
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Fig. 3.9 Output signal for the identification of the linear part of the Hammerstein model scheme
which is the same as the nonlinear systems output signal y

• the lack of transparency, i.e. a model structure does not reflect the physical prop-
erties of the system,

• the curse of dimensionality.

An alternative method to circumvent the disadvantages of the global black-box
model of the system is to employ a network of local models, wherein each model
describes some particular operating region. Such an approach is referred to as a local
model network— LMN, [36].
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confidence interval (grey band) together with the frequency response of the original linear part
(dashed line)

LMNs are attractive for the so-called divide and conquer control design [36].
In this approach, the global behaviour is represented by a network of simple local
models, where each local model describes some particular operating region, and
the global behaviour is realised by blending the dynamics of the local models. An
accurate representation of nonlinear dynamics with locally valid linear models is
important from the control-design point of view, because local controllers can be
designed for each of the corresponding local models and blended to a local controller
network or blended gain-scheduled controller, e.g. [37]. In the case that the nonlinear
dynamics cannot be interpreted with locally obtained information at every operating
point, then the LMN can be seen as a black-box model.

The number of unknown parameters in the LMN is typically smaller than in neural
networks with a comparable quality of fit. However, some of the inconveniences still
related to LMN are [16, 35, 38]:

• the problem of describing off-equilibrium dynamics,
• the global/local optimisation issue,
• the scheduling vector selection.

The problem of modelling off-equilibrium dynamics [16, 35, 38] with local mod-
els originates in a system’s ‘tendency’ towards equilibrium. As a consequence, there
is usually a lack ofmeasured data in the regions away from equilibrium, whichmakes
the construction of valid local models for those regions rather difficult. This problem
can be highlighted, e.g. in the process industries, where a lot of data can only be
taken in particular operating regions of the system, so that only those regions can
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be satisfactorily modelled with local models. For the rest of the tentative operating
regions, the lack of data prevents the construction of valid local models.

Two approaches to the optimisation of the LMN parameters are possible [38]:

• the global learning approach, where all the LMN parameters are optimised using
all the identification data in a single regression operation,

• the local learning approach,where theparameters for each localmodel representing
a corresponding subspace are estimated separately using the corresponding data.

LMN optimisation with a global learning approach usually provides a globally better
fit as the local model parameters in the off-equilibrium regions are used to increase
the level of validity for the associated local models, but these parameters no longer
represent the system’s local dynamics [16].

In contrast, when a local learning approach is used, the local models’ parame-
ters do represent local dynamic behaviour, which results in more transparent local
models. Such models are more applicable for use in analysis and control design.
Their drawback is that they are valid in smaller operating regions, which results
in non-modelled regions of the system, leading again to the problem of describing
off-equilibrium dynamics.

LMN approaches, regardless of the blending realisation, also encounter the issue
of scheduling vector selection. The scheduling vector—usually a subset of the
model’s regressors—is the vector defining the current region of operation and assists
the blending mechanism to accurately match the nonlinear dynamics. With a reduc-
tion of the dimension of the scheduling vector, the regions in which the individual
local models try to match the nonlinear dynamics increase, but unfortunately at the
cost of a decreased accuracy with respect to the distance from the regions where
these local models were obtained. Furthermore, the blending based on the reduced
scheduling vector can result in a non-smooth and sometimes discontinuous LMN
[38].

More on the LMN approaches to system identification can be found e.g. in [36]
and [18] and more on the problems associated with this approach in [16, 35] and
[38].

TheGPmodel is a possible alternative that solves some of thementioned problems
[16]. Such a model smooths the information given as the identification data. The
model’s output is predicted by weighting targets with respect to the distance between
the input data used for identification and a new input data. The identification of
GP models, however, does suffer from an increasing computational burden with an
increasing number of data points being used for the modelling. One of the ways to
lessen the computational burden is to combine the LMNandGPmodels. An overview
of other methods used to reduce the computational burden is discussed in Sect. 2.5.2.

Much of the computational burden can be removed by the introduction of local
models in the GP model. A local model, typically parameterised with only a few
parameters, can successfully describe a subset of the training points, reflecting the
local dynamics of the system. Thus the introduction of local models into the GP
model can result in a reduced computational burden associated with the optimisation
of the hyperparameters.

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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When comparing the GP model with incorporated local models to the LMN,
several benefits of the GP model can be noticed. Some typical LMN problems, e.g.
off-equilibrium dynamics, global/local optimisation issues and scheduling vector
selection, are avoided, and also confidence in the model’s prediction is given using
the GP model.

The combination of local models andGPmodels can be pursued in two directions.
The first is the mixture of GP models, also called the mixture of GP experts. As
described in Sect. 2.5.2, this is a model where the system’s model is composed of
locally valid GP models. The idea follows that of using weighted basis functions,
as in Eq. (2.3), for approximating the nonlinearity of the system to be modelled. It
uses the divide-and-conquer strategy that is common to LMN methods and can be
written as

p(y) =
l∑

i=1

wi pi (y), (3.26)

where 0 ≤ wi ≤ 1,
∑l

i=1 wi = 1, and pi (y) is a probability density function for the
variable y.

The theoretical background for theGPmixturemodels is described in, e.g. [39]. In
the context of dynamic systems, GP mixture models can be implemented in various
ways. A very common situation is local GPmodels with a linear covariance function,
as in, e.g. [40–42], or any other kinds of covariance functions, as in, e.g. [43–45].
The weightswi can also be determined differently, as in, e.g. [41, 46], or the strategy
of switching among local GP models is used, e.g. [47, 48]. Local GP models can be
used for modelling the local parts of nonlinear mapping, but they can also represent
models of batches in the process industry, e.g. [49].

The second way of using local models is the incorporation of local models into a
GPmodel in the formof prior knowledge. In the following sections, twopossibleways
to incorporate GP models into one GP model are given: local models incorporated
into a Gaussian process model, i.e. a LMGP model, and a fixed-structure Gaussian
process model, i.e. a FSGP model.

3.3.1 Local Models Incorporated into a GP Model

Since differentiation is a linear operation, the derivative of a GP remains a GP [13].
Consequently, within the Gaussian process modelling framework, the derivatives
can be used together with functional values, thus providing a way to include linear
local models into the GP model. This topic is elaborated in [13, 50–52], with an
application for identification in [53] and for dynamic systems control in [54]. The
description here is mostly adapted from [52]. The GP model with incorporated local
models will be referred to as an LMGP (local models incorporated into a Gaussian
processes) model.

http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
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Consider the autoregressive model of a nth-order dynamic system y(k) =
f (z(k)) + ν, where the regression vector z(k) is composed of previous values of
the output values y up to a given lag n and the control input values u up to a given
lag m, with the regression vector dimension D = n + m:

z(k) = [y(k − 1), y(k − 2), . . . , y(k − n), u(k − 1), u(k − 2), . . . , u(k − m)]T. (3.27)

The goal is to model the dynamic system y(k) = f (z(k)) + ν using a GP model
with the finite number Neq ∈ N of incorporated linear local models. Let us assume
that the point zi ; i ∈ {1, . . . , Neq} is one of equilibrium points of a stable, generally
nonlinear, system y(k) = f (z(k))+ν.Wewould like to present the system’s dynamic
behaviour in the vicinity of the point zi with an approximation in the form of a linear
local model Mi :

y(z) = f (zi ) + θT
i (z − zi ) + ν, (3.28)

where

θT
i = [

aT
i , bT

i

]
, (3.29)

ai =
[

∂ f

∂yk−1
, . . . ,

∂ f

∂yk−n

]T

i

, (3.30)

bi =
[

∂ f

∂uk−1
, . . . ,

∂ f

∂uk−m

]T

i

, (3.31)

θi are the parameters of the linear local model Mi centred at zi and f (zi ) is the
function value in the selected point zi .

Two different types of information are used to construct the linear local model
Mi :

• the functional values (functional observation in [13])—values of the system’s out-
put f (zi ) in the centre of the model zi ,

• the derivatives (derivative observation in [13])—vector of partial derivatives of
the system’s output f (z) with respect to the components zdi ; d = 1, . . . , D of the
vector of the regressor zi :

θi =
[

∂ f
∂yk−1

, . . . ,
∂ f

∂yk−n
,

∂ f
∂uk−1

, . . . ,
∂ f

∂uk−m

]T
i
.

Local models can be derived using any standard linear regression method that
gives a consistent and unbiased solution, see e.g. [55]. Local models’ order is the
same as the order of LMGP model.

In order to include the derivatives into the GP model, only the functional part
of covariance function must be changed appropriately. The following results are
derived for the frequently used squared exponential covariance functions, but other
covariance functions may be used.
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When using the squared exponential covariance function describedwith Eq. (2.14)
between two data points, one can find that the covariance function between a data
point and the derivative is:

∂

∂zdi
C f (zi , z j ) = cov

[
∂ f (zi )

∂zdi
, f (z j )

]

= −vwd(zdi − zd j ) exp

⎡

⎣−1

2

D∑

g=1

wg(zgi − zg j )
2

⎤

⎦ , (3.32)

where C f represents the functional part of covariance function, i, j = 1, . . . , Neq

and d, e = 1, . . . , D. In the same manner, the covariance function between two
derivatives reads:

∂2

∂zdi∂zej
C f (zi , z j ) = cov

[
∂ f (zi )

∂zdi
,
∂ f (z j )

∂zej

]

= vwe(δe,d − wd(zei − zej )(zdi − zd j ))

× exp

⎡

⎣−1

2

D∑

g=1

wg(zgi − zg j )
2

⎤

⎦ , (3.33)

where δe,d is the Kronecker operator between the indices d and e:

δe,d =
{

1, e = d
0, otherwise.

(3.34)

The problem of off-equilibrium dynamics dictates the following approach to
LMGP model composition. Regions of the system where enough data is given for
the identification of local models—usually in the vicinity of the equilibrium curve—
are modelled with local models. Regions of the system that are lacking enough
data to construct local models are modelled with individual samples of the system’s
response. This knowledge is together incorporated into the GP model, as illustrated
in Fig. 3.11 for the first-order example. The GP model ‘smooths’ this information
and is able to make a robust prediction of the system’s response even where the data
describing the system is sparse.

With the introduction of the local models into the GP model, the derivatives are
added to the vector of the targets y of the GP model. The values of the regressors
corresponding to the included derivatives are added to the matrix of regressors Z.

As in Eq. (3.27), n is the order of the system and D = m + n is the number of
regressors. The following notation is used in continuation: the subscript oeq denotes
data representing out-of-equilibrium behaviour (response), and the subscript eq
denotes data representing the equilibrium behaviour of the system in the form of
local models.

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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Fig. 3.11 Target data of the
LMGP model consists of
local models and data
points—an illustration of the
approach for a first-order
system. The ovals represent
the local models’ proximity
regions and the dots
represent the samples of the
off-equilibrium system’s
response

Given Neq local models and Noeq samples of the system’s response, describing
the system’s behaviour, one of the possible ways to compose the input/target data
{(Z, y)} for the identification, or training, of hyperparameters is:

Z = [
Zoeq , Zeq , Zeq , . . . , Zeq

]
, y =

⎡

⎢⎢⎢⎢⎢⎣

Yoeq1

Yeq1

θ1
...

θD

⎤

⎥⎥⎥⎥⎥⎦
, (3.35)

Zoeq = [Yoeq Uoeq ]T, (3.36)

Zeq = [Yeq Ueq ]T, (3.37)

where

Yoeq1 is a Noeq × 1 target vector of the system’s out-of-equilibria response points;
Zoeq is a D × Noeq matrix of the appropriate regressors corresponding to the target
vector Yoeq1;
Yeq1 is a Neq × 1 target vector of the system’s response points in the centres of
the local models;
Zeq is a D × Neq matrix of appropriate regressors corresponding to the target
vector Yeq1;
θ1 is a Neq ×1 vector of the derivatives ∂ f

∂yk−1
at the matrix of regressorsZeq (vector

of derivatives ∂ f
∂yk−1

for all Neq incorporated local models);
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θn is a Neq × 1 vector of derivatives ∂ f
∂yk−n

at the matrix of regressors Zeq ;

θn+1 is a Neq × 1 vector of derivatives ∂ f
∂uk−1

at the matrix of regressors Zeq ;

θD is a Neq × 1 vector of derivatives ∂ f
∂uk−m

at the matrix of regressors Zeq ;

Let N = Neq + Noeq be the number of functional data points (input-target data
points), where Neq is the number of identified localmodels to be incorporated into the
GP model. For the nth-order system, there are a total of D vectors of the derivatives
θi , i = 1, . . . , D with the length Neq—one for each regressor zi . Thus, the size of
the matrix of regressors Z is D × (N + D · Neq) and the length of the target vector
y is (N + D · Neq).

When the identification data D = {(Z, y)} is composed as presented, the covari-
ance matrix K, the vector of covariances between validation, also test, input data and
identification data k(z∗) and the autocovariance of the validation input data κ(z∗)
need to be:

K =
[

� f 11 � f 12

� f 21 � f 22

]
+ σ2

nI, (3.38)

where
� f 11 = [ [

C f (zi , z j )
] ]

, (3.39)

� f 12 =
[ [

cov[ f (zi ),
∂ f (z j )

∂zej
]
]

e=1
. . .

[
cov[ f (zi ),

∂ f (z j )

∂zej
]
]

e=D

]
, (3.40)

� f 21 =

⎡

⎢⎢⎢⎣

[
cov[ ∂ f (zi )

∂zdi
, f (z j )]

]

d=1
...[

cov[ ∂ f (zi )

∂zdi
, f (z j )]

]

d=D

⎤

⎥⎥⎥⎦ , (3.41)

� f 22 =

⎡

⎢⎢⎢⎣

[
cov[ ∂ f (zi )

∂zdi
,

∂ f (z j )

∂zej
]
]

d=1,e=1
. . .

[
cov[ ∂ f (zi )

∂zdi
,

∂ f (z j )

∂zej
]
]

d=1,e=D
...

...
...[

cov[ ∂ f (zi )

∂zdi
,

∂ f (z j )

∂zej
]
]

d=D,e=1
. . .

[
cov[ ∂ f (zi )

∂zdi
,

∂ f (z j )

∂zej
]
]

d=D,e=D

⎤

⎥⎥⎥⎦ ,

(3.42)

k(z∗) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

[
C(zi , z∗)

]

[
cov[ ∂ f (zi )

∂zdi
, f (z∗)]

]

d=1
...[

cov[ ∂ f (zi )

∂zdi
, f (z∗)]

]

d=D

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (3.43)

κ(z) = [
C(z∗, z∗)

] = σ2
f + σ2

n, (3.44)

respectively.
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The information about the system’s behaviour in the vicinity of the point zi , that
in a conventional GP model is presented as a (large) set of functional values as in
[56, 57], is now compressed in the parameters of the linear local model Mi . In this
way, the behaviour of the system around each equilibrium point is represented by
fewer data points, which can effectively reduce the computational burden.

We have to be careful to ensure that all the local models are formed using the
same state representation. The values of the regressors described with Eq. (3.27) are
used as state coordinates in our case, but other choices are possible as well.

The target data used for identification can contain noise information. Where this
information is available, it is added to the corresponding diagonal elements of the
covariance matrix [13]; where not, the hyperparameter describing the white-noise
variance is trained. Prediction with the LMGPmodel is done in exactly the same way
as with the conventional GP model, apart from the fact that the covariance functions
are selected differently.

The dynamic response of the LMGP model in off-equilibrium regions is repre-
sented by data points (response samples) and therefore represents the global and not
the local dynamic behaviour in these regions. On the other hand, the incorporated
localmodels on the equilibrium curve encapsulate the system’s local dynamics and as
the parameters of these local models do not change with optimisation, the dynamics
of the system remains well modelled. The LMGP model does not have a scheduling
variable and also does not suffer very much from partitioning, as the local models
need only be put over the equilibrium curve in the necessary density.

Besides not suffering from some of the problems of the LMN approach, the
confidence measure, i.e. variance, in the LMGP model’s predictions, depending on
the input data, is also provided. This confidence measure can be seen as the criterion
for model quality in the corresponding region of the system.

Example 3.4 (LMGP modelling example) The GP model with an incorporated LM
approach is presented on the identification of the following discrete, nonlinear,
second-order dynamic system [58]:

y(k) = 0.893y(k − 1) + 0.0371y2(k − 1) − 0.05y(k − 2)

− 0.05u(k − 1)y(k − 1) + 0.157u(k − 1) + ν(k), (3.45)

where the output signal is corrupted with white Gaussian noise ν(k) ∼ N (0,σ2
ν)

with the variance σ2
ν = 4 × 10−4.

Our taskwill be tomodel the region bounded by the input values spanning between
umin = −2 in umax = 4 for the purpose of a multistep-ahead prediction. The static
characteristic of the system from Eq. (3.45) in the region of interest is depicted in
Fig. 3.12. Thenonlinearity of the system is also shown inFig. 3.13,where the system’s
response to the alternating step signal with a growing magnitude is presented.
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Fig. 3.13 Response of the second-order dynamic system to a growing alternate step input signal

As stated in Sect. 3.1, two different types of data represent the unknown system
in the LMGP model:

• the local models, describing the system’s dynamics in their centres and vicinity,
with centres lying on the equilibrium curve,

• the samples of the system’s response, which describe the system’s regions not
described by the LM (usually transient regions between equilibrium states).
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These two different representations require two different measurement types.
To obtain the off-equilibrium data, which describe the system’s behaviour in

transient regions, the system must be excited with such an input signal that values
of the regressors cover as much operating space RD as possible. In our example, a
pseudo-random binary signal (PRBS) is used as an excitation signal, except that the
magnitude of the input value could occupy any random value between umin and umax

when changed. The identification data for the LMGP model is later sampled from
the input and the system’s response.

To obtain the local model’s parameters, the system is first driven into the equilib-
rium point with a static input signal. After the settlement of the system’s response,
a PRBS with a small magnitude �U is added to the input to stimulate the system’s
dynamic response around the equilibrium point.

To obtain the equilibrium dynamics of the system described with Eq. (3.45), five,
approximately evenly distributed, local models on the equilibrium curve are iden-
tified. Their centres on the equilibrium curve can be seen in Fig. 3.12. The PRBS
signal with the switching time Tsw = 4 steps and the magnitude of the perturbation
�U = 0.3 are selected so that the local models can be identified, despite the noise.
The models are identified using the instrumental-variable (IV) method [55].

An example of the identified local model’s response in the equilibrium point
(Ueq , Yeq) = (0.415, 0.4) is presented in Fig. 3.14, and it can be seen that the model
perfectly captures the dynamics of the system. It should be, however, taken into
account that here the identified system is ideal and of known order.

Each of the five localmodels contribute one functional value (the value of system’s
response at the equilibrium point) and four derivatives (one for each regressor) to the
identification data. Thus, together with fourteen points, sampled out of the system’s
off-equilibrium response, the LMGP model is formed using 39 identification points.
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Fig. 3.14 Example of the identified local model’s response in the equilibrium point Yeq = 0.4
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The estimates of local models’ parameter variances, gained through identification,
are added to the corresponding diagonal elements of the covariance matrix, defined
with Eq. (3.38).

The acquired LMGP model is validated with data not used in the identification.
Two different input signals are used for simulation, both random input signals, but
the first with the switching time step Tsw = 4 and the second with the switching
time step Tsw = 20 and both with the range between umin = −2 and umax = 4.
The validation signal 1 is driving the LMGP model mainly in the region away from
equilibria. The validation signal 2, where the pulses of which the input signal is
composed are of longer duration, on the other hand, allows the model to reach the
steady state.

The idea behind this choice is to showacceptable behaviour for themodel,whether
it is operating near to or far from the equilibrium points. The results of the naive
simulation where the input signal is the validation signal 1 is presented in Fig. 3.15,
and the corresponding simulation error with the accompanying 95% confidence
interval of the model’s prediction is shown in Fig. 3.16. Note that for illustration
purposes, these two figures represent only a segment of the whole simulation result.
From Figs. 3.15 and 3.16, it can deduce that the description of the system behaviour
in the off-equilibrium regions is satisfactory, even though only fourteen samples of
the system’s response are used. Themodel could be further improved by addingmore
samples of the system’s response to the identification data.

The segment of the result of the naive simulation on validation signal 2 is depicted
in Figs. 3.17 and 3.18, where the model’s output signal is compared to the system’s
output signal and absolute simulation error together with 95% confidence interval
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Fig. 3.15 Simulation of identified LMGP model on validation signal 1
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Fig. 3.16 Absolute error of the LMGP model simulation on the validation signal 1 together with
the 95% confidence interval
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Fig. 3.17 Simulation of identified LMGP model on validation signal 2
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Fig. 3.18 Absolute error of the LMGP model simulation on the validation signal 2 together with
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Table 3.1 Two performance measures of the simulation for the validation of the illustrative exam-
ple, i.e. the standardised mean square error SMSE and mean standardised log loss MSLL

Validation signal SMSE MSLL

1 0.0038 –2.07

2 0.0020 –3.10

are shown correspondingly. These results show that the model matches the response
of the process also in steady states.

Also, two performance measures, i.e. the standardised mean square error SMSE
described with Eq. (2.54) and the mean standardised log loss MSLL described with
Eq. (2.57), are applied for the validation of the simulation error for both validation
studies. The results of both performance measures applied to the validation signals
can be seen in Table3.1.

In the LMGPmodel framework, the three exposed problems of the LMNapproach
have a diminished influence. The system in the off-equilibrium regions is represented
by the data points and the interpolation of predictions between them is smooth as
one of the attributes of the GP model. The problem of changing the model’s local
dynamics properties to provide a better global fit was solved within the Gaussian
processes framework, i.e. the information describing the system’s local dynamics
does not change with optimisation. The problem of scheduling vector selection drops
out as there is no scheduling vector. The problem of region partitioning is reduced
as the local models are put only on the equilibrium curve and not over the whole
operating region, as in the case of the LMN. Also, the values of the covariance
function hyperparameters can be used as an indication of the influence along the
corresponding regressor components.

3.3.2 Fixed-Structure GP Model

In this section, a parametric approach with a fixed linear model structure and varying
parameters, i.e. a linear parameter-varying model or LPV model, based on the GP
models is described. It is called the fixed-structure Gaussian process (FSGP) model
[59]. The FSGP model is a model with a predetermined linear structure where the
varying and probabilistic parameters are represented by GP models. As such, the
FSGP model opens up possibilities that are different from other GP-based models of
dynamic systems from the control-design point of view. It is the prior information
about the model’s structure that distinguishes the FSGP model from other GP-based
models which are nonparametric. The idea of approximating the functional depen-
dence of varying parameters is not new [60]. For example, an approach using radial
basis function neural networks can be found in [61]. In the FSGP model, the varying

http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
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parameters are represented by GPmodels, which brings some benefits in comparison
with other GP-based approaches and other LPV approaches.

There are several reasons to use GP models for modelling the varying parameters
of the LPV model:

• They tend to achieve acceptable modelling results, even with relatively small train-
ing datasets.

• The GP model gives a measure of the prediction confidence, which is dependent
on the density of the training data and the covariance function.

• When local models are blended, with GP models predicting the local models’
parameters, the GP models also provide information about the dependence of the
parameters on the individual regressors.

The FSGP model therefore addresses problems such as nonparametricity of the
general GP model, the confidence of the varying parameters’ predictions and the
small number of data for the identification of these varying parameters.

The FSGP method [59] can be used as a simple but still effective and, in the sense
of prediction, potentially fast engineering tool.As themodel posses a known structure
with parameters, it can be used for a wider range of control-design methods, not only
model-based predictive control, e.g. gain-scheduling control, as will be shown in
Chap.4.

This section is divided into two subsections in which the FSGP method for
continuous-time and discrete-time systems is shown.

Modelling the Nonlinear Continuous-Time System

The FSGP approach to modelling a nonlinear system is a combination of velocity-
based linearisation (VBL) [62] and modelling with GPs. The derivations are given
for the systems with one input and one output, but the generalisation for multiple-
input multiple-output systems is straightforward. The application of this method for
the modelling of a process-engineering plant is in [63].

Consider the continuous nonlinear system written in the state space

ẋ(t) = ft (x(t), u(t)),

y(t) = gt (x(t), u(t)). (3.46)

We would like to model the system described with Eq. (3.46) using a LPV model
of a known and predetermined structure, where the varying parameters are modelled
with GP models, thus providing not only the values of the model parameters but
also the corresponding measure of the uncertainty. Such a model, when frozen at
any operating point, would result in a linear local model, which is distinguishable
from, e.g. a LMGPmodel, which is a nonparametric model represented by data pairs
and the covariances among these data. The modelling method specifically addresses
issues such as the blending of local models, the scheduling variable selection and
modelling the nonlinear dynamics at a distance from the equilibrium regions.

One way to deal with the issue of accurately modelling off-equilibrium behaviour
based on local linear models is representing the nonlinear systemwith VBL. VBL, in

http://dx.doi.org/10.1007/978-3-319-21021-6_4
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contrast to the conventional Taylor-series-expansion approach, enables the represen-
tation of the system at every operating point and not just in the equilibrium regions.
Nevertheless, the blending and scheduling mechanisms still need to be determined.

The system described with Eq. (3.46) may be reformulated, without any loss of
generality, in the form denoted as extended local linear equivalence (ELLE) [62].

ẋ(t) = Ãt x(t) + b̃t u(t) + Ft (�),

y(t) = c̃t x(t) + d̃t u(t) + Gt (�),
(3.47)

where x(t) ∈ R
n , u(t) ∈ R, Ãt , b̃t , c̃t , d̃t are appropriately dimensioned constant

matrices, Ft (·) and Gt (·) are smooth nonlinear functions and � = �(x(t), u(t)) ∈
R

q , q ≤ n + 1, embodies the nonlinear dependence of the dynamics on the state and
input with ∇x�, ∇u� constant [64]. Index t denotes the continuous-time model.

Differentiating Eq. (3.47) an alternative representation of the nonlinear system is
obtained [62]

ẋ(t) = ω(t),

ω̇(t) = At (�)ω(t) + bt (�)u̇(t),

ẏ(t) = ct (�)ω(t) + dt (�)u̇(t)

(3.48)

where

At (�) = Ãt + ∂Ft

∂x
(x(t), u(t)), (3.49)

bt (�) = b̃t + ∂Ft

∂u
(x(t), u(t)), (3.50)

ct (�) = c̃t + ∂Gt

∂x
(x(t), u(t)), (3.51)

dt (�) = d̃t + ∂Gt

∂u
(x(t), u(t)). (3.52)

At every operating point �0, the elements ofAt (�0), bt (�0), ct (�0) and dt (�0) are
the parameters of the local models, identified in the close vicinity of the operating
point�0.Wewill not focus on the details of how the local models are obtained, which
can be found, e.g. in [36] and references therein. Nevertheless, the identified linear
local models need to be of the same order, they must describe the corresponding
region satisfactorily well, and they must be located at equilibrium as well as off-
equilibrium points. The off-equilibriummodels are necessary as they uniquely define
the system [65] and also provide the GP model with the training data describing the
entire operating region.

It is important to note that a local linear input–output model only specifies the
parameters up to a co-ordinate transformation [65].

At (�), bt (�), ct (�) and dt (�) are smooth functions of the variable �, and this can
be modelled with interpolations between the parameters of the identified local linear
models. GP models are proposed to model each element of At (�), bt (�), ct (�) and
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dt (�) based on local model parameters as learning data, because modelling with
GP models gives acceptable results, even with relatively small training data sets and
gives a measure of the confidence for the model predictions based on data density.
This is done under the assumption that the parameters are independent of each other.

The smoothing property of the GP models is used to interpolate or to blend the
values of the local model parameters for the operating points lying between the points
where the linear local models were identified. The input data into the GP models are
the coordinates of the current operating point�0. Each of theGPmodels’ predictions,
at the current input is the predictive distribution of the corresponding non-constant
LPV model parameter, expressed with the mean value denoted as μi

FSGP and the
associated variance denoted as σ2i

FSGP, e.g. for the element denoted bi its predictive

distribution is p(bi ) = N (μbi ,σ
2
bi
).

Themean, and therefore themost likely valuesμi
FSGP of GPmodels that model the

elements ofAt (�) = [âi j ], bt (�) = [b̂i ], ct (�) = [ĉ j ] and dt (�) = d̂ are used for the
global model simulation. The calculated variances σ2i

FSGP express the confidence in
the predictedmean values of the parameters, depending on the amount of information
available for the modelling. This information can be effectively used, e.g. for control
purposes. It can be used to retain the system in better modelled regions, i.e. the
regions with a smaller parameter variance.

The FSGP modelling procedure, therefore, consists of two stages.

1. The first stage is the identification of the linear local models at the equilibrium and
off-equilibrium points. The results of the first stage are coefficients (parameters)
of the linear local models, and at the same time, derivatives of the nonlinear
functions ft (·) and gt (·) from Eq. (3.46).

2. In the second stage, sets of values corresponding to each of the linear local model
parameters are used for the training of the GP models. The training is pursued
as described in Chap.2. Through the relevance detection property [32] of the GP
modellingmethod the relevant regressors, i.e. the state values and the input values,
to which the parameters are functionally linked, are revealed via the values of the
hyperparameters. This is how the issue of scheduling vector � selection is solved.

The nonlinear system model is implemented using a VBL [64].
The obtained nonlinear model can be viewed as a parametric model with prob-

abilistic and variable parameters w(�(t)) = [a11(�(t)), . . . , d(�(t))]T—a FSGP
model. Each element of the vector of parameters w(�(t)) is [wi (�(t))] ∼ GP(E(wi

(�)), cov(wi (� j ), wi (�l))). It depends on the vector of scheduling variables �(t),
which can consist of all the states and inputs or a subset of them.

Modelling the Nonlinear Discrete-Time System

In, this section the same procedure will be repeated for discrete-time systems. The
method is elaborated in [59, 66]. The nonlinear systemmodel is again realised using a
VBL. The realisation in [64] was originally developed as a framework for continuous

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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systems, but it can be extended to discrete systems [67]. Since linear local models are
usually identified as discrete-time models, the following method is more appealing
for practice.

Consider a sampled, nonlinear, dynamic system, which can be represented in the
state space as:

x(k + 1) = f (x(k), u(k)) ,

y(k) = g (x(k), u(k)) ,
(3.53)

where k denotes the discrete-time instants, x(k) is the state vector, u is the input
signal and y is the output signal. We suppose that the sampling time Ts used for the
representation of the original system is chosen to be small enough so that the system
described with Eq. (3.53) captures all the nonlinear dynamics of the original system.

We would like to model the system described with Eq. (3.53) that is a discre-
tised representation of the original system. We start with the discrete-time version
because the proposed modelling is based on combining information obtained from
identified localmodels, which are based on sampled signals and consequentlywritten
in discrete-time form.

To combine local information in the global model, including the off-equilibrium
regions, a VBL is the appropriate approach [64]. However, the VBL approach can be
applied for continuous systems only. Consequently, a description of a discrete-time
system of Eq. (3.53) that can be treated with the VBL approach is required. The
system described with Eq. (3.53) with a zero-order hold, representing a model of a
digital/analogue converter, can be seen as a continuous delayed system [67, 68]:

x(t + Ts) = f (x(t), u(t)) ,

y(t) = g (x(t), u(t)) .
(3.54)

The system of Eq. (3.54) has an equivalent response to the system described with
Eq. (3.53) in sampled instances and is in a form that enables an analysis based on a
VBL.

The system of Eq. (3.54) can be reformulated, without any loss of generality, in
the form denoted as ELLE [65]

x(t + Ts) = Ãx(t) + b̃u(t) + F(�),

y(t) = c̃x(t) + d̃u(t) + G(�),
(3.55)

where x(t) ∈ R
n , u(t) ∈ R and Ã, b̃, c̃, d̃ are an appropriately dimensioned constant

matrix, two vectors and a scalar, respectively, F(·) and G(·) are nonlinear functions
and � = �(x(t), u(t)) ∈ R

q , q ≤ n + 1, embodies the nonlinear dependence of the
dynamics on the state and the input with ∇x�, ∇u� constant [65].
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Relative to the operating point �(t) = �0, where (x, u) = (x0, u0), the first
equation of Eq. (3.55) can be rewritten using

δx(t) = x(t) − x0, (3.56)

δu(t) = u(t) − u0, (3.57)

as:

x(t + Ts) = Ã (x0 + δx(t)) + b̃ (u0 + δu(t)) + F(�0). (3.58)

Close to the operating point �0 and assuming the local linearity it follows that:

x(t + Ts) − x0 + x0

= Ãx0 + Ãδx(t) + b̃u0 + b̃δu(t) + F0 + Fx0δx(t) + Fu0δu(t), (3.59)

δx(t + Ts) + x0 =
(

Ãx0 + b̃u0 + F0

)
+

(
Ã + Fx0

)
δx(t)

+
(

b̃ + Fu0

)
δu(t), (3.60)

δx(t + Ts) = (f0 − x0) +
(

Ã + Fx0

)
δx(t)

+
(

b̃ + Fu0

)
δu(t), (3.61)

where f0 = f (x0, u0), F0 = F(x0, u0), Fx0 = ∂F
∂x (x0, u0) and Fu0 = ∂F

∂u (x0, u0).
When differentiating Eq. (3.61) with regards to time, we obtain:

ẋ(t + Ts) =
(

Ã + Fx0

)
ẋ(t) +

(
b̃ + Fu0

)
u̇(t), (3.62)

ẋ(t + Ts) = A(�0)ẋ(t) + b(�0)u̇(t), (3.63)

where A(�0) = (Ã + Fx0) and b(�0) = (b̃ + Fu0). Similarly, the second equation
of Eq. (3.55) can be rewritten as:

ẏ(t) = c(�0)ẋ(t) + d(�0)u̇(t), (3.64)

with c(�0) = (c̃ + Gx0) and d(�0) = (d̃ + Gu0), where Gx0 = ∂G
∂x (x0, u0) and

Gu0 = ∂G
∂u (x0, u0).

Equations (3.63) and (3.64) are valid for any operating point determined with the
scheduling vector�. Therefore, the system describedwith Eq. (3.55) can be generally
written as:

ẋ(t + Ts) = A(�)ẋ(t) + b(�)u̇(t),

ẏ(t) = c(�)ẋ(t) + d(�)u̇(t),
(3.65)
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where

A(�) = Ã + ∂F

∂x
(x(t), u(t)), (3.66)

b(�) = b̃ + ∂F

∂u
(x(t), u(t)), (3.67)

c(�) = c̃ + ∂G

∂x
(x(t), u(t)), (3.68)

d(�) = d̃ + ∂G

∂u
(x(t), u(t)). (3.69)

Afterwards, the method follows the modelling procedure for continuous systems.
The model described with Eq. (3.65) in the appropriate state space canonical form

can be, if convenient, reformulated in the input–output form for a standard linear
equation as

ẏ(t + Ts) = zFSGPw (3.70)

where zFSGP = [ẏ(t), . . . , ẏ(t − nTs), u̇(t), . . . , u̇(t − nTs)]T is the regression vec-
tor of the FSGP model and w(�(t)) = [wi (�(t))]; i = 1, . . . , 2n is the vector of
parameters modelled with GP models.

The FSGP model prediction ˙̂y(t + Ts) can be calculated in the same way as for
linear models [18]; therefore, as the mean prediction

E( ˙̂y(t + Ts)) = zTFSGPE(w) (3.71)

and the corresponding variance

var( ˙̂y(t + Ts)) = zTFSGPcov(w)zFSGP. (3.72)

Nevertheless, we have to keep in mind that the parameters contained in w(�(t)) are
considered independent, which means that the model tends to be overconfident in its
predictions.

Caution needs to be exercised with the implementation of a FSGP model when it
is simulated. The global, discrete-time, local model-based, FSGPmodel containing a
linear parameter-varying system with a GPmodel for each of the varying parameters
is simulated as shown in Figs. 3.19 and 3.20 and used for the model validation.

The simulation of the FSGP model is based on a VBL approach [64] and the
principal block scheme can be seen in Fig. 3.19. The FSGP model is simulated as a
continuous-time-delayed system with sampling of the output signal.

The central block in Fig. 3.19 contains the linear parameter-varying system with
a GP model for each of the varying parameters presented in more detail in Fig. 3.20.

The input signal derivative in Fig. 3.19 is due to the use of the VBL approach,
which is necessary for the modelling of the nonlinear dynamics at a distance from
equilibria based on local information. It is important to point out that the FSGP
model generally serves as an analysis tool and the derivative is not implemented in,
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Fig. 3.19 Block scheme for the simulation of the FSGP model

Fig. 3.20 LPV part with GP models as varying parameters—the masked part from Fig. 3.19

e.g. closed-loop control. However, the use of signal derivative can be circumvented,
as shown in [64], if there is a practical problemwith noisy input signal. Nevertheless,
the model input signals are often noise free.

Example 3.5 (FSGP modelling example) Themodelling procedure is illustratedwith
the same second-order discrete nonlinear system that is used for the LMGPmodelling
Example 3.4:
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y(k + 1) = f (y(k), y(k − 1), u(k))

= k1y(k) + k2y2(k) + k3y(k − 1) + k3u(k)y(k) + k4u(k), (3.73)

with the constants k1 = 0.893, k2 = 0.0371, k3 = −0.05, k4 = 0.157 and the
sampling time Ts = 1s. The process model is supposed to be used for the control
design, based on the information available from the FSGP model.

The system described with Eq. (3.73) represented in continuous-time-delayed
form is as follows:

y(t + Ts) = f (y(t), y(t − Ts), u(t))

= k1y(t) + k2y2(t) + k3y(t − Ts) + k3u(t)y(t) + k4u(t) (3.74)

and in the ELLE form of Eq. (3.55):

x(t + Ts) =
[

k1 k3
1 0

]
x(t) +

[
k4
0

]
u(t) + k2x2(t) + k3u(t)x(t),

y(t) = [ 1 0 ] x(t),

(3.75)

where x(t) = [x(t)x(t − Ts)]T = [y(t) y(t − Ts)]T. Following the VBL approach,
the system can be further written in the forms described with Eqs. (3.63) and (3.64)
as a second-order system with varying parameters:

ẋ(t + Ts) =
[

a1(�) a2(�)

1 0

]
ẋ(t) +

[
b1(�)

b2(�)

]
u̇(t),

ẏ(t) = [ 1 0 ] ẋ(t),

(3.76)

where the parameters a1(�) = ∂x(t+Ts )

∂x(t) and b1(�) = ∂x(t+Ts )

∂u(t) depend on the vector

of the scheduling variables � = [y(t) u(t)]T :

a1(�) = k1 + 2k2 y(t) + k3 u(t),

b1(�) = k3 y(t) + k4,
(3.77)

while the parameters a2 = ∂x(t+Ts )

∂x(t−Ts )
= k3 and b2 = ∂x(t)

∂u(t) = 0 are constant across the
whole operating region.

Our aim is to model the system described with Eq. (3.74) using the FSGP model
and use the information from this model for the control design. The FSGPmodel will
consist of the second-order model structure with the modelled varying parameters
â1(�) and b̂1(�), while the other parameters are constant
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ẋ(t + Ts) =
[

â1(�) a2

1 0

]
ẋ(t) +

[
b̂1(�)

b2

]
u̇(t),

ẏ(t) = [ 1 0 ] ẋ(t).

(3.78)

The two varying parameters are modelled with two GP models, while the constant
parameters a2 and b2 are set to their corresponding values. The training points, i.e.
the values of the local model parameters, are in general obtained with the identifica-
tion of linear local models. Any suitable linear model identification algorithm that
gives consistent and unbiased results can be used for the identification, e.g. the IV
method [55].

The identification of the linear local models necessary for composing the FSGP
model is performed in the region determined by 1 < u < 3 and 0.9 < y < 2. Two
kinds of local models are collected: linear local models on the equilibrium curve and
linear local models at a distance from the equilibrium curve.

The equilibrium models are obtained with the identification of models using the
IV method in the vicinity of arbitrarily selected equilibrium points (Fig. 3.21) using
a pseudo-random binary signal for the excitation of the process. The choice of the
method, the excitation signal and the equilibrium points is arbitrary and usually
depends on the process itself or on the available data. Twenty-one local linear models
are identified on the equilibrium curve in our case.

Themodels at a distance from the equilibrium curve are obtained from the identifi-
cation data obtained in regions away from equilibrium. These data are gathered from
the random input signal that also excited the system at a distance from equilibrium.
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Fig. 3.21 Predictions of â1 (left) and b̂1 (right) and the associated variances
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Nine local linear models are identified at a distance from the equilibrium curve in
our case.

Two GP models that represent the varying parameters each encompass 30 values
of the operating point values and the corresponding local model parameters as train-
ing data. Modelling the GP models also makes it possible to take into account the
variances of the identified local model parameters obtained during the identification
of the local models. In our case, we utilise only the mean values. The GP model
representing the varying parameter a1(�) and the GPmodel representing the varying
parameter b1(�) are trained with the scheduling vector � being the regressor vector.
A squared exponential covariance function described by Eq. (2.14) is used for the GP
models, because the functions of the varying parameters are presumed to be smooth.

The obtained varying parameters models’ predictions represented by the mean
values and variances can be seen in Fig. 3.21.

A global FSGP model with GP models representing the varying parameters is put
together and validated with a computer simulation. The process and the FSGPmodel
are excited inside and outside the region where the local models were identified and
where the model is to be consistent.

The responses of the system and the FSGP model, with a zero-order hold on the
output, on a staircase input signal are depicted in Fig. 3.22. The variances that are
associated with each of the predicted parameters are given in Fig. 3.23.
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Fig. 3.22 Comparison of simulated responses of the system and the FSGPmodel with a zero-order
hold on the output on the validation signal. The region before 150s is the trained region and that
after 150s is the untrained region
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Fig. 3.23 Predicted variance of the parameters â1 (top) and b̂1 (bottom) during a simulation. The
region before 150s is the trained region and that after 150s is the untrained region

It is clear from Fig. 3.22 that when the FSGP model predicts within the region
where its components are identified, the accuracy of the FSGP model’s predictions
is noticeably better than outside of this region. The uncertainty of the predictions
can be detected via the increase in the variances of the parameters that can be seen
in Fig. 3.23.

Apossible applicationof the developedmodel is control design,which is discussed
in Chap.4.
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Chapter 4
Control with GP Models

Previous chapters dealt with the GP models used for the identification of dynamic
systems.Dynamic systems identification is frequently used for control design, andGP
models identification is no exception. This chapter gives a comprehensive overview
of the control methods based on GP models.

Control is the activity that makes a system behave in the desired way. A general
overview of the field of automatic control can be found in encyclopaedic books like
[1, 2]. There are different possible divisions of control types. We are resorting to
those common to control engineering community. The control of dynamic systems
is, in general, divided to open- and closed-loop control. Closed-loop control utilises
the difference between the desired and themeasured output and applies it as feedback
to bring the process output close to the desired value. Closed-loop control is further
divided into two basic types: disturbance-rejection control and reference-tracking
control.While the former is proposed formitigating various disturbances that prevent
a system from behaving in the desired way, the latter is focused on following the
specified reference values.

The methods that are described in the following sections are meant for the control
of nonlinear and uncertain dynamic systems, i.e. the systems for which GP models
are very suitable. The requirements for a controlled system that is most of the time
in a closed-loop can be expressed in many different ways, as will become clear from
the examples in this chapter and in the chapter describing applications, later in the
book.

What is not addressed in this chapter is the minimum-entropy control [3]. This
is a control method where the desired probability density function, which is not
necessarily Gaussian, of the system output is controlled in a closed-loop manner. GP
models have not yet been used for such a type of control in general.

The nonlinear systems analysis that goes hand-in-hand with control design is
addressed in many well-known references, e.g. [4, 5], and others, but the analysis
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of nonparametric models or models containing nonparametric parts that would be
applicable in the context of GP models is relatively scarce, e.g. [6, 7].

Closed-loop stability and performance are the two properties that are analysed
most frequently when closed-loop control is designed. In particular, closed-loop
stability is a very important requirement and of interest for control design.

On Closed-Loop Stability

It is important to mention some concepts about a system’s stability that are used
later in the text. The reader is referred to, e.g. [4, 5] for a more formal and elaborate
explanation. It should be noted that there is no universal method for the analysis of
all nonlinear control systems.

The analysis of a system’s stability is based on the Lyapunov stability theory,
which dealswith deterministic systems and signals. Stability in the sense ofLyapunov
means that the system’s trajectory can be kept arbitrarily close to the origin by
starting sufficiently close to it. If the trajectory converges to the origin we talk about
asymptotic stability, and when it converges to the origin faster than an exponential
function, we talk about exponential stability.

It is also important to distinguish between local and global stability. The idea
behind local stability is that the stability properties of a nonlinear system in the close
vicinity of an equilibrium point are more or less the same as those of its linearised
approximation.

The global stability of a system’s equilibrium point, on the other hand, means that
asymptotic or exponential stability holds for any initial state of the system.

The Lyapunov theory can be divided into the indirect and direct analysis methods.
Lyapunov’s indirect or linearisation method is concerned with the local stability of a
nonlinear system. The concept behind it is that a nonlinear system should behave in
a similar way to its linearised approximation for a small range deviations around the
point of linearisation. It serves as the justification for using a linear control technique
in practice and shows that stable design by linear control guarantees the stability of
the nonlinear system locally [5].

The direct method or Lyapunov analysis is a generalisation of the energy concepts
associated with a mechanical system. The idea is to construct an energy-like scalar
field, known as the Lyapunov function, for the system to see whether the function
decreases with time. The direct method is used for an analysis of global stability.

Another useful concept is that of input-output stability. The bounded-input,
bounded-output stable systems are those where the bounded input in the system
causes the bounded output of the system. Furthermore, the passivity formalism is
used when combinations of subsystems are analysed and this assists with the con-
struction of Lyapunov functions for feedback-control purposes.

Nevertheless, the stability results for nonlinear closed-loop systems canmainly be
provided for parametric models. GP modelling is a computational-
intelligence-basedmethod. Because the GPmodel itself is probabilistic and nonpara-
metric, the standard analytical methods for the closed-loop analysis of deterministic
systems do not apply in general. Nevertheless, for certain control structures some
general directions for stability analysis can be given, as will be seen in this chapter.
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The analysis of probability of closed-loop stability seems to be amore appropriate
tool for a closed-loop system containing a GP model. Nevertheless, because of the
nonparametric model and of the nonlinear characteristics, at present only numer-
ical evaluations seem to be applicable for a stability evaluation, e.g. Monte Carlo
simulations.

It is important to note that until now there were no published research results
available on the topic of closed-loop stability when a GP model of the process to be
controlled is involved, except the empirical ones using computer simulations. This is
despite the fact that a lot of control applications have been investigated worldwide.
So far, computer simulations have been the most frequently used, general-purpose
analysis tool for closed-loop systems containing GP models in publications.

The same lack of analytical tools for particular types of models was also the case
in the early days of the nowwell-established computational intelligencemethods like
fuzzy control and neural networks. The discovery of applicable analytical methods
for closed-loop systems containing fuzzy or neural methods was lagging behind after
many successful control applications.

Therefore, a stability analysis, as the most important issue in closed-loop control
design, has been many times illustrated with computer simulations, which are now
a common tool in engineering design.

Chapter Outline

Control design always depends on themodel of the system to be controlled. Different
types of models also mean different types of control methods, as will be seen in the
following sections. The chapter is devoted to control methods utilising GP models
that were already published in the literature. Some of the methods are described in
more detail; for other methods the reader is referred to the literature for the detailed
description. The single-input, single-output cases are elaborated in this chapter for
the sake of an easier understanding of the principles, but they can be generalised to
the multiple-input, multiple-output cases as in [8] for some of the described control
methods.

It is clear from the literature that both deterministic and stochastic treatments of
control systems using GP models are used according to the authors’ convenience
and problem setting. Consequently, no attempt to fit the described control methods
within one framework is made, rather we try to follow the method description from
its literature source.

Descriptions of control applications where GP models are used only to comple-
ment or assist conventional control design methods can also be found. Examples of
such design methods are: control systems where GP models are used for modelling
static nonlinearities, e.g. a friction curve in [9], or deviations from a compensated
nominal model, e.g. in GP-assisted model-reference adaptive control [6, 7, 10], or
proportional-integral control with a GP-based soft sensor in [11]. These and other,
not listed, hybrid methods are not classified in the covered control GP-based princi-
ples, but are no less interesting for engineering practice. They show that the use of
GP models does not necessarily mean adopting new design methods, just improving
the existing ones, where convenient.
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The following control principles based on GP models are covered in this chapter:

• inverse dynamics control,
• optimal control,
• model predictive control,
• adaptive control,
• gain-scheduling control,
• model identification adaptive control,
• iterative learning for control.

4.1 Control with an Inverse Dynamics Model

The concept of the inversemodel [12] is that such amodel of the process is developed
to be connected in series with the process and therefore to control the system in an
open loop. This kind of approach is not usuallymeant as an effective control solution,
but mainly as a demonstration of a particular machine-learning method.

The basic principle, in brief, is as follows. If the system to be controlled can be
described by an input-output model

y(k + 1) = h(y(k), . . . , y(k − n + 1), . . . , u(k), . . . , u(k − m)) (4.1)

then the corresponding inverse model is

û(k) = h−1(y(k + 1), y(k), . . . , y(k − n + 1), . . . , u(k − 1), . . . , u(k − m))

(4.2)
Assuming that this inverse system has been obtained, it can be used to generate

a control input signal that approaches the desired process output signal, when the
reference input signal is given to the inverse model. This means that samples of y in
Eq. (4.2) are replaced by the reference values r .

The general principle is illustrated in Fig. 4.1.
The training of a realisable inverse model requires input-output stable process

responses. The input-output stability of open-loop control is ensured only if both the
inverse model and the process are input-output stable. This is because signals are
always constrained in magnitude, which disables the open-loop control of unstable
systems. Even in the case of a computer simulation, the input and output values
cannot be infinitely large.

Inverse
model

Process
r u y

Fig. 4.1 General block scheme of direct inverse control
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GP inverse
model

ProcessCoventional
controller

r u y

-

Fig. 4.2 General block scheme of inverse dynamics control

When the mentioned assumption is satisfied, the inverse model can be modelled
from the appropriately selected output and input values of the process following
Eq. (4.2). The resulting cascade system ideally becomes a unit delay. In the case of a
dead time in the process to be controlled, it should be removed from the data for the
inverse model training. The resulting cascade system in this case ideally becomes a
delay corresponding to the process dead time plus the unit delay.

There is a further list of assumptions and constraints that needs to be satisfied for
such a system to be implemented in practice. Actually, there are so many of them
that it seems that only the computer simulation of such an open-loop control system
is possible.

The assumptions necessary for open-loop control to be operational are: no distur-
bances in the system, no uncertainties and changes in the process and an open-loop
controller that is the perfect inverse of the process in the region of its operation. It is
not enough that the inverse model exists. To be realisable it also needs to be causal.
Since it is not realistic for all these assumptions to be fulfilled, the inverse system
is usually implemented in combination with closed-loop control or as part of the
adaptive system.

A realisable control method that uses an inverse model for cancelling the non-
linearities of the process to be controlled is inverse dynamics control, e.g. [13, 14]
illustrated in Fig. 4.2.

This is a closed-loop method that contains a conventional controller to deal with
the mismatches between the nonlinearity compensator and the process as well as
with the process disturbances. Such a method is used for the system control in
robotics. The requirements for the stability and causality of the compensator, i.e. the
GP inverse process model, must be fulfilled during the identification of the inverse
model, which can be identified either offline or online. The controller in the loop
must be designed appropriately to ensure the closed-loop stability. Assuming the
inverse model is perfect, the cascade system of the nonlinearity compensator and
the process ideally becomes a delay. The closed-loop stability under this assumption
may be ensured with linear stabilising control.

An applicationwith theGPmodel of the inverse process dynamics that is identified
offline is given in [14, 15] for a robot-control investigation. These applications of
referenced inverse GP models do not use the entire information from the prediction
distribution, rather they focus on themean value of the prediction. But the potential of
the GP models for this kind of control is not utilised entirely, e.g. information about
the variances could be used for maintaining or indicating the region of nominal
closed-loop performance.

Feedforward control that eliminates the process nonlinearities is another control
method that is used mainly in robotics. The principle is shown in Fig. 4.3.
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GP inverse
model

ProcessCoventional
controller

r u y

uff

ufb

-

Fig. 4.3 General block scheme of the existing control system with the GP inverse model as a
feedforward to improve the closed-loop performance

The control signal consists of the feedforward and feedback component u =
uff + ufb. The feedback loop with a conventional, frequently linear, controller is
required to maintain the stability and the disturbance rejection for this control sys-
tem, designed for set-point tracking. The feedforward part is an inverse model that
compensates for the process nonlinearities, and provided that it is stable, it will not
change the stability properties of the entire system. The inverse model has to be as
accurate as possible in the region of operation to ensure the required performance.
The closed-loop performance is deteriorated in the case of unmodelled nonlineari-
ties. The feedforward is generally considered as a function of the desired set-point,
in the case of robotic control that would mean the desired robot trajectories.

The concept has some practical advantages [12]. First, since it is assumed that
a stabilising controller is available in advance, the data necessary for the inverse
model can be collected from a previously assembled, closed-loop system without
the feedforward component. Second, the feedforward signal can be introduced grad-
ually during the control system’s implementation as a caution. Third, in the case
of avoiding inverse dynamics, static feedforward may be used with the feedback
controller, compensating for an erroneous feedforward signal.

The inverse model can be identified offline or online. The case when the inverse
GP model is identified offline and used in such a control set-up is described in
[14, 16]. Again, like in the case of inverse dynamics control, only the mean value of
the prediction is utilised. The adaptive cases are mentioned in Sect. 4.4.

Example 4.1 Comparison of the tracking performance
In this example all three described control methods that are based on the inverse

process model are illustrated with the first-order nonlinear system.
Consider the nonlinear dynamic system [17] described by

y(k + 1) = y(k)

1 + y2(k)
+ (u(k) + d(k))3 (4.3)
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where u is the system’s input signal, d is an unmeasured input disturbance, not
correlated to the input signal u, y is the system’s output signal. The closed-loop
control requirement is to follow the set-point closely.

First, the inverse GP model is identified. The input signal u to the system was
a random signal in the range [−1.5, 1.5]. About 2000 samples from the input and
output signals were used to identify the inverse model. The regression vector of the
inverse GP model is as follows: [u(k − 1), y(k + 1), y(k)]T; k = 2, . . . , N and the
target is [u(k)]; k = 2, . . . , N .

The obtained results are as expected. While direct inverse control (Fig. 4.4) works
well in the region where the inverse model was identified, it cannot cope with the
input disturbance, because the controller does not receive any information about its
occurrence and effect.

The conventional controllers in the case of the inverse dynamics and the feed-
forward control are proportional-integral controllers with the appropriately selected
constants. The controlled systems are tested for the set-point tracking of rectangular
pulses of about a half unit positive and negative magnitude for 100 time instants.
A step-like disturbance of considerable magnitude, which is 0.2, i.e. about 40% of
the system input and output signal, is added to input d from the time instant k = 50
on, in order to test the closed-loop systems. The responses and input signals into the
system for the described types of control are given in Figs. 4.4, 4.5 and 4.6.
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Fig. 4.4 Open-loop response with the direct inverse model control on a pulse change of the set-
point signal and an additive step disturbance at the time instant k = 50 (upper figure) and the
corresponding system input signal (bottom figure)



154 4 Control with GP Models

10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

k

y

set−point
response

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

k

Control input

u

Fig. 4.5 Closed-loop response with inverse dynamics control on a pulse change of the set-point sig-
nal and an additive step disturbance at the time instant k = 50 (upper figure) and the corresponding
system input signal (bottom figure)
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Fig. 4.6 Closed-loop response with feedforward control on a pulse change of the set-point signal
and an additive step disturbance at the time instant k = 50 (upper figure) and the corresponding
system input signal (bottom figure)
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A better example is the response from the inverse dynamics control (Fig. 4.5),
but it should be emphasised that some effort needs to be put into finding suitable
constants for a conventional proportional-integral controller that assists the loop and
ensures closed-loop stability.

The closed-loop control system with the inverse GP model in feedforward
(Fig. 4.6) shows the best tracking and disturbance-rejection performance, which
explains the relative popularity of this method in practice for selected applications.

It should be noted that these simulation cases contain absolutely no added noise,
which would cause even more notable differences in the responses. Note that only
the mean values, i.e. the most likely ones, are taken as output values of the inverse
GP model and no other information about the predicted output distribution is taken
into account.

4.2 Optimal Control

The general idea of optimal control [1, 18] is to design the control for a dynamic
system by minimising the so-called performance index, constrained by the system
dynamics. This performance indexdepends on the systemvariables andmight include
various measures, like the operating error, the control effort and others. The smaller
performance index is, the smaller, under some assumptions, are the system variables,
which also means closed-loop stability. This kind of philosophy is very general
and encompasses a very broad set of control strategies. The formal description of a
continuous problem, its discrete-time version, and the stochastic problem description
are given next. As the formal descriptions originate from a continuous problem,
its description will be more detailed. The problems are, for the sake of generality,
presented for systems with multiple inputs and states.

The process model is given in the state space for a nonlinear, time-varying and
dynamic system:

ẋ = f(x, u, t), t ≥ t0, t0 fixed, (4.4)

where x(t) ∈ R
n is the vector of the internal states and u(t) ∈ R

m is the vector of
the control variables (which we wish to choose optimally), f is an n-dimensional
vector function and t is the time. The initial time and the initial state of the system
are supposed to be known:

x(t0) = x0. (4.5)

The system is subject to a set of generally nonlinear constraints, also called the
algebraic path constraints:

γ(x, u) ≥ 0, (4.6)

χ(x, u) = 0, (4.7)
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where γ and χ are constraint functions. These constraints must be taken into
accountwhile searching for the problem solution. The control variablesu = [ui ], i =
1, . . . , m should be in the admissible range, defined by the lower and upper bounds:

umini ≤ ui ≤ umaxi i = 1, . . . , m. (4.8)

The system can also be subject to a terminal constraint that describes the target set:

ψ(x(t f ), t f ) ≤ 0. (4.9)

The performance objectives may be achieved by minimising the performance
index or the cost function described with Eq. (4.10) from the initial time t0 until the
final time t f :

J (x, u) = Φ(x(t f ), t f ) +
∫ t f

t0

L(x, u, t)dt. (4.10)

The final-state weighting functionΦ(x(t f ), t f ) and the weighting function L(x, u, t)
are selected according to the performance objectives.

The optimal control problem [1, 18] is to find the time-varying control input
u(t) for the system described with Eq. (4.4) that minimises the performance index
described with Eq. (4.10), while satisfying the constraints described with
Eqs. (4.6)–(4.9).

The necessary conditions for optimality according to Pontryagin’smaximumprin-
ciple [1, 19] are the following. In order for u(t) to be optimal in the sense that it
minimises the performance index described with Eq. (4.10), while satisfying the sys-
tem equation described with Eq. (4.4) and the constraints described with Eq. (4.8), it
is necessary that the condition

0 = ∂H

∂u
= ∂L

∂u
+ ∂fT

∂u
λ. (4.11)

holds for the unconstrained portion of the path and the Hamiltonian function:

H(x, u, t) = L(x, u, t) + λTf(x, u, t). (4.12)

is minimised along the constrained portions of the control trajectory. Here, λ is an
n-dimensional vector of time-dependent Lagrange multipliers, which are defined by
the equation:

− λ̇ = ∂H

∂x
= ∂fT

∂x
λ + ∂L

∂x
, t ≤ t f . (4.13)

The expression for the performance index described with Eq. (4.10) is sufficiently
general to allow for the treatment of a wide class of practical problems, among
which are:
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• the minimum-time control, i.e. minimising the time to transfer the system from
the initial state to the desired final state,

• themaximumproductivity problem, i.e. maximising the amount of desired product
at the final time.

Optimal control in discrete time iswhen the behaviour of a continuous-time system
is not considered at all the instants of time t , but only for a sequence of instants k.
The discrete-time systems are then described by the state-difference equation:

x(k + 1) = f(x(k), u(k), k), k ≥ 0, (4.14)

where x(k) is the n-dimensional vector of the internal states, u(k) is the m-
dimensional vector of the control variables that we wish to choose optimally, f is an
n-dimensional vector function and k is the time instant.

The equations describing the continuous control problem have their discrete-time
equivalents and the integral in the performance index is replaced by the summation
of the discrete values over the finite Nh-step optimisation horizon.

J (x, u) = Φ(x(Nh), Nh) +
Nh−1∑

k=1

L(x(k), u(k), k). (4.15)

There is a large variety of computational techniques for determining the optimal
control for general nonlinear systems, but it is beyond the scope of this book. The
reader is referred to other literature, e.g. [1, 18], for more information on this topic.
From the presented problem, various special problems and solutions are derived.

For example, if the dynamics f is linear in x and u, the cost is quadratic, and the
noise is Gaussian, the resulting problem transfers to the so-called Linear Quadratic
Gaussian and Linear Quadratic Regulator problems, which are convex and can be
solved analytically [1].

The generalisation of the optimal control problem to stochastic systems is rather
tricky. In the presence of noise, the dynamics is described as a stochastic differential
equation

dx = f(x, u, t) + fC(x, u, t)dν, t ≥ t0, t0 fixed, (4.16)

where dν is assumed to be Brownian-motion noise, which is transformed by a pos-
sibly state and control-dependent matrix fC(x, u, t). The performance index or cost
function is

J (t0) = E

(
Φ(x(t f ), t f ) +

∫ t f

t0

L(x, u, t)dt

)
. (4.17)

Stochastic optimal control theory approaches the control problem by first specifying
a cost function that is composed of some evaluation Φ(x(t f ), t f ) of the final state,
usually penalising deviations from the desired state xr and the accumulated cost
L(x, u, t) of sending a control signal u at time t in the state x, typically penalising
excessive values of u.
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Finding an optimal control policy for a nonlinear system is a challenge. In theory, a
global solution can be found by applying a dynamic programming method. Dynamic
programming [1] in the context of optimal control is a recursive method for obtaining
the optimal control as a function of the system’s states. It is described with the
Hamilton-Jacobi-Bellman equation for the continuous-time optimal control problem
orwith its discrete-time equivalent theBellman equation for the discrete-time optimal
control problem [1].

Another method that appears when finding solutions of the optimal control prob-
lem is reinforcement learning [20], which is an area of machine learning, concerned
with finding actions based on past experience in a certain environment to maximise
some cumulative discounted reward. Approximate dynamic programming, which is
briefly addressed in Sect. 4.7, is a fieldwhere reinforcement learning has been studied
in connection with the theory of optimal control.

The following sections describe the control methods emerging from the problem
descriptions in this section that are usually variations or simplifications of the opti-
mal control. Using the Gaussian process model does not necessarily mean that the
stochastic control problem is dealt with. It could also be used in deterministic control
problems.

4.3 Model Predictive Control

Model predictive control (MPC) is the name used to describe computer control
algorithms that use an explicit process model to predict the future response of a
controlled plant. According to the prediction made in a particular time frame, also
known as the prediction horizon, the MPC algorithm optimises the manipulated
variable over a chosen length, also known as the control horizon, to obtain the optimal
future response of a plant. The first input value of the optimal control input sequence
is sent to the plant and then the entire optimisation sequence is repeated during the
next time period.

The popularity of MPC algorithms is, to a large extent, due to their ability to
deal with the constraints that are frequently met in control practice and are often not
well addressed by other approaches. MPC algorithms can handle the hard state and
rate constraints on the inputs and states that are occasionally incorporated into the
algorithms via an optimisation method.

LinearMPC approaches [21] started to appear in the early 1980s and are nowwell
established in control practice (see [22] for an overview). Nonlinear model predictive
control (NMPC) approaches [23] started to appear about 10years later and have also
found their way into control practice (e.g. [24]) though their popularity cannot be
compared to that of linearMPC. This fact is connectedwith the difficulties associated
with nonlinear model construction and with the lack of necessary confidence in
the model. There were a number of contributions in the field of NMPC dealing
with issues like stability, efficient computation, optimisation, constraints and others.
Some contributions in this field can be found in [23, 25–27]. NMPC algorithms
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Fig. 4.7 Blockdiagramof anMPCsystem that illustrates themain principlewhere the control signal
is obtained based on the difference between the process and model responses. This difference is
then used for calculating the control signal over a selected horizon using the optimisation algorithm
and process model embedded in the MPC

are based on various nonlinear models. Often, these models are developed as first-
principles models, but other approaches, like black-box identification approaches,
are also popular. Various NMPC algorithms are based on a neural-network model,
e.g. [12], fuzzy models or local model networks, e.g. [28]. The quality of the control
depends on the quality of the model. New developments in NMPC approaches are
coming from resolving various issues: from faster optimisation methods to different
process models.

In this section we focus on an NMPC principle with a GP model, but will start
the description with a general description of MPC.

In general, MPC can be described with the block diagram in Fig. 4.7. The model
used here is fixed, identified offline, which means that the control algorithm being
used is not an adaptive one. The structure of the entire control loop is therefore less
complex than the structure with a time-varying model.

The following items describe the basic idea of MPC, also illustrated in Fig. 4.8:

• The predictions of the system’s output signal y values are calculated for each dis-
crete sample k for a given horizon in the future ( j = N1, . . . , N2). The predictions
are denoted as ŷ(k + j) and represent a j-step-ahead prediction, given the infor-
mation at time instant k, while N1 and N2 determine the lower and upper bounds
of the prediction horizon. Commonly, N1 is set to 0 and N2 is then denoted as Nh .
The lower and upper bounds of the output signal prediction horizon determine the
coincidence horizon, within which a match between the output and the reference
signal is expected. The output signal prediction is calculated from the process
model. These predictions are also dependent on the control scenario in the future
u(k + j), j = 0, . . . , Nu − 1, which will be applied from the moment k onwards.

• The reference trajectory is denoted by r(k + j), j = 0, . . . , Nh , which represents
the reference response from the present value y(k) to the set-point trajectoryw(k).
The reference trajectory and the set-point trajectorymay be the same in someMPC
algorithms.
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Fig. 4.8 The basic principle of MPC

• The future control sequence u containing u(k + j), j = 0, . . . , Nu − 1 is calcu-
lated by minimising the cost function (also called the objective function) such that
the predicted error between r(k + j) and ŷ(k + j), j = 0, . . . , Nh is a minimum.
The structuring of the future control sequence can be used in some approaches.

• Only the first element u(k) of the optimal control sequence u(k + j), j = 0, . . . ,
Nu − 1 is applied.

In the next sample, another measured output sample is available and the entire pro-
cedure is repeated. This principle is called the receding-horizon strategy [21].

The control objective is achieved byminimising the cost function, which penalises
the deviations of the predicted controlled output value ŷ(k + j) from a reference
trajectory r(k + j). This reference trajectorymay depend on themeasurementsmade
up to time k. Its initial value may be the output measurement y(k), but also a fixed
set-point, or some predetermined trajectory. The minimisation of the cost function,
in which the future control sequence described by the vector u is calculated, may be
subject to various constraints (e.g. input, state, rates).

MPC [21] solves a constrained control problem and can generally be written
as follows. The single-input, single-output case is elaborated here, but it can be
generalised to the multiple-input, multiple-output case. A nonlinear, discrete-time
system can be described in the input-output form:

y(k + 1) = h (y(k) . . . y(k − n), u(k) . . . u(k − m)) + ν0(k) (4.18)



4.3 Model Predictive Control 161

or in the state space form:

x(k + 1) = f (x(k), u(k)) + ν1(k) (4.19)

y(k) = g (x(k), u(k)) + ν2(k) (4.20)

where x(k) ∈ R
n , u(k) ∈ R and y(k) ∈ R are the state, input and output variables,

ν i (k); i = 0, 1, 2 are the Gaussian random variables representing disturbances, and
h, f, g are the nonlinear continuous functions.

The associated input and state constraints of the general form are:

u(k) ∈ U , (4.21)

x(k) ∈ X , (4.22)

where U is the set of constrained inputs and X is the set of constrained states. The
optimisation problem is

V ∗(k) = min
u

J (u, x(k), r(k), u(k − 1)), (4.23)

where the cost function of a general form is

J (u, x(k), r(k), u(k − 1)) = E

⎛

⎝
Nh−1∑

j=0

l
(
x̂(k + j), u(k + j)

)
⎞

⎠ (4.24)

where l is a function called the stage cost function, and it is assumed that the cost
falls to zero once the state has entered the set of optimal states X0, i.e. l(x, u) = 0 if
x ∈ X0. The following terminal constraint is imposed:

x̂(k + Nh) ∈ X0. (4.25)

The optimal solution to the optimisation problem described with Eq. (4.23), sub-
ject to input, state and terminal constraints, is the control sequence

uo = [uo(k), uo(k + 1), . . . , uo(k + Nh − 1)] . (4.26)

Because only the first control input uo(k) in the optimal sequence uo is applied to
the system at time k, an implicit MPC law

κN (x) = uo(k), (4.27)

that is time invariant and where the index N reminds us that it is based on the
optimisation over the finite horizon Nh .
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This is a general form and MPC formulations vary with the various models, cost
functions, and parameters, for example, the length of the horizon.

A frequently used cost function is:

J (k) = ||E(ŷ(k + Nh)) − r(k + Nh)||2P

+
Nh−1∑

j=1

[||E(ŷ(k + j)) − r(k + j)||2Q + ||u(k + j) − u(k + j − 1)||2R
]
.

(4.28)
For x ∈ R

n , the Euclidean norm is ‖x‖ = √
xTx and the weighted norm is defined

for some symmetric and positive definite matrix A as ‖x‖A = √
xTAx. Nh is a finite

horizon and P, Q and R are positive definite matrices.
The MPC method based on online optimisation differs from dynamic program-

ming or explicit MPC in terms of its implementation [29]. With the MPC using
real-time optimisation, the optimal control action κN (x, k) for each time sample is
determined by solving an optimisation problem online, while with the explicit MPC
all the computations related to the optimisation are performed offline for a given set
of initial states.

In our case, the processmodel for the calculation of the predicted outputs is theGP
model, which predicts a normally distributed random variable with the mean value
μŷ(k+ j) = E(ŷ(k + j)) and the variance var(ŷ(k + j)) = E(ŷ(k + j)2) − E(ŷ(k +
j))2. Note that with long-term predictions, the predicted random variable is approx-
imated in one of the ways described in Sect. 2.6.

There are many alternative ways in which an NMPC with GP models can be
implemented.

Cost function. The cost function described with Eq. (4.24) is a general one and
various special cost functions can be derived from it. It is well known that the
selection of the cost function has a major impact on the amount of computation.

Optimisation problem for Δu instead of u. This is not just a change of formalism;
it also enables forms of MPC containing an integral action.

Process model. The process model can be determined offline and fixed for the time
of operation or determined online during the operation of the controller.

Soft constraints. Theuseof constrainedoptimisation algorithms is verydemanding
for computation and soft constraints, i.e. the weights on the constrained variables
in the cost function can be used to decrease the amount of computation. More on
this topic can be found in, e.g. [21].

Linear MPC. It is worth noting that even though this is a constrained NMPC prob-
lem, it can be used in its specialised form as a robust linear MPC.

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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There are several issues of interest for applied NMPC.
The stability of the closed-loop system is one of most important. Some of the pub-
lished overviews relating to closed-loop stability with MPC are in, e.g. [29, 30]. In
general, the stability of a closed-loop system containing MPC can be ensured with:

• the terminal equality constraint, where the controller steers the state to the optimal
state;

• the terminal cost function lT employs the terminal penalty in Eq. (4.24) in addition
to the stage cost function l(·);

• the terminal constraint set, where the controller steers the state to the set of optimal
states X0 in a finite time, and a local stabilising controller is employed inside X0;

• the terminal cost and constraint set are employed.

The sufficient conditions [29] for closed-loop asymptotic (exponential) stability for
deterministic systems are as follows:

1. the state constraint is satisfied in X0 (X0 ⊂ X ,X0 closed 0 ∈ X0).
2. the input constraint is satisfied in X0 (κ(x) ⊂ U ,∀x ∈ X0).
3. the set X0 is positively invariant under κ(·) ( f (x,κ(x)) ∈ X0,∀x ∈ X0).
4. the terminal cost function ΔlT is the change of a local Lyapunov function ([l +

ΔlT ](x,κ(x)) ≤ 0,∀x ∈ X0).

It is very convenient to have a terminal cost lT (·) as close to the optimal value
of the cost function in Eq. (4.24) with an infinite horizon. In the case of equality
the benefits of infinite-horizon optimal control are achieved. Since the optimal value
of a cost function with an infinite horizon is, in general, not known for nonlinear
systems, at least a good approximation of lT (·) with the optimal value of the cost
function in the neighbourhoodX0 of the target state is required. A useful result for the
satisfaction of the sufficient conditions 1.–4. is that the finite-horizon optimal control
problemdescribedwith Eq. (4.23) is equivalent to amodified infinite-horizon optimal
problem in which l(·) is replaced with its upper bound. This makes it possible for the
benefits of infinite-horizon optimal control to be achieved, even though the horizon
is finite, when the listed sufficient conditions are satisfied [29].

Before the stability of MPC systems was addressed theoretically, MPCs were
still applied in industrial practice, with control designers taking care of a few issues
related to implementation that enabled stability as if an infinite horizon was applied.
These issues are listed in [29]: they have restricted the design to stable plants and
choosing a horizon that is large compared with the settling time of the plant.

Some other issues of interest with respect to the implementation of NMPC are
briefly described as follows.

Efficient numerical implementation. A nonlinear programming optimisation
algorithm is computationally demanding. Various approximations, e.g. using the
simplifications of nonlinear functions, and other approaches, e.g. an approximate
explicit solution, exist to decrease the computational load, often for special cases,
like for special cost functions.
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Robustness. This issue has a major impact on the applicability of the algorithm
in practice. An overview of NMPC robustness, in general, can be found in [29].
The properties of a GP model in particular may influence the GP-NMPC con-
tained closed-loop robustness. The fact that the GP model of the process contains
information about the model’s confidence allows the controller to optimise the
manipulative variable in order to ‘avoid’ regions where confidence in the model is
not high enough. This possibility itself makes the controller robust, if it is applied
properly.

Various MPC methods can be applied with GP models, depending on the
designer’s choice and the imposed constraints. Using GP models does not impose
any particular constraint on the cost function, the optimisation method, or any other
element of choice for the MPC design.

NMPC can be treated as a deterministic or stochastic problem. Stochastic NMPC
problems are formulated in applications where the system to be controlled is
described by a stochasticmodel. Stochastic problems in general, like state estimation,
have been studied for a long time, but the stochastic NMPC problem is just a small
subset of the stochastic problems. The best known stochastic MPC approaches are
based on parametric probabilistic models. Alternatively, stochastic systems can be
modelled with nonparametric models, which can offer a significant advantage over
parametric ones. This is related to the fact that the nonparametric probabilistic mod-
els, like GP models, provide information about the prediction uncertainties, which
might be difficult to evaluate appropriately with parametric models.

An application ofMPCwith a GPmodel using the general cost function described
by Eq. (4.28) can be found in, e.g. [31–34]. The MPC containing a GP multimodel,
whereGPmodels describing different operating regions are switched, can be found in
[35]. MPC in the context of fault-tolerant control is described in [36]. Until recently,
most of the applications or investigations of MPC based on GP models were one of
three special forms. These three algorithms are internal model control (IMC), predic-
tive functional control (PFC) and approximate explicit control, which are described
in subsequent sections. Other algorithms can be found, like the one in [37], where
the control is based on an estimation and multistep-ahead prediction of the system
output response in combination with fuzzy models.

Internal Model Control

In this strategy, the controller is chosen to be an inverse of the plant model. Internal
model control (IMC) is one of the most commonly used, model-based techniques for
the control of nonlinear systems. It is closely related to MPC, and can be considered
as a special case of MPC [38]. IMC with a GP model is elaborated in [39–42]. The
description of IMC with a GP model is subsequently adopted from these references.

The general structure is shown in Fig. 4.9. Three advantageous properties of IMC
listed in [42, 43] are:
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Fig. 4.9 General IMC structure

Stability Assuming the model of the plant is perfect, then if the controller and the
plant are input-output stable, the closed-loop system in Fig. 4.9 is stable.

Perfect control Assuming that the controller is the exact model inverse and the
closed-loop system in Fig. 4.9 is stable, then the control will be perfect, i.e. the
output signal y equals the set-point for all disturbances.

Zero offset Assuming that the steady-state gain of the controller is equal to the
inverse of the model gain and the closed-loop system in Fig. 4.9 is stable, then for
asymptotically constant set-points and disturbances, there will be no offset, i.e.
the output signal y asymptotically approaches to the set-point.

The filter in the loop shapes the desired closed-loop behaviour of the closed-loop
system, reduces the gain of the feedback system at high frequencies and introduces
a degree of robustness to the model mismatch.

The main difference between the various IMC approaches lies in the choice of the
internalmodel and its inverse. Itwas shown in [44] that aGPmodel based on a squared
exponential covariance function is not analytically invertible. Instead of calculating
the exact inverse, a numerical approach, such as a successive approximation or the
Newton–Raphson optimisation method, can be used to find the control effort that
solves the following equation:

h(u(k) . . . u(k − m), y(k) . . . y(k − n)) − q(k) = 0, (4.29)

where
h(u(k) . . . u(k − m), y(k) . . . y(k − n)) = ŷ(k + 1) (4.30)

and q is the controller input signal.
TheGPmodel of h is trained as a one-step-ahead predictionmodelwith the regres-

sors u(k) . . . u(k − m), y(k) . . . y(k − n) at different time instances and y(k + 1) at
the corresponding time instances as the targets. The IMC strategy requires the use
of the parallel model of Eq. (4.30). This GP model is then included in the IMC
structure and the numerical inverse of Eq. (4.29) is found for each sample. The IMC
works well when the control input and output values of the system are in the region
where the model was trained. However, as soon as the system moves away from the
well-modelled region, the control input value u(k) on the left-hand side of Eq. (4.29)
cannot be found to force the right-hand side of Eq. (4.29) to zero. The sub-optimal
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Fig. 4.10 Variance–constrained IMC structure

value of u that drives Eq. (4.29) closest to zero is applied instead and this can cause
sluggish and, in certain cases, also unstable closed-loop system behaviour.

Since poor closed-loop performance is the result of themodel being driven outside
its trained region, the naive approach would be to constrain the control input. When
the system is driven into this untrained portion of the operating space, the model will
no longer represent the system well and the initial constraints of the control signal
might not be relevant. However, the increase of the predicted variance will indicate
a reduced confidence in the prediction. This increase of the variance can be used as
a constraint in the optimisation algorithm utilised to solve Eq. (4.29). The concept is
shown in Fig. 4.10.

The basic idea of the algorithm is to optimise the control effort so that the variance
does not increase above its predefined limit. The variance constraint should be defined
by the designer and, in general, it can be a function of some scheduling variable. The
simple approach is for the variance constraint to be set at a constant value.Constrained
nonlinear programming with random restarts might be used to optimise the control
effort. The variance is predicted one-step ahead. The present information is not fed
back to the input of the model, and it does not effect the variance prediction in the
next step. The predicted variance, as a measure of the model’s uncertainty, can be
used as a constraint in the inversion algorithm, to improve the closed-loop response.
The control effort can then be optimised so that the variance does not increase above
a predefined limit. Since the GP model is not analytically invertible and numerical
approaches have to be utilised to find the inverse of the model for each sample time,
the associated computation load increases rapidly with the number of training-data
points [42]. This is the main drawback of the GP modelling approach for IMC.

Predictive Functional Control

Predictive functional control (PFC) is, in principle, no different to the general MPC.
Its distinct features are a relatively small number of coincidence points, the use of
a reference trajectory, which always differs from the set-point trajectory, and that
the future input signal is assumed to be a linear combination of a few simple basis
functions. Coincidence points are points where the closed-loop response and the
reference trajectory should coincide and are a simplified form of the coincidence
horizon. More details can be found in, e.g. [21].
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In the following description, the PFC with a single coincidence point and a con-
stant controller output signal is used. Variants of this kind of NMPCwith a GPmodel
are described in [45–50]. NMPC based on a GP model was first introduced in [45].

A moving-horizon minimisation problem of the form

V ∗ = min
u

[
r(k + P) − E

(
ŷ(k + P)

)]2
(4.31)

subject to

var
(
ŷ(k + P)

) ≤ kv, (4.32)

||u|| ≤ kih, (4.33)

||Δu|| ≤ kir , (4.34)

||x(k)|| ≤ ksh, (4.35)

||Δx(k)|| ≤ ksr , (4.36)

is applied as the first presented choice, where u is the sequence of input-signal
samples and contains u(k + j), j = 1 . . . P , Δu is the input rate and contains u(k +
j) − u(k + j − 1); j = 1, . . . , P , x is the state vector, Δx = x(k) − x(k − 1) is the
state rate, P is the coincidence point, i.e. the point where a match between the
output and the reference value is expected, and inequalities from Eqs. (4.32) to (4.36)
represent the constraint on the output variance kv , the hard input constraint kih , the
input rate constraint kir , the hard state constraint ksh and the state rate constraint ksr ,
respectively. These constraints are, in general, functions of some scheduling variable
in the general form, but are frequently set to be constant values. The process model
is a GP model.

The constrained nonlinear optimisation problem is solved for each sample time
over a prediction horizon of length P . If the constraints from the minimisation prob-
lem described with Eq. (4.31) are omitted we obtain minimum-variance control for
set-point tracking.

The minimum-variance controller [51] looks for a control signal u in the time
instant k that will minimise the following performance objective:

JMV = E
([

r(k + P) − ŷ(k + P)
]2)

. (4.37)

Taking the expected value of a variable squared gives the variance of that variable
assuming the variable mean is zero. In this case, JMV refers to the variance of the
error between the reference value r(k + P) and the controlled output value P-time
steps in the future, ŷ(k + P). The desired controller is thus the one that minimises
this variance, and hence the name minimum-variance control.
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The cost function described with Eq. (4.37) can be expanded with a penalty term
λ on the control effort:

JMV2 = E
([

r(k + P) − ŷ(k + P)
]2) + λu2(k). (4.38)

The term λ can be used for ‘tuning’ the performance of the closed-loop system. As
mentioned in [52], this cost function can be written as:

JMV2 = [r(k + P) − E(y(k + P))]2 + var
(
ŷ(k + P)

) + λu2(k), (4.39)

where the second term represents the model’s uncertainty, which is available from
the GP model prediction and can be used in the optimal control signal minimisation.
Note that most conventional work has ignored it, or has added extra terms to the cost
function, or has pursued other sub-optimal solutions.

The cost function described with Eq. (4.38) can be further expanded with other
forms of penalty leading to a generalised minimum-variance control. A possible
alternative to the cost function described with Eq. (4.39) is

JG MV = Q
(

q−1
)

[r(k + P) − E(ŷ(k + P))]2 + var
(
ŷ(k + P)

) + R
(

q−1
)

u2(k),

(4.40)

where the polynomials Q(q−1) and R(q−1) are defined as:

Q
(
q−1

) = Q0 + Q1q
−1 + · · · + Qnq qnq , (4.41)

R
(
q−1

) = R0 + R1q
−1 + · · · + Rnr q

nr , (4.42)

where q−1 is a unit backward shift operator. The polynomial coefficients can be used
as the tuning parameters. A similar cost function is used in [53].

Yet another possibility, used in [54], is an enhanced version of the generalised
minimum-variance controller, known as the generalised linearising controller [55]

JGLC = (1 − η)E
([r(k + P) − ŷ(k + P)]2) + η

[
R

(
q−1

)
u(k) − ur

]2
, (4.43)

where ur is the input signal associated with r , and the coefficients of R(q−1) and
η are the tuning parameters. When η = 0, then the cost function corresponds to
the minimum variance cost function, and when η = 1 then the minimum of the
cost function corresponds to a simple feedforward control. On the other hand, if the
open-loop system is stable, but with an unstable inverse, then η = 1 provides a stable
controller [54].
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The optimal control signal uopt can be obtained by minimising the cost functions:

V ∗ = min
u

(J ) , (4.44)

where J is the cost function.
The minimisation can be made analytically by finding the extremum ∂ J/∂u = 0,

but also numerically by using any appropriate optimisation method.
The references [52, 54] describe the control of an affine nonlinear system of the

form,
y(k + 1) = f (x(k)) + g(x(k))u(k) + η(k + 1), (4.45)

which allows a combination of the squared exponential and linear covariance func-
tion for the GP model and the combination with Minimum Variance control. This
application is generalised to the multiple-input multiple-output case in [56].

Let us return to the cost function from the optimisation problem Eq. (4.31) of the
form:

J (k) = E
([

r(k + P) − ŷ(k + P)
]2)

. (4.46)

Using the fact that var(ŷ) = E(ŷ2) − E(ŷ)2, the cost function can be written as [48]

J (k) = [
r(k + P) − E

(
ŷ(k + P)

)]2 + var
(
ŷ(k + P)

)
. (4.47)

The control strategy with the cost function described with Eq. (4.47) is ‘to avoid’
going into regionswith a higher variance. The term ‘higher variance’ does not specify
any particular value. In the case that the controller does not seem to be ‘cautious’
enough, a ‘quick-and-dirty’ option is to weight the variance term with a constant
λvar to enable the shaping of the closed-loop response according to the variance
information [48]

J (k) = [
r(k + P) − E

(
ŷ(k + P)

)]2 + λvarvar
(
ŷ(k + P)

)
. (4.48)

Besides the difference in the optimisation algorithm, the presented options also give
a design choice as to how ‘safe’ the control algorithm is. In the case when it is very
undesirable to go into ‘unknown’ regions, the constrained version might be a better
option.

The application of the described predictive controller is given in the following
example.

Example 4.2 Model predictive control of a pH neutralisation process
This example is adapted from [48]. A simplified schematic diagram of the pH

neutralisation process taken from [57] is given in Fig. 4.11. The process consists of
an acid stream (Q1), a buffer stream (Q2) and a base stream (Q3) that are mixed
in a tank T1. Prior to mixing, the acid stream enters the tank T2, which intro-
duces additional flow dynamics. The acid and base flow rates are controlled with
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Fig. 4.11 The pH neutralisation system scheme

flow-control valves, while the buffer flow rate is controlled manually with a rotame-
ter. The effluent pH (pH ) is the measured variable. Since the pH probe is located
downstream from the tank T1, a time delay (Td ) is introduced into the pH mea-
surement. In this study, the pH value is controlled by manipulating the base flow
rate. A more detailed description of the process with a mathematical model and the
necessary parameters is presented in [57].

The dynamic model of the pH neutralisation system shown in Fig. 4.11 is derived
using the conservation equations and equilibrium relations. The model also includes
the valve and transmitter dynamics as well as the hydraulic relationships for the
tank outlet flows. The modelling assumptions include the perfect mixing, constant
density, and complete solubility of the ions involved. The simulationmodel of the pH
process that was used for the necessary data generation, therefore, contains various
nonlinear elements.

The sampling time of 25s was selected based on some responses and an iterative
cut-and-try procedure.

An identification signal with a length of 400 samples was generated as a random
signal with a uniform distribution and a sampling rate of 50 s. The GP model with
the squared exponential covariance function (Eq.2.14) for the functional part and the
covariance function (Eq.2.11) for the noise part are used for modelling the system.
After selecting the regressors in an iterative manner, a third-order dynamic model
is selected. The vector of eight hyperparameters θ for the third-order GP model is
obtained with marginal likelihood optimisation, where the hyperparameters denote
the weights for each regressor representing the delayed input and output values, the
noise variance and the variance of the vertical scale of the variation.

The GP model is validated with a simulation that propagates uncertainty with an
exact matching of the statistical moments (Sect. 2.7.4). Such a validation is important
for providing reassurance that themodel behaveswell in amultistep-aheadprediction.
The response of the GP model to the identification signal is shown in Fig. 4.12. A
very good fit can be observed for the identification input signal that was used for the
optimisation. However, the obtainedmodel contains informationmainly in the region

http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
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Fig. 4.12 Simulation
response of the GP model to
the excitation signal used for
the identification
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Fig. 4.13 Simulation
response of the GP model to
the excitation signal used for
the validation
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where pH < 7. The validation signal covers the same region as the identification
signal. The identification and validation signals are obtained with a generator of
random noise that has different initial values. The simulation response of the model
to the validation signal and the comparison with the process response are depicted
in Fig. 4.13. The values of the validation performance measures of the identification
and validation data are given in Table4.1. It is clear that the validation performance
measures are better than the identification ones. This is not usual, but it my happen.

After the model is validated, it is utilised for the control design. See [58] for more
issues relating to pH process modelling with GP models.

The described PFC algorithm is used for the pH process and tested with a
simulation of the closed-loop response. The reference trajectory r is defined so
that it approaches the set-point exponentially from the current output value.
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Table 4.1 Values of the validation performance measures of the identification and validation data

Identification data Validation data

� SMSE MSLL SMSE MSLL

222 0.0064 −2.4230 0.0058 −2.4435

� is obtained at training and evaluate prediction, while other measures are performance measures
of simulation results
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Fig. 4.14 Unconstrained case: response of the GP model-based control (upper figure) and the
control signal (bottom figure)

The coincidence point is chosen to be 8 samples. The control signal, which is repre-
sented by a combination of a few basis functions, is a property of the PFC. In our case,
the control signal is a constant, which is equivalent to MPC with a control horizon
equal to 1. As we focus on the variance constraint, the rest of the constraints are not
taken into account. The results for the unconstrained control are given in Figs. 4.14
and 4.15.

It is clear from the different set-point responses that the model differs from the
process in different regions. It is clear that the variance increases as the output signal
approaches regions that were not populated with sufficient identification data. It
should be noted, however, that the predicted variance is the sum of the variance
that can be interpreted as information about the degree of confidence in the model’s
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Fig. 4.15 Unconstrained case: Standard deviation corresponding to Fig. 4.14
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Fig. 4.16 Constrained case (σmax = 0.25): response of GP model-based control (upper figure) and
control signal (bottom figure)

accuracy, i.e. depending upon the local density of the available identification data,
and of the output response variance. When the variance increases too much, one
design option is to optimise the response with constrained control. The results can
be seen in Figs. 4.16 and 4.17.

It is clear from Figs. 4.16 and 4.17 that the closed-loop system response now
avoids the region with large variance, at the cost of an increase in the steady-state
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Fig. 4.17 Constrained case (σmax = 0.25): standard deviation corresponding to Fig. 4.16
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Fig. 4.18 Response of GP model-based control with ‘soft constraints’ (upper figure) and control
signal (bottom figure)

error. This could also be interpreted as a trade-off between the designed performance
and the safety.

The results with an alternative cost function incorporating a soft constraint
described with Eq. (4.47) are presented in Figs. 4.18 and 4.19.

It is again clear from Figs. 4.18 and 4.19 that the closed-loop system response
avoids the region with large variance at the cost of a steady-state error, as was the
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Fig. 4.19 Standard deviation corresponding to Fig. 4.18
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Fig. 4.20 Response of GP model-based control with ‘soft constraints’ (upper figure) and control
signal (bottom figure)

case with the constrained control, but with a smaller computational burden than the
constrained control case.

The NMPC with the cost function described by Eq. (4.47) with the weight on
the variance λvar = 2, using unconstrained optimisation, gives the results shown in
Figs. 4.20 and 4.21, showing a reduction in the standard deviation of the predictions
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Fig. 4.21 Standard deviation corresponding to Fig. 4.20
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Fig. 4.22 The comparison of standard deviations corresponding to all four described cases

for the closed-loop response, compared to Fig. 4.21, and minor changes in the mean
behaviour.

While differences in the mean values of the closed-loop responses in Figs. 4.14,
4.15, 4.16, 4.17, 4.18, 4.19, and 4.20 are not apparent, the comparison of standard
deviations for the model predictions in Fig. 4.22 clearly shows the differences among
the responses in all four cases.

Approximate Explicit Nonlinear Predictive Control

The MPC formulation described so far provides the control action u(k) as a func-
tion of the states x(k) defined implicitly by the cost function and the constraints. In
the past 10years, several methods for an explicit solution to MPC problems have
been suggested (see for example [25, 59, 60]). The main motivation behind explicit
MPC is that an explicit state feedback law avoids the need for executing a numerical
optimisation algorithm in real time, and is, therefore, potentially useful for appli-
cations where MPC has not traditionally been used, e.g. electromechanical systems
requiring a fast response. By treating x(k) as a vector of parameters, the goal of
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the explicit methods is to solve the MPC problem offline with respect to all the
values of x(k) of interest and to make the dependence of the control input values
on the state values explicit. It has been shown in [61] that the feedback solution
to MPC problems for constrained linear systems has an explicit representation as
a piecewise linear (PWL) state feedback defined on a polyhedral partition of the
state space. The benefits of an explicit solution, in addition to the efficient online
computations, also include the verifiability of the implementation and the possibility
to design embedded control systems. For the nonlinear MPC the benefits of explicit
solutions are even greater than for linear MPC, since the computational efficiency
and verifiability are even more important. In [25], approaches to an offline compu-
tation of explicit sub-optimal piecewise predictive controllers for general nonlinear
systems with state and input constraints are presented, based on the multiparametric
Nonlinear Programming (mp-NLP) ideas [62].

In [63], an approach to explicit stochasticNMPCbased onparametric probabilistic
models is published. An approximatemp-NLP approach to the offline computation of
an explicit sub-optimal NMPC controller for constrained nonlinear systems based on
a GPmodel (abbreviated as GP-NMPC) is proposed in [64]. The approach represents
an extension of the approximate methods in [65] and [66]. The approximate explicit
GP-NMPC approach was elaborated in [67]. When we subsequently refer to the
NMPC problem, it is the NMPC problem based on a GP model, as it has been
thus far.

Let us see what is the formulation of the NMPC problem as an mp-NLP problem.
Consider a nonlinear discrete-time system described with Eq. (4.19):

x(k + 1) = f (x(k), u(k)) + ν1(k)

where x(k) ∈ R
n and u(k) ∈ R are the state and input variables, ν1(k) ∈ R

n are the
Gaussian disturbances, and f : Rn × R → R

n is a nonlinear continuous function.
The case with more than one input is elaborated in the references above. Suppose
the initial state x(k) and the control input values u(k + j), j = 0, 1, . . . , Nh − 1,
are given. Then, the approximated probability distribution of the predicted states
x̂(k + j + 1), j = 0, 1, . . . , Nh − 1, which correspond to the given initial state x(k)

and the control input values u(k + j), j = 0, 1, . . . , Nh − 1, can be approximated
[68] with, e.g. one of methods described in Sect. 2.6

p
(
x̂(k + j + 1) |x̂(k + j), u(k + j)

)

≈ N (
E

(
x̂(k + j + 1)

)
, var

(
x̂(k + j + 1)

))
,

j = 0, 1, . . . , Nh − 1. (4.49)

Amore general stochasticMPC problem is formulated in [69–72], where a proba-
bilistic formulation of the cost also includes the probabilistic bounds of the predicted
variable. The MPC problem considered here is of a more special form since the cost
function described with Eq. (4.49) includes the mean value of the random variable.
Nevertheless, the approximate approach to the explicit solution can be extended to

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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the more general case of a stochastic MPC problem formulation that is beyond the
scope of this book, but which can be found in [25].

The disturbance-rejection NMPC problem based on a GP model is considered in
[73], where the goal is to steer the state vector x(k) to the origin. The reference-
tracking NMPC problem based on a GP model is considered in [25, 64, 67], where
the goal is to have the state vector x(k) track the reference signal with r(k) ∈ R

n .
Here, we describe the reference-tracking NMPC problem based on a GP model,

but the principle of disturbance-rejection NMPC is based on the same idea. In the
problem formulation, the cost function is like the one used in [61]. Suppose that
a full measurement of the state x(k) is available at the current time sample k. For
the current x(k), the reference-tracking NMPC solves the following optimisation
problem [25, 64]:

V ∗(x(k), r(k), u(k − 1)) = min
u

J (u, x(k), r(k), u(k − 1)) (4.50)

subject to x(k) and:

E
(
x̂(k + j)

) − 2σx̂(k+ j) ≥ xmin j = 1, . . . , Nh, (4.51)

E
(
x̂(k + j)

) + 2σx̂(k+ j) ≤ xmax j = 1, . . . , Nh, (4.52)

umin ≤ u(k + j) ≤ umax j = 0, 1, . . . , Nh − 1, (4.53)

Δumin ≤ Δu(k + j) ≤ Δumax j = 0, 1, . . . , Nh − 1, (4.54)

max{∥∥E(x̂(k + Nh)) − 2σx̂(k+Nh) − r(k)
∥∥ ,∥∥E(x̂(k + Nh)) + 2σx̂(k+Nh) − r(k)
∥∥} ≤ δ, (4.55)

Δu(k + j) = u(k + j) − u(k + j − 1), j = 0, 1, . . . , Nh − 1, (4.56)

p
(
x̂(k + j + 1) |x̂(k + j), u(k + j)

)

≈ N (
E

(
x̂(k + j + 1)

)
, var

(
x̂(k + j + 1)

))
,

j = 0, 1, . . . , Nh − 1, (4.57)

where σ is the standard deviation, u = [u(k), u(k + 1), . . . , u(k + Nh − 1)] and the
cost function is:

J (u, x(k), r(k), u(k − 1)) = ∥∥E(x̂(k + Nh)) − r(k)
∥∥2

P

+
Nh−1∑

j=0

[∥∥E(x̂(k + j)) − r(k)
∥∥2

Q + ‖Δu(k + j)‖2R
]
. (4.58)

Here, Nh is a finite horizon and P, Q, R are squared and positive definite matrices.
From a stability point of view it is desirable to choose δ in the terminal constraint
described with Eq. (4.55) to be sufficiently small in accordance with the stability
conditions [29] explained at the beginning of this subsection. If the prediction horizon
Nh is large and the GPmodel has a small prediction uncertainty, then it is more likely
that the choice of a small δ will be possible.
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TheMPC problem considered here has amore special form since the cost function
described with Eq. (4.58) includes the mean value of the random variable. However,
the approximate approach to the explicit solution of the problem, presented in the
continuation, can be easily extended to the more general case of a MPC problem
formulation where the optimisation is performed on the expected value of the cost
function.

We introduce an extended state vector:

x̃(k) = [xT(k), rT(k), u(k − 1)]T ∈ R
ñ, ñ = 2n + 1. (4.59)

Let x̃ be the value of the extended state at the current time sample k. Then, the opti-
misation problem described with Eqs. (4.50)–(4.58) can be formulated in a compact
form as follows [25, 64]:

V ∗(x̃) = min
u

J (u, x̃) subject to γ(u, x̃) ≤ 0, (4.60)

where γ(u, x̃) ≤ 0 represents the nonlinear constraints generally.
The NMPC problem defines an mp-NLP, since it is NLP in u parameterised

by x̃. An optimal solution to this problem is denoted by uo = [uo(k), uo(k +
1), . . . , uo(k + Nh − 1)], and the control input value is chosen according to the
receding-horizon policy u(k) = uo(k). Define the set of Nh-step feasible initial states
as follows:

X f = {x̃ ∈ R
ñ| γ(u, x̃) ≤ 0 for some u ∈ R

Nh }. (4.61)

If δ in Eq. (4.55) is chosen such that at least one solution to the optimisation problem
described with Eqs. (4.50)–(4.58) exists, then X f is a nonempty set.

In parametric programming problems, we seek the solution u0(x̃) as an explicit
function of the parameters x̃ in some setX ⊆ X f ⊆ R

ñ . The explicit solution allows
us to replace the computationally expensive real-time optimisation with a simple
function evaluation.

In general, an exact solution to the mp-NLP problem described with Eq. (4.60)
cannot be found. However, there are some approximate approaches that can be used
to solve it [25]. In this section, the principle of the computational method [64] for
constructing a PWL approximate solution of the reference-tracking NMPC problem
is described.

In general, the problem described with Eq. (4.60) can be nonconvex with multiple
local minima. Therefore, it would be necessary to apply a good initialisation of
the problem described with Eq. (4.60) so as to find a close-to-global solution. One
possible way to obtain this is to find a close-to-global solution at a point v0 ∈ Xg,
where Xg ⊂ X is a hyper-rectangular region. The close-to-global solution at the
point v0 can be found by comparing the local minima corresponding to several
initial guesses and then to use this solution as an initial guess for the neighbouring
points vi ∈ Xg, i = 1, 2, . . . , N1, i.e. to propagate the solution.
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Fig. 4.23 k−d tree partition
of the state space used in the
approximation

We restrict our attention to the hyper-rectangleX ⊂ R
ñ where we seek to approx-

imate the optimal solution uo(x̃) to the problem describedwith Eq. (4.60).We require
that the state space partition is orthogonal and can be represented as a so-called k−d
tree [18, 74] (Fig. 4.23). The main idea of the approximate mp-NLP approach is to
construct a feasible PWL approximation û(x̃) to uo(x̃) on X , where the constituent
affine functions are defined on hyper-rectangles covering X . In the case of convex-
ity, it suffices to compute the solution of Eq. (4.60) at the 2ñ vertices of a considered
hyper-rectangle Xg by solving up to 2ñ NLPs. In the case of non-convexity, it would
not be sufficient to impose the constraints only at the vertices of the hyper-rectangle
Xg. One approach to resolving this problem is to include some interior points in
addition to the set of vertices of Xg [65]. These additional points can represent the
vertices and the facet centres of one ormore hyper-rectangles contained in the interior
of Xg . Based on the solutions at all the points, a feasible local linear approximation
ûll(x̃) = Kll x̃ + gll to the optimal solution uo(x̃), valid for the whole hyper-rectangle
Xg, is determined. This is done by solving

min
Kll , gll

N1∑

i=0

(J (Kllvi + gll , vi ) − V ∗(vi )+ α ‖Kllvi + gll − uo(vi )‖22) (4.62)

subject to

γ (Kllvi + gll , vi ) ≤ 0 , ∀vi ∈ V0, (4.63)

where V0 is the finite set of points that represent the vertices and the facet centres of
one or more hyper-rectangles contained in the interior of Xg.

In Eq. (4.62), the parameter α > 0 is a weighting coefficient.
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Suppose that a state feedback ûll(x̃)which is feasible on V0 ⊆ Xg has been deter-
mined. Then, for the cost function approximation error in Xg we have:

ε(x̃) = V̂ (x̃) − V ∗(x̃) ≤ ε0 , x̃ ∈ Xg, (4.64)

where V̂ (x̃) = J (ûll(x̃), x̃) is the sub-optimal cost and V ∗(x̃) denotes the cost corre-
sponding to the close-to-global solution uo(x̃), i.e. V ∗(x̃) = J (uo(x̃), x̃). The reader
is referred to [25] for more details.

The following iterative procedure that terminates a PWL approximate solution of
the mp-NLP problem described with Eq. (4.60) is proposed in [65]:

1. Initialise the partition to the whole hyper-rectangle and mark the hyper-rectangle
as unexplored.

2. Select one of the unexplored hyper-rectangles. If no such hyper-rectangle exists,
terminate the design procedure.

3. Compute a solution to the optimisation problem of Eq. (4.60) at the centre point
of the present hyper-rectangle. If the optimisation problem has a feasible solution,
go to the next step. Otherwise, split the present hyper-rectangle into two hyper-
rectangles by applying the heuristic rules described in [65], mark the new hyper-
rectangles as unexplored, and return to the previous step.

4. Define a finite set of points including the vertices and some facet points of
the present hyper-rectangle. Compute a solution to the optimisation problem
described by Eq. (4.60) for each of the points. If the optimisation problem has a
feasible solution at all these points, go to step 6. Otherwise, go to the next step.

5. Compute the size of the present hyper-rectangle using somemetric. If it is smaller
than some given tolerance, mark the hyper-rectangle as infeasible and explored
and return to step 2. Otherwise, split the hyper-rectangle by applying the heuristic
rules described in [65], mark the new hyper-rectangles as unexplored, and return
to step 2.

6. Compute an affine state feedback as an approximation to be used in the present
hyper-rectangle. If no feasible solution is found, split the hyper-rectangle into
two hyper-rectangles by applying the heuristic rules described in [65]. Mark the
new hyper-rectangles as unexplored and return to step 2.

7. Compute an estimate of the error bound in the present hyper-rectangle. If the
error bound is less than some prescribed tolerance, mark the hyper-rectangle as
explored and feasible, and return to step 2. Otherwise, split the hyper-rectangle
by applying the heuristic rules described in [65], mark the new hyper-rectangles
as unexplored and return to step 2.
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The following algorithm represents compactly the described procedure for explicit
NMPC design [25]:

Algorithm: ExplicitNMPC(X )

procedure Split(Xg)

split the current hyper-rectangle into two and mark both as unexplored
go to 2.

main
1.
initialise the partition to the whole solution hyper-rectangle
and mark it as unexplored
2.
select one of the unexplored hyper-rectangles
if no such hyper-rectangle exists

then end the algorithm
3.
compute a solution at the centre
if not feasible

then Split(Xg)

4.
define a finite set of points
if solutions in the points are feasible

then go to 6.
5.
compute the size of the solutions according to a metric
if size > tolerance

then Split(Xg)

mark the set as infeasible and explored and go to 2.
6.
compute an affine state feedback as an approximation
if not feasible

then Split(Xg)

7.
compute an estimate of the error bound
if error bound > tolerance

then mark region as feasible and explored
else Split(Xg)

Thepresented approximatemp-NLPapproach is a practical computationalmethod
to handle non-convex mp-NLP problems. It does not necessarily lead to guaran-
teed properties, like feasibility and closed-loop stability, but when combined with
verification and analysis methods it gives a practical tool for the development and



4.3 Model Predictive Control 183

implementation of explicit NMPC [65]. It should also be noted that in contrast to
the conventional MPC based on real-time optimisation, the explicit MPC makes
the rigorous verification and validation of the controller performance much easier
[66]. Hence, problems due to a lack of convexity and numerical difficulties can be
addressed during the design and implementation.

While the explicit solution allows us to replace the computationally expensive
real-time optimisation with a simple function evaluation that enables fast online
operation, it requires more effort during the offline computation. The computational
complexity of the algorithm for the design of the explicit NMPC increases with the
input and state dimensions and the ‘curse of dimensionality’ applies. Nevertheless, it
is important to note that it is the online computational complexity that counts and not
the offline, for which enough time is usually available. In any case, there are methods
for complexity reduction of the approximate explicit NMPC solution, e.g. [75].

Example 4.3 This example is adopted from [64]. Consider the system described by
the following nonlinear state space model:

x(k + 1) = x(k) − 0.5tanh(x(k) + u3(k)) + ν1(k) (4.65)

where ν1 is a white noise with variance 0.0025 and zero mean.
This dynamic system was identified with a GP model using the regressors x(k)

and u(k) and the output value x(k + 1).
The described mp-NLP approach is applied to design an explicit reference-

tracking GP-NMPC controller for the system described with Eq. (4.65) based on the
obtainedGPmodel. In theGP-NMPCproblem formulation (Eq. (4.50)), the predicted
state x̂(k + j + 1) of the system described with Eq. (4.65) is used. This prediction is
obtained in the following way. First, we obtain the prediction of ŷ(k + j + 1) from
the GP model of the system described with Eq. (4.65):

ŷ(k + j + 1)|ŷ(k + j), u(k + j) ∼
N (E(ŷ(k + j + 1)), var(ŷ(k + j + 1)));
j = 0, 1, . . . , Nh − 1. (4.66)

Then, the predicted x̂(k + j + 1) is:

x̂(k + j + 1) = ŷ(k + j + 1) + m(x), (4.67)

where m(x) is the mean value of the state of the system described with Eq. (4.65)
obtained for the generated control signals, i.e. m(x) = 1

M

∑M
1 x . The iterative,

multistep-ahead prediction is made by feeding back, at each time step, the pre-
dictive mean only. The following control input and rate constraints are imposed on
the system:

− 1 ≤ u ≤ 1;−0.5 ≤ Δu ≤ 0.5 (4.68)
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The prediction horizon is Nh = 8 and the terminal constraint is:

max
(||E(x̂(k + Nh)) − 2σx̂(k+Nh) − r(k)||,

||E(x̂(k + Nh)) + 2σx̂(k+Nh) − r(k)||) ≤ δ (4.69)

where δ = 0.015. The weighting matrices in the cost function described with
Eq. (4.58) are Q = 10, R = 1, P = 10 . The GP-NMPC minimises the cost func-
tion described with Eq. (4.58) subject to the GP model of Eqs. (4.66)–(4.67) and the
constraints described with Eqs. (4.68) and (4.69). The formulated GP-NMPC prob-
lem results in the optimisation problem described with Eq. (4.60) with 8 optimisation
variables and 33 constraints. One internal region X 1

g ⊂ Xg is used. This results in
the problem described with Eq. (4.62), which has 32 optimisation variables and 285
constraints. In Eq. (4.62) the value α = 10 is chosen. The approximation tolerance
is selected in the following way:

ε = max(εa, εr min
x̃∈Xg

V ∗(x̃)) (4.70)
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Fig. 4.24 The closed-loop response on the set-point tracking with the 95% confidence interval of
the state variable predicted with the GP model. The closed-loop response with the exact explicit
GP-NMPC is shown in the upper graph, the closed-loop response of the explicit GP-NMPC is
shown in the lower graph
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where εa = 0.005 and εr = 0.05 are the absolute and the relative tolerances, respec-
tively. The extended state vector is x̃(k) = [x(k), r(k), u(k − 1)]T ∈ R

3, which
leads to a three-dimensional state space to be partitioned. The latter is defined by
X = {[−1.2, 1.2] × [−0.7, 0.7] × [−1, 1]}. The partition has 1419 regions and 18
levels of search in the k − d tree. In total, 24 arithmetic operations are needed in
real time to compute the control input value (18 comparisons, 3 multiplications and
3 additions). The performance of the closed-loop system was simulated for the fol-
lowing set-point and reference change (r(k) = w(k)):

r(k) = −0.5, k ∈ [0; 50]; r(k) = −0.2, k ∈ [51; 100]
r(k) = 0.2, k ∈ [101; 150]; r(k) = 0.5, k ∈ [151; 200]

and the initial conditions for the state and control variable x(0) = 0 and u(0) = 0,
respectively. The resulting closed-loop response is shown in Figs. 4.24, 4.25 and
4.26.

The results show that the exact and the approximate solutions are very similar.

4.4 Adaptive Control

An adaptive controller [51] is one that continuously adapts to what is considered as
a changing process. Such adaptive controllers emerged in the early 1960s. At first,
these controllers were mainly adapting themselves on the basis of linear models with
changing parameters. Since then several authors have proposed the use of nonlinear
models as a basis on which to build nonlinear adaptive controllers. These are meant
for the control of time-varying, nonlinear systems or of time-invariant nonlinear
systems that are modelled as a varying, simplified, nonlinear model.

Various divisions of adaptive control structures are possible. One possible division
[51] is into open-loop and closed-loop adaptive systems.

Open-loop adaptive systems, also feedforward adaptive systems, are the gain-
scheduling or parameter-scheduling controllers that are described in Sect. 4.5.

Closed-loop adaptive systems, also feedback adaptive systems, may be further
divided into dual and non-dual adaptive systems.

Dual-adaptive systems are those where the optimisation of the information col-
lection and the control action are pursued at the same time. The control signal should
ensure that the system output signal cautiously tracks the desired reference value and
at the same time excites the plant sufficiently to accelerate the identification process.
Cautious control means that in the case of an uncertain model of a stable process,
the control signal should be smaller, i.e. more cautious, than the control signal with
a certain model and after adaptation. Adaptive control systems with these two prop-
erties of cautious control and excitation are referred to as adaptive dual control [76,
77]. Since the specifications of the closed-loop system are such that the output sig-
nal should normally vary as little as possible, these two properties are in conflict.
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The solution to the dual-control problem is based on dynamic programming and the
resulting functional equation is often the Hamilton-Jacobi-Bellman equation or its
discrete-time counterpart the Bellman equation, which were already mentioned in
relation to the optimal control problem in Sect. 4.2. This is a difficult task and only
a small number of such controllers have been developed [51].

A similar manifestation of model adaptation and control optimisation that are
pursued at the same time can also be observed in the method of reinforcement learn-
ing when applied in optimal control, where the exploration/exploitation tradeoff
is met [20].

The difficulties in finding the optimal solution for adaptive dual control led to
suboptimal dual adaptive controllers [76, 77] obtained either by various approxi-
mations or by reformulating the problem, e.g. modifications of the loss function.
Such a reformulated, adaptive dual-control problem is when a special cost function
is considered, which consists of two added parts: control losses and an uncertainty
measure. This is appealing for applications with a GP model that provides measures
of uncertainty.

The way in which the identified system in adaptive dual control becomes exited
is a reason for concern, due to safety concerns relating to control implementations
in practice.

A possible adaptive dual-control principle using GP models is described in [78].
In general, many adaptive controllers are based on the separation principle [77]

that implies a separate estimation of the system model, i.e. system parameters, and
the application of this model for control design. The separation principle holds,
for instance, in the case of Gaussian noise, when the process is linear and the cost
function is a quadratic function. When the identified model is presumed to be the
same as the true system for control design and adaptation, then an adaptive controller
of this kind is said to be based on the certainty-equivalence principle, and such an
adaptive controller is referred to as non-dual adaptive controller. The control actions
of non-dual adaptive controller do not take any active actions that would influence
the uncertainty.

Non-dual-adaptive systems are divided into:

• model-reference adaptive systems, where the controller adapts based on the dif-
ference between the output responses of the reference model and the process;

• model identification adaptive systems, where the certainty-equivalence principle
is used;

• iterative learning for control, where the control works in a repetitive mode;
• other adaptive systems.

The following sections describe those adaptive controllers that use a GP model of
dynamic systems or a GP model represents a significant part of the control system:
gain scheduling is described in Sect. 4.5, model identification adaptive control is
described in Sect. 4.6 and iterative learning control is described in Sect. 4.7.
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4.5 Gain Scheduling

The gain-scheduling method is probably the most widespread nonlinear control
designmethod. It has been successfully applied in fields ranging fromprocess control
to aerospace engineering. The basic idea behind the approach is called the divide-
and-conquer method, where a nonlinear system is divided into local subsystems that
are modelled as linear dynamic systems. A linear control problem is then solved
for each of these subsystems. The global control solution, called gain-scheduling
control, is afterwards put together from partial local solutions. Overviews of the
gain-scheduling method and its applications can be found in [79–81].

Gain scheduling is an effective and economical method of industrial control,
whereby changes in the operating point lead to corresponding variations in the para-
meters of the linearised models of the plant about these operating states. Its frequent
use in industrial practice has made it indispensable to the control-design engineer.

Gain scheduling as a control-design method is very closely related to the divide-
and-conquer modelling techniques [28, 82] called multimodel systems, local model
networks, linear parameter-varying systems, Takagi-Sugeno fuzzy models, etc. The
version of gain schedulingwith a finite number of local controllers, known as blended
multimodel control systems [28, 83–85] which is a commonly used type of multi-
model control system, is closely related to the concepts of Takagi-Sugeno fuzzy
controllers as well as to the concept of controller switching.

The divide-and-conquer method is based on a series-expansion linearisation of
a nonlinear system to be used for the control design about a single trajectory or
equilibrium point. Consider the nonlinear system,

ẋ(t) = ft (x(t), u(t)),

y(t) = gt (x(t), u(t)) (4.71)

where x ∈ R
n, u ∈ R, y ∈ R are the vectors of the states, the input and the output

signals, respectively.Let (x̄(t), ū(t), ȳ(t))denote a specific trajectoryof the nonlinear
system, which could also simply be an equilibrium operating point, in which case x̄ is
constant. Neglecting higher order terms, it follows from the series-expansion theory
that the nonlinear system, Eq. (4.71), may be approximated, locally to the trajectory,
(x̄(t), ū(t), ȳ(t)), by the linear time-varying system

δẋ = ∇x ft (x̄, ū)δx + ∇u ft (x̄, ū)δu, (4.72)

δy = ∇xgt (x̄, ū)δx + ∇ugt (x̄, ū)δu, (4.73)

where

δx = x − x̄,

δu = u − ū,

y = δy + ȳ. (4.74)
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The series-expansion linearisations associated with a family of equilibrium points
(x̄e, ūe, ȳe) form a series-expansion linearisation family describing a nonlinear sys-
tem to be used for control design in the family of equilibrium points.

A linear, time-invariant controller is then designed to ensure the appropriate
closed-loop performance when employed with the process linearisation. This proce-
dure is repeated for the family of equilibrium operating points, covering the envelope
of operation, whilst ensuring that the linear-controller designs have compatible struc-
tures; for example, when a smoothly gain-scheduled controller is required, the linear-
controller designs are selected to permit smooth interpolation, in some appropriate
manner, between the designs. In addition to the synthesis of a family of linear con-
trollers, the gain-scheduling design approach requires the determination of a suitable
nonlinear controller realised from the family of linear controllers.

The traditional gain-scheduled controller, which is adjusted with reference to an
externally measured vector of variables, �(x(t), u(t)), has the form

ẋ = Ac(�(t))x + bc(�(t))u,

y = cc(�(t))x + dc(�(t))u, (4.75)

where Ac, bc, cc and dc are the controller system matrix, the input, the output
and the input-output vectors, respectively. The dynamic properties change with the
so-called scheduling vector �(x(t), u(t)). But, provided [86] that the rate of change
is not too rapid, then the dynamic properties of the time-varying controller described
with Eq. (4.75) are similar to those of the linear controllers obtained by ‘freezing’ the
value of�(t). Thismeans that the nonlinear controller inherits the dynamic properties
of the family of linear controllers.

A more thorough explanation of gain scheduling can be found in the literature
[4, 80, 81, 86]. A block scheme showing the general principle of gain-scheduling
control is given in Fig. 4.27.

A number of nonlinear identification methods, including conventional nonpara-
metric GP-model identification methods, provide models that can only be used
with model-based predictive control. The FSGP model is, on the other hand, a
parametric model with probabilistic parameters that can be used for a wider range of
control-design methods, but those utilising black-box GP models.
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Fig. 4.27 General block scheme of the closed-loop system with a gain-scheduling controller
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One possible control-design approach is gain-scheduling control design. In this
case the local controllers are designed for a selected local model of the process.
Gain-scheduling control based on a GP model, i.e. on the FSGP model introduced
in Chap.3, is described in [87, 88].

The selection of local process models for control design depends on the region
where the closed-loop dynamics is expected and is, in general, not the same as the
set of local models used for the process modelling. It is sensible to keep the system
where its model is good, i.e. where the variances of the local models’ parameters are
small. The variances of the GP models contained in the FSGP model provide this
information. The parameters of the local controllers depend on the same scheduling
variables as the associated local model parameters of the process.

The stability of the closed-loop nonlinear system can be analysed based on the
theory from [89] in the framework of VBL, explained in Sect. 3.3.2, and can be
summarised as follows [81].

The relationship between the solution to a nonlinear system and the solutions
to the members of the associated velocity-based linearisation family can be used
to derive conditions relating to the stability of a nonlinear system to the stability
of its velocity-based linearisations. General stability analysis methods, such as the
small-gain theory and the Lyapunov theory [4], can be applied to derive velocity-
based stability conditions for equilibrium points. Furthermore, the bounded-input
bounded-output (BIBO) stability of the nonlinear system described with Eq. (4.71)
is guaranteed, provided the members of its velocity-based linearisation family are
uniformly stable. The unboundedness of the state x implies that its derivation ẋ is
unbounded, under the assumption that the input signal u is bounded, and the class of
inputs and initial conditions is restricted to limit the rate of evolution of the nonlinear
system to be sufficiently slow [89].

Provided that the rate of evolution is sufficiently slow, the nonlinear system inherits
the stability robustness of themembers of the velocity-based linearisation family [89].
This velocity-based result involves no restriction on near-equilibrium operation other
than that implicit in the slow variation requirement; for example, for some systems
where the slow variation condition is automatically satisfied, the class of allowable
input-signal values and initial conditions is unrestricted and the stability analysis is
global.

The basic idea of modelling and control design is illustrated in the next simple
example.

Example 4.4 The gain-scheduling control design is illustrated with the second-order
discrete nonlinear system used in Example3.5 and described with Eq. (3.73):

y(k + 1) = f (y(k), y(k − 1), u(k))

= k1y(k) + k2y2(k) + k3y(k − 1) + k3u(k)y(k) + k4u(k),

with the constants k1 = 0.893, k2 = 0.0371, k3 = −0.05, k4 = 0.157 and the sam-
pling time Ts = 1 s.

http://dx.doi.org/10.1007/978-3-319-21021-6_3
http://dx.doi.org/10.1007/978-3-319-21021-6_3
http://dx.doi.org/10.1007/978-3-319-21021-6_3
http://dx.doi.org/10.1007/978-3-319-21021-6_3
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Fig. 4.28 Block scheme of the closed-loop system with a gain-scheduling controller, with the
design based on the FSGP model
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The development of a fixed-structure GP model for the process described with
Eq. (3.73) is described in Example3.5, where the GP models are identified to model
the variable parameters of the selected linear structure.

A possible application of the developed model is control design. A controller
that is suitable for LPV models is a gain-scheduling controller or a local controller
network. GP models with varying parameters mean that local controllers can also be
designed at different points to the points where the local models were identified, or all
of the varying-parameters models can be incorporated into the controller, resulting in
a gain-scheduled controller. GPmodels become a scheduling or adaptingmechanism
for varying the parameters of the scheduled controller.

The block scheme of the closed-loop system applied in our case is shown in
Fig. 4.28.

The response of a closed-loop system with a second-order compensatory con-
troller realised using VBL that can also be interpreted as a discrete gain-scheduled
PID controller is given in Fig. 4.29, and compared with a reference response, which
is defined as the first-order response with a unity gain and a time constant of 1.5 s.

The operation of the closed-loop system is first pursued in the region where the
FSGP model used for the control design has a higher uncertainty. Afterwards it
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Fig. 4.30 Predicted variance of the parameters a1 (top) and b1 (bottom) during a simulation of
the closed-loop system. The region between 60 and 100s is the region of the used model with low
uncertainty
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operates in the region with low uncertainty of the used model and towards the end it
again operates in the region with a high uncertainty of the usedmodel. It is clear from
Fig. 4.29 that the closed-loop response at the beginning and at the end does not match
the reference response very well, as it does later on. Due to the integral action of
the gain-scheduling controller, the mismatch between the closed-loop response (with
the zero-order-hold) and the reference response is relatively minor. Nevertheless, the
mismatch would increase when moving away from the region with high trust in the
used model.

The online calculated variances of the FSGP model parameters, which are shown
in Fig. 4.30, indicate when the closed-loop system operates in the region with the
confident model and when it is out of the region.

4.6 Model Identification Adaptive Control

A block scheme showing the general principle of model identification adaptive con-
trol is given in Fig. 4.31.

When using the GP model for adaptive control, the GP model is identified online
and this model is used in the control algorithm. It is a good idea for the advantages
of GP models to be considered in control design, which relates GP model-based
adaptive control at least to the suboptimal adaptive dual-control principles.

The uncertainty of the model predictions obtained with the GP model are depen-
dent, among other factors, on the local training-data density, and the model complex-
ity is automatically related to the amount and distribution of the available data—more
complex models need more evidence to make them more trustworthy. Both aspects
are very useful in sparsely populated transient regimes.Moreover, since weaker prior
assumptions are typically applied in a nonparametric model, the bias is typically
smaller than in parametric models.

Adaptation
algorithm

ProcessController
ur y

GP model
identification

Fig. 4.31 General block scheme of the closed-loop system with adaptive controller
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The above ideas are indeed related to thework carried out on adaptive dual control,
where the main effort has focused on the analysis and design of adaptive controllers
based on the use of the uncertainty associated with the parameters of models with a
fixed structure [53, 76].

Themajor differences in the so far published adaptive systems based onGPmodels
are in the way that the online model identification is pursued.

Increasing the size of the covariance matrix, i.e. the ‘blow-up model’, with
in-streaming data and repeating model optimisation is used in [52–54, 56, 90],
where more attention is devoted to control algorithms and their benefits based on the
information gained from the GP model and not so much on the model identification
itself.

Another adaptive-control-algorithm implementation is control with feedback for
cancelling the nonlinearities, already described in Sect. 4.1 with online training of an
inverse model. This type of adaptive control with the covariance matrix increasing
with in-streaming data is described in [15, 91]. Two types of online training for the
mentioned feedforward contained control are described in [92, 93]. The first type
is with the moving-window strategy, where the old data is dropped from the online
trained model, while the new data is accommodated. The second type of training
accommodates only new data with sufficient information gain.

Similar adaptive control strategies applied in robot control can also be found
in [94, 95], while adaptive control based on local GP models is described in [96].
The combination of GP model identification with conventional control algorithms is
reported in [97].

In contrast to all the referenced adaptive controllers, the adaptive-control-system
principle described in [98] is based on the evolvingGPmodel described in Sect. 2.5.3.

The basic idea of control based on the evolving-system model [98] is that the
process’s GP model evolves with in-streaming data and the information about the
system from the model is then used for its control. One option is that the information
can be in the form of a GP model prediction for one or several steps ahead, which is
then used to calculate the optimal control input sequence for the controlled system,
e.g. for MPC control.

Different possibilities exist for the evolving GP model, depending on the level of
changes we accommodate in the evolving-system model, as described in Sect. 2.5.3.
On the other hand, various control algorithms can also be used, depending on the GP
model or the closed-loop requirements.

Closed-loop stability is also a very important issue in the case of adaptive con-
trol. GP modelling is a computational-intelligence-based method. The GP model is
probabilistic and nonparametric, and the conventional analytical methods for closed-
loop analysis do not apply directly, except in special cases, e.g. a GP model with
a linear covariance function under some assumptions. Due to the lack of published
analytical results for closed-loop stability when GP models are involved, computer
simulations present the main general-purpose analysis tool for closed-loop systems
with GP model-based adaptive control.

A lot of GP model-based adaptive control algorithms from the referenced publi-
cations are based on the adaptive minimum-variance controller. One of the reasons

http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
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for this is that the adaptive minimum-variance controller explores the variance that
is readily available with GP model prediction. An example of such an adaptive con-
trol application, though with increasing dimensions of the covariance matrix with
in-streaming data, is given in [90] and can be considered as an adaptive model pre-
dictive control.

An illustrative example that shows the operation of the minimum-variance control
based on an evolving GP model is given next.

Example 4.5 Adaptive control with an evolving GP model
Consider the nonlinear dynamic system [17] used in Example4.1 and described by

y(k + 1) = y(k)

1 + y2(k)
+ u3(k) + ν, (4.76)

where u is the system’s input signal, y is the system’s output signal, ν is the white
noise of a normal distribution with a standard deviation of 0.1 that contaminates the
system’s response and the sampling time is one second. The nonlinearity in the region
of interest for the benchmark system is indicated by the grey mesh in Fig. 4.32.

The requirement of closed-loop control is that it follows the set-point, depicted
in Fig. 4.33, as closely as possible. We start off with the empty active set of a GP
model and with some default hyperparameter values ln θ = [0; 0; 1;−1], which are
quite different compared to the optimal ones. The set-point signal is a combination of
periodic pulses in three different regions. The first region is between 0.5 and 1.5, the

Fig. 4.32 Observed data and the most informative data—active set shown on the surface of a
selected nonlinear system. The gray mesh denotes the nonlinear mapping of the system to be
controlled, the pluses, crosses and stars denote first, second and third regions, respectively, while
circles denote the active set
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Fig. 4.33 Simulation of a controller based on an evolving GP model. The grey dashed line denotes
the set-point signal and the dash-dot line denotes the output signal of the system, while the solid line
denotes the mean value of the prediction and the gray band denotes the 95% prediction confidence
interval based on the current GP model

second one between 3 and 4, and the last one between −0.5 and −1.5. The priority
for such a signal is to show that the proposed approach for a control system based on
evolving GP models is able to learn from scratch, without any prior model, and to
update with respect to the changes in the dynamics. The data stream contains only
388 data points, shown in Fig. 4.33, which serves for the demonstration requirements.
We pre-set the maximal active size to 50 data points. The used control cost function
is a variation of the minimum-variance cost function from Eq. (4.37)

J (k) = [r(k) − [y(k − 1) − E(ŷ(k − 1))] − E(ŷ(k))]2. (4.77)

The term y(k − 1) − E(ŷ(k − 1)) is used to make the control algorithm insensitive
to errors in the steady-state gain by subtracting the discrepancy between the latest
plant output value and the latest, most likely output value of the model.

As the controller has no prior knowledge about the system, the system’s output
signal oscillates at the beginning, Fig. 4.33. Nevertheless, the controller observes
enough data to successfully, but with some overshoot, follow the first step. After-
wards, the controller easily follows the set-point signal, even in the second and the
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third regions, where the nonlinearity is locally different. The complete nonlinearity,
including all three regions, can be seen in Fig. 4.32, where pluses, crosses and stars
denote the first, second and third regions, respectively. However, at the beginning
of these regions some overshoots also appear, but the output signal quickly settles
down.

Thefinal active set is shown inFig. 4.32.Themost informative data points, selected
from in-streaming data with the proposed evolving method, are denoted with circles.
It is clear that the selected data points are evenly distributed through all the nonlinear
space, which indicates that the proposed method successfully adapts the GP model
according to the operating regions. The times when the GP model is updated are
depicted in Fig. 4.34 as dashed light-grey lines. It is clear that most updates occur,
as expected, during changes of the set-point signal, especially during changes in
the dynamics. The situation is similar for the hyperparameter values, whose traces
through the process are also shown in Fig. 4.34, denoted as solid lines. It is clear
the hyperparameter values are mostly changing in a region of the first three steps
when most of the new information about the system is obtained. Once the near-
optimal values are reached, the hyperparameter values change on a much smaller
scale. Fig. 4.35 shows the corresponding optimal control signal u.

The main purpose of this implementation of closed-loop control is the adaptation
of the model according to the system’s dynamics. Therefore, once enough data about
the system is obtained, the controller can easily follow the set-point signal and adapts
the GP model. But the controller can be further improved to somehow explore an
unknown space, especially at the beginning of the process or for any other cases when
it is not possible to follow the set-point signal due to a lack of information about
the dynamics. With such an improvement, the controller is able to follow almost
arbitrary changes in the process dynamics.

Fig. 4.34 Traces of the
hyperparameter values
changing over time and the
active set updates. The
different, black lines denote
the hyperparameter values
and the gray lines denote the
time instants when the GP
model was updated with new
data

0 50 100 150 200 250 300 350
−6

−5

−4

−3

−2

−1

0

1

2

3

4

k

ln
θ

w
1

w
2

v
1

v
0



198 4 Control with GP Models

Fig. 4.35 Optimal control
signal u based on the
minimum-variance controller
using the GP model’s
predictions
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4.7 Control Using Iterative Learning

The iterative learning of a control signal, control sequence or control law comprises
a family of methods used to improve the transient response and the performance or to
establish a stable response of systems, processes or devices. They can also be named
methods for controller auto-tuning. Such concepts in control theory are, for example,
iterative learning control [99] and iterative feedback tuning [100]. Both methods are
intended to improve the performance of the controlled system based on episodes
or trials of the system’s operation. The iterative learning control method generates
a feedforward input signal to achieve a given desired trajectory by the iteration of
experiments. The iterative feedback tuning method, on the other hand, adjusts the
design parameter of the feedback controller via the experiments.

The concept of learning in control is often found in the field of machine learning
as reinforcement learning used for control [20]. Reinforcement learning is concerned
with how software agents map situations to actions in an environment so as to max-
imise some notion of reward. It belongs to the field called approximate dynamic
programming.

Reinforcement learning searches for a policy that is good, based on past experi-
ence. If it is assumed that the problem being studied is episodic, and that no matter
what course of actions the agent takes termination is inevitable, then the expectation
of the total reward is well-defined, for any policy and any initial distribution over
the states. Here, a policy refers to a mapping that, in general, assigns some probabil-
ity distribution over the actions to all possible histories. In control engineering this
mapping is called control law. The problem then is to specify an algorithm that can
be used to find a policy, i.e. a control law, with the maximum expected return. The
variety of policies may be extremely large.

To circumvent the problem of a large number of policies, some structure can be
assumed and also samples generated from one policy to influence the estimates made
for another are allowed. There are many approaches for achieving this. Dynamic
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programming achieves a more efficient search of a policy through the concept of a
value function. The value function is the best possible value of the objective, written
as a function of the system’s state.

The utility of reinforcement learning goes far beyond control law learning and is
used in game theory, information theory, etc. Nevertheless, if we focus on control
systems then reinforcement learning controllers are stochastic search engines and
can be considered as iterative learning algorithms. They evaluate the outcome of an
action after the action and its effect are over. An early example of using a GP model
for control using reinforcement learning appeared in, e.g. [101].

If we look at the reinforcement learning algorithm as a type of controller auto-
tuning, the actions as a control signal [102] and the value function as the optimal
values of the cost function, then together with the already mentioned control law,
instead of a policywe get a vocabulary that ismore familiar to the control community.

Since a considerable portion of the research regarding GPmodels comes from the
machine-learning community, a significant part of the control-learning algorithms
also refers to the reinforcement learning concept. One of the first such concepts is
the method named Gaussian Process Dynamic Programming (GPDP), the details of
which are described in [102, 103]. The following description is summarised from
[102, 104]. The evolution of the method can be followed through time with the
publications [102–107].

GPDP is an approximate dynamic programming method for solving the optimal
control problem, where the performance indices, the so-called value functions in the
dynamic programming recursion, are online modelled by GPs. The value functions
are usually referred to as the state-value function and state-action-value function,
because they evaluate the performance based on the state and the state and control
sequence, respectively. A brief description of the method is as follows.

The discrete-time system with one input signal described with Eq. (4.78) is con-
sidered throughout the method

x(k + 1) = f (x(k), u(k)) + ν(k), (4.78)

where x is a vector of states, u is a control signal and ν ∼ N (0,�n) is a Gaussian-
distributed-noise random variable, where�n is the diagonal. The transition or system
function f mapping a pair (x(k), u(k)) to the successor state x(k + 1) is assumed to
evolve smoothly over time and be time-invariant [102].

The control law in a GPDP is a deterministic mapping from a state vector into
a control input value that assigns a value of the control signal to each state, i.e. a
nonlinear state controller.

For an initial state x0 and the selected control sequence, the expected cumulative
cost of the finite Nh-step optimisation horizon is:

J (x0) = E

(
Φ(x(Nh)) +

Nh−1∑

k=1

L(x(k), u(k))

)
. (4.79)
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The functionΦ(x(Nh)) is a control-independent terminal cost that is incurred during
the last time step of the optimisation horizon Nh . The immediate cost is denoted as
L(x(k), u(k)). An optimal control sequence u for the Nh-step problem minimises
Eq. (4.79) for any initial state x0. The associated minimised cost, the so-called state-
value function V ∗, satisfies Bellman’s equation [1, 102]:

V ∗(x) = min
u

J (x, u) = min
u

[L(x, u) + γE
(
V ∗(x′)|(x, u)

)], (4.80)

for any state vector x. J (x, u) is the state-action value function and the factor γ ∈
(0, 1] weights the cost. The successor state for a given state-action pair (x, u) is
denoted by x′. Assuming a time-additive cost andMarkovian transitions, theminimal
expected cumulative cost can be calculated using dynamic programming.

The GPDP method assumes in advanced a known, i.e. offline learned, model of
the system dynamics and describes the performance indices J (x, u) and V ∗(x) with
GP models. To find an optimal control input sequence, guiding the system from an
initial state to the goal state, dynamic programming is used.

A GPDP that is enhanced with active learning is called an ALGPDP. Simultane-
ously with the building of GP models for performance indices, i.e. value functions,
the GP model of the process dynamics is also built online in ALGPDP.

In the case that there are more system outputs, there are as many GP sub-models
of the controlled process developed as there are outputs. For a stochastic system, the
noise term ν in the system Eq. (4.78) is the process noise. The obtained dynamic
GP model of the underlying stochastic transition function f contains two sources
of uncertainty. First, is the uncertainty about the underlying system function itself,
and, second, is the uncertainty induced by the process noise. With an increasing
amount of absorbed information the first source of uncertainty tends to zero, whereas
the stochasticity due to the process noise ν is always present. Therefore, only the
uncertainty about the model vanishes with the time of operation.

The online algorithm for dynamics model building exploits the information that
is already computed within the GPDP to a large extent. Bayesian active learning of
the process model is incorporated into the GPDP, such that only a relevant part of the
state space is explored. The optimisation part regarding control law is not affected
with this enhancement.

Only the best candidate data should be used for learning. The objective function,
called the utility function, that rates the quality of the candidate data and therefore
the relevance of the state space is:

JU = ρE(V ∗(k)) + β

2
ln var(V ∗(k)) (4.81)

where V ∗ is the value function, modelled by the GP model, that satisfies Bellman’s
equation for all the states and with weighting factors ρ and β.

The ALGPDP starts from a small initial set X (Nh) of state vectors, where Nh

is the length of the optimisation horizon. Using Bayesian active learning, new state
vectors are added to the current set X (k), at any time step k. The set X (k) contains
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the same training input data for both the GP model describing the system and the GP
models describing the performance indices. During each time step the GPmodels are
updated to incorporate the most recent information. The ALGPDP is a GP-model-
based learning control algorithm with a proximity to adaptive dual control.

The general ALGPDP algorithm is as follows [102]:

Algorithm: ALGPDPcontrol

initialise process-dynamics model
compute terminal cost Φ(x(Nh))

train GP model for terminal cost Φ(x(Nh))

repeat
comment: dynamic programming recursion

train GP model of transition function, i.e. process-dynamics model
for each state xi ∈ X

do

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

for each control action u j ∈ U
do

{
compute state-action value function J

train GP model for state-action value function J
select the best control input sequence for the current state
update state-value function with optimal state-action value function

train GP model for state-value function V ∗
until end

The reader is referred to [102] for details and a demonstration of the method.
Unfortunately, according to the method’s authors [102], ALGPDP faces difficulties
when directly applied to a dynamic system because it is often not possible to experi-
ence arbitrary state transitions. Moreover the GPDP method does not scale that well
to high dimensions. The application of ALGPDP to control blood glucose is reported
in [108].

A more promising method for engineering control applications, the Probabilistic
Inference and Learning for COntrol (PILCO) method, is described in [109–111].

PILCO is a policy search method, i.e. a control law search method, and no value
function is used, in contrast to the GPDP method.

The general idea of the method is to identify the system-dynamics model online
in episodes with reinforcement learning. The learned model is used to simulate a
closed-loop system internally and to search for the optimal closed-loop control law,
taking into account the probabilistic model of the process.

Like in the case of GPDP, the discrete-time system described with Eq. (4.78) is
considered throughout the method and the same considerations apply.

The control law in PILCO is a deterministic mapping from a state vector into a
control vector that assigns a value of the control signal to each state, i.e. a nonlinear
state controller.

The objective of the method is to find a control law, i.e. a policy, that minimises
the expected long-term cost, i.e. the value function described with Eq. (4.79).



202 4 Control with GP Models

The PILCO algorithm can be divided into three layers: a top level for the con-
troller adaptation, an intermediate layer for the approximate inference for long-term
predictions and a bottom layer for the identification of the dynamicsmodel. The inter-
mediate layer serves to simulate the closed-loop systemusing the selected control law.
The bottom layer, for the identification of the dynamics model, is implemented as
an online identification of the model. A start state x0 is required by the algorithm in
the beginning.

The high-level description of the method starts with an initialisation of the con-
troller with arbitrary values. The possible control law realisations are a linear state
controller in the case of a linear control law or a radial-basis-function network for
a nonlinear control law. The method involves adaptation in two stages. First, when
interacting with the process, information about the system, e.g. experience, is col-
lected and the internal probabilistic dynamics model is updated, based on both his-
torical and novel observations. Second, the control law is refined in the light of
the updated dynamics model and applied in the simulated closed-loop system. The
controller’s parameters are refined with gradient-based optimisation techniques. The
model-optimised control law is then applied to the real system to gather novel infor-
mation about the closed-loop response. The subsequent model update accounts for
possible discrepancies between the predicted and the actually encountered state tra-
jectory.

The general algorithm is as follows [110]:

Algorithm: PILCOcontrol

initialise controller to random values
apply an episode of an initial control signal to the process
record the episode data from the closed-loop system
repeat
learn probabilistic model of the process bottom layer
model-based policy search
repeat
simulate closed-loop system intermediate layer
compute expected long-term cost J
compute gradient-based improvement of control law
update simulated controller parameters

until convergence
update parameters of controller realisation top layer
apply the episode of the control signal to the process
record the episode data from the closed-loop system

until end

The PILCO method was applied to real systems, mainly robotic systems as the
most appropriate for the iterative learning of control. Applications are reported
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in, e.g. [110–114]. The use of PILCO in a continuous-time setting is reported in
[115, 116].

Some other applications of reinforcement learning using GP models for robotic
or electromechanical systems are reported in, e.g. [117, 118]. In general, control law
or policy search methods are very suitable for applications in robotics. An overview
of the policy search methods in robotics control is given in [119]. Active research
and development can be detected in this field, see, e.g. [120, 121], and more results
are envisaged in the future.
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84. Kocijan, J., Hvala, N., Strmčnik, S.: System and control: theory and applications, chap. Multi-

model Control ofWastewater Treatment Reactor, pp. 49–54.World Scientific and Engineering
Society, Singapore (2000)
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Chapter 5
Trends, Challenges and Research
Opportunities

Several research topics remain to be fully explored before we are able to say that
the application of GP models for control is a mature technology, ready to use in
everyday engineering practice. The fact that the potential of GP models for control
design is still not fully explored in engineering practice can be seen by the small,
but constantly increasing, number of practical, i.e. industrial, applications reported
in the literature so far.

Research opportunities can be roughly divided into issues concerning dynamic-
systems modelling with GP models related to control design, issues concerning
control design itself and, thirdly, some general issues related to control design and
applications. The given list of issues is subjective and heavily based on the on-going
research activities throughout the world.

Modelling trends and issues. The computational burden that increases with the
increasing amount of data contained in the model, caused mainly by the calcu-
lation of the inverse covariance matrix, directs researchers to find more efficient
methods for an inverse-covariance-matrix calculation or input-data selection.
The issue of automatically polishing data and finding informative portions is
reported as one of key issues in dynamic-systems identification in general [1]
and remains one of the current challenges in GP modelling research. Efficient
modelling, in general, facilitates control design. For example, solutions for issues
like errors-in-variables, e.g. [2, 3] are always in demand.
The issue of onlinemodel identification is the one that is closely linked to adaptive
control methods. In the machine-learning community it is known as online learn-
ing, which is not limited to sequentially in-streaming data. An efficient method
for the online identification of the GP model remains to be found.
Methods for developing and utilising GP state-space models, e.g. [4, 5], are of
great interest, especially for control design methods. Consequently, this is at
present a dynamic research field.
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Control design trends and issues. Some of the reported control methods have not
addressed disturbance rejection, which is crucial in control systems, but have been
more focused on set-point tracking. The complete assessment of control methods
also requires a disturbance-rejection analysis, which in many cases still remains
an unexplored issue.
Current research on control methods often deals with adaptive and predictive
control. Some other results that have the potential for control applications include
the modelling of switching systems, e.g. [6].
If control methods are meant to be used in engineering practice, more results
on robust control design methodologies are necessary. GP models offer a lot of
potential for robust control design and offer a lot of research and application
opportunities.

Some general issues that need to be looked at are the benchmarking of controlmeth-
ods with the purpose being to assess different control methods properly and fairly.
A giant step to bring research results closer to engineering practice is the integra-
tion of knowledge and a software upgrade from pieces scattered around, mainly
on the internet, into user-friendly integrated software. Examples of software can
be found at, e.g. [7], or the software description in, e.g. [8, 9].
Research opportunities also lie in developing methods and procedures for various
kinds of analyses of system models and closed-loop systems. Model-simulation
stability and closed-loop stability are only two, very different, but important and
challenging problems among many to be addressed.

One of the perspective applications for theGPmodel that has not been addressed in
this book is fault detection and isolation (FDI). It is related to modelling as well as to
the control of systems. FDI is concerned with monitoring a system, identifying when
a fault has occurred, and revealing the type of fault and its location. Fault detection
can, generally speaking, be sorted into two categories. The first one contains signal-
processing-based methods and the second one contains model-based methods.

Signal-processing-based FDI methods [10] are based on classifying a fault from
sensor measurements, which indicate a fault, directly. Model-based FDI methods are
based on the analysis of the discrepancy between the sensor readings and expected
values, derived from some model. This model can be a first-principle model or a
model obtained from measured data. In model-based FDI methods the question may
be raised as to how to avoid false alarms provoked by the presence of modelling
errors.

Some attempts to address FDI using GP models can already be found in the
literature. Model-based methods using GP models that are mainly concerned with
the detection of change-points, i.e. abrupt variations in the statistical parameters of a
data sequence, in the context of modelling for prediction, are, e.g. [6, 11–14] or for
performance monitoring, e.g. [15]. The early stages of the method using GP models
to avoid false alarms due to modelling errors can be found in [16, 17].

GP signal-processing-based FDImethodsmay be found in [18, 19]. Bothmethods
are based on a GP latent-variable model [20] that can be interpreted as a GP-based
kernel PCA method for nonlinear systems.
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Prognostics and health management methods [21], on the other hand, go a step
further from FDI. They are focused on predicting the time at which a system or a
component will no longer perform its intended function with certainty. GP models
for prognostics are used in [22–24].

FDI as well as prognostics offer additional space for applications’ development
and the utilisation of GP models.

The number of research opportunities concerning GPmodels of dynamic systems
is large and it seems that many issues need to be solved before the control design
method based on GP models becomes an everyday tool for control design in engi-
neering practice. Nevertheless, a lot of results are already available that confirm the
potential and benefits of GP model-based control.

References

1. Ljung, L.: Perspectives on system identification. In: Proceedings of IFAC 17thWorld Congress
2008, pp. 1–6. Seoul (2008)

2. Frigola, R., Rasmussen, C.E.: Integrated pre-processing for Bayesian nonlinear system identi-
fication with Gaussian processes. In: 52nd IEEE Conference on Decision and Control (CDC)
(2013)

3. McHutchon, A., Rasmussen, C.E.: In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F.,
Weinberger, K. (eds.) Advances in Neural Information Processing Systems. Gaussian process
training with input noise, vol. 24, pp. 1341–1349 (2011)

4. Turner, R., Deisenroth, M.P., Rasmussen, C.E.: State-space inference and learning with
Gaussian processes. In: Proceedings of 13th International Conference on Artificial Intelligence
and Statistics, vol. 9, pp. 868–875. Sardinia (2010)

5. Frigola, R., Lindsten, F., Schön, T.B., Rasmussen, C.E.: Bayesian inference and learning in
Gaussian process state-space models with particle MCMC. In: Bottou, L., Burges, C., Ghahra-
mani, Z., Welling, M., Weinberger, K. (eds.) Advances in Neural Information Processing Sys-
tems 26, pp. 3156–3164 (2013)

6. Saatçi, Y., Turner, R., Rasmussen, C.E.: Gaussian process change pointmodels. In: Proceedings
of the 27th Annual International Conference on Machine Learning, pp. 927–934 (2010)

7. The Gaussian processes web site. http://www.gaussianprocess.org/#code
8. Rasmussen, C.E., Nickisch, H.: Gaussian Processes for Machine Learning (GPML) toolbox.

J. Mach. Learn. Res. 11, 3011–3015 (2010)
9. Vanhatalo, J., Riihimäki, J., Hartikainen, J., Jylänki, P., Tolvanen, V., Vehtari, A.: GPstuff:

Bayesian modeling with Gaussian processes. J. Mach. Learn. Res. 14, 1175–1179 (2013)
10. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault

detection and diagnosis: Part I: Quantitativemodel-basedmethods. Comput. Chem. Eng. 27(3),
293–311 (2003)
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Chapter 6
Case Studies

This chapter will describe three examples of the use of GP models. Each example
covers selected issues of GP model applications for dynamic systems modelling and
control in practice.

The examples have been selected to demonstrate the utilisation potential of GP
models and to highlight the various issues that have been mentioned in the book.
Matlab� has been used as the main computational tool, but other software has also
been used when necessary for the implementation.

Gas–liquid separator (Sect. 6.1) This example demonstrates the modelling of a
semi-industrial plant and the application of the developed model for model-
predictive control. The plant is equipped with industrial sensors and actuators,
and the control is implemented through industrially used hardware, which gives
realistic industrial conditions.

Urban traffic system (Sect. 6.2) The detection of faults and the reconstruction of
measurements on a selected region of the Prague traffic system show the appli-
cation of GP models for fault detection and the use of model predictions. The
acquired data, which can be considered as discrete-event data on the microlevel,
is interpreted as stochastic data on the macrolevel and processed accordingly.

Ozone as an air pollutant (Sect. 6.3) This example from environmental sciences
shows the online modelling and prediction of a highly complex environmental
system. The used data was collected from the city of Burgas region.

© Springer International Publishing Switzerland 2016
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6.1 Gas–Liquid Separator Modelling and Control

The following example shows a case study for system identification to illustrate the
methods from Chap.2 and the model-predictive control design from Chap.4 for an
industrial-like plant with some industrial application aspects encountered as it is
presented in [1].

Gas–liquid separation plants are frequently encountered in the chemical process
industry. Various sorts of separators exist. The semi-industrial process plant used for
the case study is a unit for separating the gas from the liquid that forms part of a
larger pilot plant. The role of this separation unit is to capture the flue gases under
low pressure from the effluent channels by means of a water flow, to cool them down
and then supply them under high enough pressure to other parts of the pilot plant.
The pressure and level control is an inevitable part of the plant’s operation.

Process and Problem Description

The scheme of the plant is shown in Fig. 6.1.
The flue gases coming from the effluent channels are absorbed by the water flow

into the water-circulation pipe through the injector.
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Fig. 6.1 The scheme of the gas–liquid separation plant
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The water flow is generated by the water ring pump. The speed of the pump is
kept constant. The pump feeds the mixture of water and gas into the tank, where
the gas is separated from the water. Hence, the accumulated gas in the tank forms
a sort of ‘gas cushion’ with an increased internal pressure. Owing to this pressure,
the flue gas is blown out from the tank into the neutralisation unit which is omitted
from Fig. 6.1. On the other hand, the ‘cushion’ forces the water to circulate back to
the reservoir. The quantity of water in the circuit is constant.

In order to understand the basic relations among the variables and to illustrate the
nonlinearity of the process, a theoretical model of the gas–liquid separation pressure
sub-system of interest is introduced. The model, described in more detail in [2], was
obtained as follows.

The equation for the isothermal gas change is used to obtain the differential
equation for the air pressure in the separator.

pV

m
= rT = const, (6.1)

where p, V , m, r and T are the absolute air pressure, the gas volume, the mass of
the air, the gas constant and the temperature inside the tank T1, respectively. The
derivative of Eq. (6.1) with regard to time is equal to 0, which leads to the next
expression:

mV
dp

dt
= pV

dm

dt
− mp

dV

dt
. (6.2)

The mass of air m is

m = ρV, (6.3)

where ρ is the density of the air. The time derivative of the mass of gas is proportional
to the difference between the input and output air flows

dm

dt
= ρ0(Φair − Φ1), (6.4)

where ρ0 denotes the density of normal atmospheric air.
Substituting Eq. (6.4) for dm

dt and Eq. (6.3) form in Eq. (6.2), then dp
dt can bewritten

dp

dt
= pρ0

ρV
(Φair − Φ1) + pS1

V

dh1

dt
, (6.5)

where h1 is the liquid level in the tank T1 and S1 is the cross-sectional area of the
tank T1.

Taking into account from Eq. (6.1) that p
p0

= ρ
ρ0

and that p = p0 + p1, where p0

denotes normal atmospheric pressure and p1 is the relative air pressure in the tank
T1, we obtain:
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dp1

dt
= 1

V

[
p0(Φair − Φ1) + (p0 + p1)S1

dh1

dt

]
. (6.6)

The volume of the gas V inside the tank T1 equals

V = S1(hT1 − h1), (6.7)

where hT1 denotes the height of the tank T1.
The change of the liquid level in the tank T1 can be described as

dh1

dt
= 1

S1
(Φw − Φ2), (6.8)

where Φw is the known constant water flow through the pump P1. The substitution
of Eqs. (6.7) and (6.8) into Eq. (6.6) leads to

dp1

dt
= 1

S1(hT1 − h1)
[p0(Φair − Φ1) + (p0 + p1)(Φw − Φ2)] . (6.9)

The air flow through the valve V1 is

Φ1 = K1
√

p1, (6.10)

and the water flow through the valve V2 is

Φ2 = K2

√
p2 + kw(h1 − hT2). (6.11)

K1 = k1R(u1−1)
1 and K2 = k2R(u2−1)

2 are the so called equal percentage valve char-
acteristics with exponential relation between command signal and flow through the
valve. Other variables are as follows: ui is the command signal of the valve Vi ,
i = 1, 2, Ri is the ratio of the flows for the maximum and minimum opening of the
valve Vi , i = 1, 2, ki is the flow coefficient of the valve Vi , i = 1, 2, hT1 is the
height of the tank T2 and kw is the proportional factor between water level in meters
and pressure in bars.

The air flow to the tank T1 is a nonlinear function of the pressure p1. This func-
tional dependency was obtained empirically and approximated by the function

Φair = α0 + α1 p1 + α2 p2
1, (6.12)

where αi , i = 1, 2, 3, are constant parameters obtained by data fitting.
Equations (6.10)–(6.12) are substituted into Eq. (6.9), and Eq. (6.11) into (6.8).

Consequently, the gas–liquid separation pressure sub-system of interest can be de-
scribed by a set of two Eqs. (6.13) and (6.14) [3] as follows
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dp1

dt
= 1

S1(hT1 − h1)
(p0(α0 + α1 p1 + α2 p2

1

−k1Ru1−1
1

√
p1) + (p0 + p1)(Φw − k2Ru2−1

2

√
p1 + kw(h1 − hT2))),

(6.13)
dh1

dt
= 1

S1
(Φw − k2Ru2−1

2

√
p1 + kw(h1 − hT2)). (6.14)

From themodel presented it is clear that the nonlinear process is of amultivariable
nature (two inputs and two outputs with dynamic interactions between the channels).
In our case, a liquid-level feedback control was implemented on the plant. Conse-
quently, the dynamic system could be approached as a single-input single-output
dynamic system with the command signal of the valve V1 as the control input, the
liquid level in the tank T1 as the measured disturbance input and the pressure in the
tank T1 as the output. It can be seen from Eqs. (6.13) that the pressure is nonlinearly
related to the level and the input flow, which results in different dynamic behaviour
depending on the operating region.

The real-time experiments were pursued in the environment schematically shown
in Fig. 6.2.

A user-friendly experimentation with the process plant is made possible by an
interface with the Matlab/Simulink environment. This interface enables PLC access
with the Matlab/Simulink using the DDE protocol via a Serial Communication Link
RS-232 or TCP/IPv4 over the Ethernet IEEE-802.3. Control algorithms for the ex-
perimentation can be prepared in theMatlab code or as Simulink blocks and extended
with functions/blocks that access the PLC. In our case, all the schemes for the data
acquisition were put together as Simulink blocks.

Modelling

From Eq. (6.13) it can be seen that the pressure p1, the liquid level h1 and the valve-
opening signal u1 contribute a great part of information that could be used for the
plant model identification.

Based on the response and an iterative cut-and-try procedure, a sampling time of
15s was selected. The identification data consists of pseudo-random changes of the
valve signal u1 in regions with a different liquid level h1, so that as wide region as
possible was encompassed in 967 samples for each signal.

Selections of the covariance function and the regressors are the only remaining
choices that have to be made. There are no other identification parameters to be
chosen. Nevertheless, the selection of the data and, consequently, the information
that is contained in the data are crucial for the quality of the model. The more
information about the process dynamics that is contained in the data the better is
the identified nonparametric model that will contain this data. The accuracy and the
amount of data affect the predicted output distribution: the lower the data accuracy or
the sparser the input data, the wider is the predicted output distribution. This means
that the quality of the identification data can be recognised in the variance of the
output distribution.
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Fig. 6.2 Experimental set-up for the data acquisition and control algorithm testing

The nonlinearities describing the process model are presumed to be smooth. A
squared exponential covariance function with one hyperparameter for each regressor
described with Eq. (2.14) is selected and consequently no other prior knowledge
about the relations between the data is used.

Input regressors are to be selected next. The following GP-NARX structure is
selected for the model:

p1(k + 1) = f (p1(k), . . . , p1(k − n p), h1(k), . . . , h1(k − mh),

u1(k), . . . , u1(k − mu)) + ν, (6.15)

where n p, mh and mu denote the maximum delays for samples of pressure, liquid
level and input signal, respectively, and ν is a white noise with unknown variance.
The samples of the identification signals then form the D × N matrix of regressors
composed of regressors:

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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z = [p1(k), . . . , p1(k − n p), h1(k), . . . , h1(k − mh), u1(k), . . . , u1(k − mu)]T
(6.16)

and the N × 1 vector of corresponding targets. N is the number of samples and
D = n p + mh + mu .

The optimal number of delayed variables is not known in advance so a method
of subset selection based on iterative GP model training with different regressors
and a different model order n p, is pursued. The selection procedure started with
straightforward models, for which n p = mh = mu = n for decreasing values of n
from 3 downwards are considered:

Model M4:

z = [p1(k), p1(k − 1), p1(k − 2), p1(k − 3), h1(k), h1(k − 1), h1(k − 2),

h1(k − 3), u1(k), u1(k − 1), u1(k − 2), u1(k − 3)]T;

Model M3:

z = [p1(k), p1(k − 1), p1(k − 2), h1(k), h1(k − 1), h1(k − 2),

u1(k), u1(k − 1), u1(k − 2)]T;

Model M2:

z = [p1(k), p1(k − 1), h1(k), h1(k − 1), u1(k), u1(k − 1)]T;

Model M1:
z = [p1(k), h1(k), u1(k)]T.

The models are compared according to their predictive performance on identifi-
cation data and simulation performance on validation data. Table6.1 shows the log
marginal likelihood (�) for the identification data and the standardised mean-squared
error (SMSE, Eq.2.54) and the mean standardised log loss (MSLL, Eq.2.57) for the
validation data for each model after training.

The model that has the highest probability for the identification data, i.e. the
smallest negative log likelihood, is model M2. The model with the lowest MSLL for
the simulation error on the validation data and the lowest SMSE for the simulation

Table 6.1 Values of the validation performance measures of the identification and validation data
with the best scores in bold

Model Id. data � Valid. data SMSE Valid. data MSLL

M4 3594 0.0409 −1.27

M3 3586 0.0405 −1.38

M2 3610 0.0377 −1.52

M1 3551 0.0341 −1.68

http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
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error on the validation data is model M1. The differences in all the performance
measures are small, which means that the models are quite similar. The values of
the hyperparameters indicate that no regressors are to be dropped from the selection
for the tested model orders. Consequently, model M1 is selected, which is in line
with favouring simple models for the control design and in line with the known
background of the system described with Eq. (6.13).

In [4], a slightly different way of choosing regressors is described that is based
on the validation of the prediction data only, but it yields the same final regressor
selection.

Consequently, the first-order model M1 of the form described with Eq. (6.17) is
selected over the alternatives

p1(k + 1) = f (p1(k), h1(k), u1(k)) + ν. (6.17)

Therefore, it is presumed that the process to be identified is characterised as predom-
inantly a first-order system, which can be confirmed by looking at the step responses
at various liquid levels in Fig. 6.3.

In our case, the pressure p1(k) is fed back as a distribution, and the predictedmean
and variance are calculated with the analytical approximation of statistical moments
with Taylor expansion as described in Chap.2.

The vector of hyperparameters of the first-order GP model obtained by the opti-
misation [5] is:
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Fig. 6.3 Step responses of pressure for different values of liquid level
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θ = [w1, w2, w3, v0, v1], (6.18)

where the hyperparameter w1 corresponds to the pressure signal p1, w2 corresponds
to the valve signal u1, w3 corresponds to the level signal h1, v0 is the estimated
white-noise variance, and v1 is the estimate of the variance of the vertical scale of
variation. Three hyperparameters w1, w2, and w3 are inversely proportional to the
scales of variation in the direction of each regressor that forms a three-dimensional
space.

The validation signals are different from the identification signals that are given
in Fig. 6.4, though they are of the same kind. All the signals were obtained from
experiments on the plant using the experimentation environment described in the
previous section. The valve opening for the identification signal is between 42 and
54%, which is within the regular range in which the valve operates, i.e. between 33
and 66%. An opening smaller than 33% is not commonly used, because the pressure
increases over the safety limits. An opening larger than 66% is viable, but this causes
very small pressure changes due to the valve’s nonlinearity. Regardless ofminimising
the effect of the valve’s nonlinearity, the system’s response is still nonlinear, due to
the changes in the liquid level.

The response of themodel to a validation signal and a comparisonwith the process
response obtained from experiments on the plant are given in Fig. 6.5 and response’s
double standard deviation in Fig. 6.6. While the valve-opening signal is noise free,
the measured liquid-level and pressure signals are noisy and the noise is not white,
due to the used closed-loop control of the level.

The results in Fig. 6.5 confirm the predominantly first-order dynamics, but also
indicate some plant’s response that is not captured by the first-order model.

Control Design

The main control objective is to achieve a uniform closed-loop performance for
the pressure control in the entire liquid-level operating region. This means that the
pressure dynamic response should be approximately equal, regardless of the liquid
level. The way that this control objective is fulfilled using a technique different from
the one proposed here can be found in [6].

The rationale for the selected case study is as follows.

• The used plant contains features of industrial processes so that the control imple-
mentation and commissioning would be a good test for other real-life applications.

• The dynamics of the plant appear relatively simple, but not all the features of
the semi-industrial plant can be seen from the presented first-principle model.
However, it is known that MPC algorithms can deal with complex dynamics,
regardless of the model used, under the condition that the model describes the
process well and reliably enough. The stress in our example is on demonstrating
the feasibility of the implementation in real-time, regardless of issues such as the
computational burden.
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Fig. 6.4 Validation signals
for the modelling of the
gas–liquid separator. The
valve-opening signal in the
top figure is a noise-free
pseudo-random sequence
with discrete levels, the
liquid level is increasing
step-wise over the entire
operating region and the
pressure response is in the
bottom figure
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Fig. 6.5 Simulation results for the identifiedmodel on the validation input signalwith the simulation
with the analytical approximation of statistical moments used for the propagation of uncertainty
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Fig. 6.6 95% confidence interval for the response obtained with the simulation with the analytical
approximation of statistical moments used for the propagation of uncertainty

• The modelling approach may show its advantages on processes where first-
principle modelling is more difficult (e.g. biological and medical systems), but
it is not the main purpose of this case study to demonstrate the benefits of the
modelling approach. Instead, the emphasis is on the application and implementa-
tion of a Gaussian process model, which can be beneficial in process control and
elsewhere.

• It can be argued that the plant can bemodelled and controlled in other ways, but the
choice to make the feasibility study on a familiar process was made deliberately so
that the experience from other applied and differently obtained control algorithms
could be utilised and comparisons could be made.
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A moving-horizon minimisation problem of the special form [7]

min
u

[r(k + P) − ŷ(k + P)]2, (6.19)

subject to
var(ŷ(k + P)) ≤ σ2

max, (6.20)

is used in our case, where u = [u(k) . . . u(k + P)] is the sequence of input-signal
samples, P is the coincidence point (the point where a match between the output
and the reference value is expected) and the inequality in Eq. (6.20) represents an
arbitrarily selected constraint on the output variance σ2

max. It is possible to add hard
constraints on other variables, but in our case they were not taken into account.
The process model is a GP. Since the GP model predictions are probabilistic it is
reasonable to use probabilistic constraints in the control algorithm like the constraint
on the model prediction variance.

The variances are, in the case of the used stationary covariance function for the
GP model, the sum of the variances that correspond to information about the regions
where there are varying degrees of confidence in the model accuracy, depending
upon the local density of the available identification data, and the variances of what
is modelled as noise (Eq.2.10). When the variances increase too much, a possible
design option is that the response can be optimised with a constrained control. The
expected consequence is that the control algorithm does not allow any excursion in
the region where the accuracy of the model is below the prescribed value. This is
a possible way to guarantee a safe operation based on the known accuracy of the
model.

The optimisation algorithm, which is constrained nonlinear programming, is
solved for each sample time over a prediction horizon of length P , for a series of
moves that is equal to the control horizon. The optimisation problem is solved with
the Matlab Optimization Toolbox routine for constrained nonlinear minimisation.

The reference trajectory, which defines the trajectory alongwhich the plant should
return to the set-point trajectory, is very important in defining the closed-loop be-
haviour of the controlled plant [7]. Often—and so it is in our case—the reference
trajectory approaches the set-point exponentially from the current output value, with
the time constant (Tref ) of the exponential defining the speed of the response. The
current error is

e(k) = w(k) − y(k), (6.21)

where w(k) is the set-point trajectory and y(k) is the current output value. The
reference trajectory is chosen such that the error i steps later, if the output signal
followed it exactly, would be

e(k + i) = e
−iTs
Tre f e(k), (6.22)

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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where Ts is the sampling interval. The reference trajectory is defined to be

r(k + i) = w(k + i) − e(k + i) = w(k + i) − e
−iTs
Tre f e(k). (6.23)

In our case, the coincidence point was chosen to be eight samples, and the control
horizon was one sample. The value of the coincidence point is determined iteratively
as a compromise between the closed-loop performance and the real-time computation
feasibility. This control algorithm is used for an experimental assessment of the GP
model-based predictive control on a gas–liquid separation plant.

Three experiments are presented. The first is reference-tracking control for a
square-wave set-point pressure signal with the level changing in the entire operating
region. Nevertheless, the system operates within the regionwhere themodel is giving
a good description of the systemdynamics, because this is the regionwhere themodel
was identified. The time constant of the reference trajectory is Tref = 150 s. The
closed-loop response and its detail are given in Figs. 6.7 and 6.8. The changing level
and the manipulative signal are shown together with the model prediction variance
in Fig. 6.9.

The closed-loop performances with the linear PID and gain-scheduling controller
for the same process in a similar operation are described in [6] and could be used for
a comparison.

It can be seen fromFig. 6.7 that the closed-loop performance is uniform, regardless
of the level changes, and the predicted standard deviation from the model is, as a
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Fig. 6.7 Closed-loop pressure response for the changing liquid level
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Fig. 6.8 A detail of the closed-loop pressure response for the changing liquid level
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Fig. 6.9 Liquid level, variance of GP model and manipulative variable

result, low and difficult to distinguish from the response in Fig. 6.7. It appears as if
the hard constraint on the variance (σ2

max = 0.01) does not play an important role.
However, the situation is such that if the hard constraint is not taken into account, the
optimisation algorithm gets stuck in a local minimum at a distance from the global
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one, away from well-modelled region where model mean predictions tend towards
0 because of the stationarity of the selected covariance function, and finds the input
signal which drives the closed-loop system in the region where the model is very
uncertain and the plant operation becomes hazardous. The hard constraint on the
variance is actually used as an instrument to keep the closed-loop system within the
operating region close to the global minimum. The global minimum or at least a
minimum very close to the global one is then achieved by optimisation.

The next two experiments are conducted at the very edge of the region where the
model was identified. This is the region where the accuracy of the model rapidly de-
creases. Both experiments are pursued at a constant low liquid level, and the pressure
set-point changing step-wise from values where the model is accurate towards the
values where the model is not accurate any more. The time constant of the reference
trajectory is Tre f = 400 s.

In the second experiment, again the constraint of σ2
max = 0.01 is imposed on the

control-variable optimisation algorithm. The value of the constraint is high enough
to ensure that the predicted model variance does not reach that limit value, but, on
the other hand, is tight enough to prevent the optimisation algorithm from getting
stuck in a local minimum at a distance from the global one, and keeps the closed-loop
system within a safe operating region, as was the case in the previous experiment.
The closed-loop response is shown in Fig. 6.10. The level and manipulative signal
are shown together with the model prediction variance in Fig. 6.11.

It can be seen from Figs. 6.10 and 6.11 that the standard deviation and variance
of the model prediction increase rapidly when the GP model leaves the region where
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Fig. 6.10 Closed-loop pressure response at the border of the operating region
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Fig. 6.11 Liquid level, variance of GP model and manipulative variable at the border of the oper-
ating region

the density of the identification data decreased due to the selection of a stationary
covariance function for modelling. The mismatch between the model and the real
process becomes so large that, firstly, the performance, determined by the set-point
trajectory, is reduced (between 5500 and 8000s) and later in the operation a large
steady-state error occurs (beyond 8000s). The latter means that the control algorithm
not only does not follow the set-point anymore, but the uncontrollable plant operation
might not be within the safety parameters. The value of the steady-state error in the
region of the mismatch between the model and the process differs depending on the
values of the process and the model input variables and can be obtained only by an
experiment on the plant itself.

In the third experiment, the constraint of σ2
max = 0.00016 is imposed on the

control-variable optimisation algorithm. This constraint value allows the algorithm
to operate only in the regionwhere the processmodel is good enough to guarantee the
performance of model-predictive control with a specified accuracy. If this constraint
value is set even lower, the operating region of the plant becomes so constrained that
the impaired closed-loop performance would not suit our demonstration case well.

The closed-loop response is shown in Fig. 6.12. The level and manipulative signal
are shown together with the model prediction variance in Fig. 6.13.

Discussion

The value ofσ2
max is very important in the performance of the controller. The selection

of σ2
max depends on the compromise that the designer is ready to make between the

performance and the dimensions of the operating region and is constrained by the
availablemodel, safety, and the stability of the closed-loop system. As the constraints
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Fig. 6.13 Liquid level, variance of GP model and manipulative variable at the border of the oper-
ating region with the variance constraint at 0.00016

on variance are tightened, the performance more closely matches the specified one,
and the region of operation is more contracted. However, it is important to stress that
it is the model that defines the region of operation; σ2

max only relaxes the borders of
the region.
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It is clear from Figs. 6.12 and 6.13 that the standard deviation and the variance
of the model prediction increases when the identified GP model leaves the region
where the density of the identification data decreases. In this region, the constraint
comes into effect and the closed-loop system response now avoids the region with
large variance, at the cost of not tracking the set-point, and therefore, an increase of
the steady-state error. However, the safety of operations is ensured since the plant
operates only within the known region.

Thus, the goal to design and implement a control algorithm that will guarantee
operation only in the region of guaranteed performance is fulfilled with high proba-
bility.

6.2 Faulty Measurements Detection and Reconstruction
in Urban Traffic

The content of this section is adopted in part from [8]. Soft sensors are models
that, based on measurements of various variables provide the estimation of another
variable. The expression soft sensor ismainly used in the field of the process industry,
but the utility of mathematical modelling is widespread in engineering fields.

Surveys of the use of soft sensors that mainly focus on the process industry can
be found in [9–11]. The approach is, however, not limited to process industries and
similar ideas are utilised in other engineering fields, for example, in traffic engineer-
ing, e.g. [12, 13]. Soft sensors are used where their hardware counterparts are not
available, are very costly or their installation is very costly.

Soft sensors can, in general, be divided into two different classes [9], i.e. model-
driven and data-driven soft sensors. The model-driven family of soft sensors is most
commonly based on theoretical or so-called first-principle models or on state esti-
mators, e.g. extended Kalman filters. The data-driven family of soft sensors is based
on data measured within the systems. The most common methods [9] for the devel-
opment of data-driven soft sensors are PCA, partial least squares, artificial neural
networks, neuro-fuzzy systems and support vector machines.

The most common applications of soft sensors are: online prediction, monitoring
and process fault detection, sensor fault detection and reconstruction. Despite the
relatively large number of soft sensor applications there are some issues that are
still not sufficiently well addressed [9]. These are mainly related to measured data
that need a lot of pre-processing due to: missing data, data outliers, drifting data,
data co-linearity, different sampling rates and measurement delays. Even though the
authors of [9] list these issues in context of process control, they are present to the
certain extent everywhere that data is measured, and urban traffic is no exception.

System and Problem Description

The problem of detecting faulty measurements and its reconstruction, which is the
focus of this case-study investigation has been partially addressed in the literature.
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For example, papers [14–17] give surveys of the methods dealing with outlier detec-
tion and removal, while [18] describes faulty detection and signal reconstruction for
dynamic systems with a lagged PCA. Outlier detection in the context of GP regres-
sion can be found in [8, 19]. The problem solutions can be found more often in the
context of GP classification, e.g. [20, 21].

In urban traffic-control systems, different sensors are usually employed in order
to collect relevant information about the traffic situation in the city. These sensors
range from inductive loops over video-based systems to elaborate intelligent-traffic-
systems installations providing toll collection and enforcement. Typical data col-
lected by traffic-control systems include a count of the vehicles travelling over a
detector, the occupancy of the detector, or the velocity of the vehicles.

Despite their higher installation costs, inductive loops are still the sensor of choice
for providing vehicle counts and occupancy when installing signalised intersections.
When properly designed, they last a long time and are virtually maintenance-free,
compared to alternatives like video-based sensors. Nevertheless, the inductive loop
itself, the connecting cables, or the interface board, which is a part of an intersection
controller, may eventually fail, and sometimes the inductive-loop interface gradually
de-tunes from the proper working point. When the detector stops working the hard-
ware usually recognises the failure and reports it to the maintenance staff—however,
it takes some time, e.g. from several days to several weeks, before the system is
repaired.

In order to control an intersection in traffic-actuated mode, measurements pro-
vided by detectors are crucial. A typical solution in the case of recognised failure is
to program the interface board of selected detectors to generate permanent requests
in the case of a loop rupture. For example, the signal ‘vehicle is present’ is artificially
generated. This provisional solution may have a severe impact on the throughput of
the controlled system of intersections in the case that the detector is located on a
lane experiencing low traffic and short green periods. In such a case, employing a
soft sensor that is able to identify and reconstruct the measurements of the failing
detector may significantly improve the traffic situation in the transient period before
the detector is repaired.

A typical control scenario of an urban network similar to the one depicted in
Fig. 6.14 would collect the counts of incoming vehicles on the border of the traffic-
controlled area, use them to identify the current traffic demands, and finally set the
signals at a particular intersection to the set-points, proving an optimum of some
control criterion. In the case that some of the input sensors start to fail and become
unreliable, the control system has no means to react and the traffic model used for
the control of the urban network drifts off the current situation, resulting in incorrect
control actions being applied.

This is the reason why we seek a simple solution to make the sensor more reliable
and, due to hardware constraints, without the need to store large amount of historic
data. Our aim is to devise a soft sensor for vehicle-count measurements, with the
ability to evaluate the incoming data, online outlier and inconsistent data detection,
and, if necessary, to reconstruct the sensor signal to its most likely mean value.
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Fig. 6.14 Example of a traffic-controlled network (Zličin shopping centre, Prague) [22]

The measurements of traffic intensity (the number of vehicles per time period)
and queue length are, from the microscopic view, measurements of discrete events.
Only from the macroscopic view they may look like a signal that is noisy. The
candidates for modelling such time series would be methods that are applicable and
give acceptable results in the presence of substantial noise, give a prediction without
a major delay or are quick enough that they can be used for online calculations and
that the obtained prediction confidence interval is calculated with a very modest
amount of calculation. The modelling of GP models is applied in our case.

The GP prior is put over the space of the functions meaning that every prediction
that is made by the GP model has a Gaussian distribution. This implies that every
prediction that is made has some most likely value and the less likely values are
equally possible on both sides of the most likely value. This is, from our point of
view, not unrealistic.

In our case a nonlinear, autoregressive GP model or GP-NAR model is consid-
ered, such that the current output value depends on previous output values up to a
given lag n.

y(k) = f (y(k − 1), y(k − 2), . . . , y(k − n)) + ν. (6.24)
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Autoregressivemodels [23] are often usedwhen external inputs are not known,which
is quite common in, e.g. econometrics, finances, environmental sciences, physics, etc.

Just for the sake of a comparison we also consider the GP-NAR model that can
be used for periodic functions and uses regressors that are lagged for multiples of
the signal’s period Tp.

y(k) = f (y(k − Tp), y(k − 2Tp), . . . , y(k − nTp)) + ν. (6.25)

This model requires the storage of historic data for the used periods and is, because of
the constrained hardware memory, not viable for our problem solution. Nevertheless,
it is an intriguing solution for a model comparison.

GP-NAR models can be found in modelling the applications of building-energy
consumption [24], electrical-power network load forecasting [25], mine gas emis-
sions [26], landslide displacement [27], stock-market modelling [28, 29], etc. The
modelling of autoregressive conditional heteroscedasticity models using GP models
is elaborated in [28].

Modelling

The data samples studied in this paper are extracted from a collection of traffic-
intensity measurements taken at the test site of the Czech traffic-control project in
the Zličin area of Prague. This area contains mostly shopping centres and a bus
terminal serving both long-haul buses and regular public transport.

The whole collection of measurements covers the period from December 10,
2007 to September 2, 2008 for all the detectors installed at the site. According to
the apparent differences between the data, the data collection is divided into three
subsets representingworking days, i.e.Mondays to Fridays, weekends, i.e. Saturdays
and Sundays, and holidays, i.e. work-free days. From this collection, two separate
data sets of working detector data for each of the three types of traffic-intensity data
are extracted for the GP model identification and validation—see the example, for
typical working-days data in Fig. 6.15. This means that the final model is composed
of three sub-models for each type of data. The identification data set consisted of
data from two typical days and the validation set of data from three typical days.
The identification data set is selected so that the training does not consume too many
resources. The alternative is to use sparse or online learning methods, as shown in
the case study of Sect. 6.3.

Yet another data set containing failing detector data from two consecutive weeks
is used to test the failure identification and reconstruction capabilities of the model.

The selection of covariance function,model order and regressors is pursued among
a fairly large number of combinations of covariance functions and regressors. Since
the purpose of the model is reconstruction of the input signals to its most likely mean
value, the model predictions are compared to the values of the validation signals that
represent the most likely mean values.

Thesemost likelymean values of the validation signals are obtained by smoothing
the validation signals usingGPmodel regression. The stationary covariance function,
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Fig. 6.15 The profile of vehicle arrival data for three consecutive working days, sampled with 180s
interval

i.e. the squared exponential covariance function described with Eq. (2.13) and the
sample instants k representing time, are used as the kernel function and the regressor,
respectively.

Among the large number of tested combinations, a selection of the best results
is given in Table6.2 for the model of working days, in Table6.3 for the model of
weekends and in Table6.4 for the model of holidays. The tables show the average of
2-fold cross-validation results: the log marginal likelihood for selected identification
data, and the performance measures SMSE (Eq.2.54) and MSLL (Eq.2.57) for the
identification and validation data. Validation is pursued with respect to the mean
target values of the preprocessed validation signal.

Linear covariance functions with regressors that represent the history of 39min
for weekend days, 45min for working days and 57min for holidays perform the best
for the models of working days, weekends and holidays. The predictions for any kind
of day can be obtained by switching among the three models according to the type
of day.

An excessive amount of noise contributed to the relatively low quality of the
finally selected model predictions. Note that a different selection of identification
data from the available measurements ends with slightly different models, but the
used selection is demonstrated in the continuation to be representative enough for
our purposes.

http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
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Table 6.2 Model-order and covariance function selection for working-days

Cov. function Order Ident. data Valid. data

� SMSE2-fold MSLL2-fold SMSE MSLL

SE 7 −2128 0.3880 −0.4744 0.0614 −0.7816

SE + ARD 6 −2130 0.3901 −0.4712 0.0682 −0.7750

LIN + ARD 15 −2099 0.3825 −0.4817 0.0521 −0.7979

SE + ARD +
LIN + ARD

4 −2146 0.3954 −0.4654 0.0843 −0.7511

NN 8 −2122 0.3888 −0.4752 0.0565 −0.7876

Matérn d = 3
2 5 −2136 0.3934 −0.4678 0.0725 −0.7679

Validation data is evaluated with respect to the target mean values. Notation in the table: �—log
marginal likelihood for selected identification data, SMSE and MSLL—prediction performance
measures, SE—square exponential covariance function, LIN—linear covariance function, NN—
neural network covariance function, ARD—the variant of covariance function with ARD property

Table 6.3 Model-order and covariance function selection for the model of weekends

Cov. function Order Ident. data Valid. data

� SMSE2-fold MSLL2-fold SMSE MSLL

SE 5 −2099 0.3922 −0.4699 0.0962 −0.5560

SE + ARD 5 −2098 0.3920 −0.4706 0.1134 −0.5540

LIN + ARD 13 −2070 0.3785 −0.4876 0.0613 −0.5815

SE + ARD +
LIN + ARD

3 −2127 0.4253 −0.4336 0.1650 −0.4934

NN 5 −2095 0.3925 −0.4691 0.1017 −0.5540

Matérn d = 3
2 3 −2129 0.4180 −0.4407 0.1599 −0.4964

Validation data is evaluated with respect to the target mean values. Notation in the table: �—log
marginal likelihood for selected identification data, SMSE and MSLL—prediction performance
measures, SE—square exponential covariance function, LIN—linear covariance function, NN—
neural network covariance function, ARD—the variant of covariance function with ARD property

Table 6.4 Model-order and covariance function selection for holidays’ model

Cov. function Order Ident. data Valid. data

� SMSE2-fold MSLL2-fold SMSE MSLL

SE 5 −2099 0.3922 −0.4699 0.1579 −0.2385

SE + ARD 5 −2098 0.3920 −0.4706 0.1882 −0.2466

LIN + ARD 19 −2056 0.3783 −0.4884 0.0670 −0.2971

SE + ARD +
LIN + ARD

3 −2127 0.4253 −0.4336 0.2823 −0.1852

NN 5 −2095 0.3925 −0.4691 0.1501 −0.2400

Matérn d = 3
2 3 −2111 0.4695 −0.3806 0.2800 −0.1790

Validation data is evaluated with respect to the target mean values. Notation in the table: �—log
marginal likelihood for selected identification data, SMSE and MSLL—prediction performance
measures, SE—square exponential covariance function, LIN—linear covariance function, NN—
neural network covariance function, ARD—the variant of covariance function with ARD property
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Fig. 6.16 One-step-ahead predictions on the selection of identification data representing one work-
ing day (upper figure) and residuals of predictions with 99% interval (lower figure)

One-step-ahead predictions on estimation data are given in Fig. 6.16. It can be
seen from Fig. 6.16 that the residuals are contained in the 3σ interval approximately
corresponding to a 99% confidence interval. The 3σ interval is selected for the
recognition of failure in data, as we will see later.

One-step-ahead predictions on validation data that are taken from measurements
on a different day in a different week are shown in Fig. 6.17.

Figure6.18 shows how the values of the predictions deteriorate with a progressive
number of steps in multistep-ahead prediction. These multi-step-ahead predictions
are obtainedwith iterative, i.e. ‘naive’, computation, so that the predictedmean values
are used to replace the missing values of delayed measurements in the regression
vector progressively.

At this point, we would like to show briefly a possible alternative if the perfor-
mance of the iterative multi-step-ahead predictions is not to our satisfaction and
under the condition that there is enough storage memory available in the hardware
where the identified model runs. This is the model described with Eq. (6.26). Since
thementioned condition about memory is not satisfied in our case, the rigorous selec-
tion of model order is not pursued. Three regressors are selected as samples delayed
for a week, two and three weeks, respectively. The rationale behind the selection is
that the three-week period is short enough not to be affected by seasonal changes and
long enough to be robust with respect to the emerging daily changes. The identified
model has regressors as follows:

y(k) = f (y(k − Tp), y(k − 2Tp), y(k − 3Tp)) + ν. (6.26)
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Fig. 6.17 One-step-ahead predictions on the selection of validation data representing one working
day (upper figure) and residuals of predictions with 99% interval (lower figure)
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Fig. 6.18 The comparison of SMSE (left figure) and MSLL (right figure) for multistep-ahead
predictions

The selection of the covariance function and the best model-identification results
as well as the validation results are given in Table6.5.

It is clear from Table6.5 that the model with a covariance function that is a sum of
the squared exponential and linear covariance functions, both with ARD properties,
performs the best on the identification data. The validation results are not in favour
of this model, but the differences are acceptable in our case.
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Table 6.5 Alternativemodel for periodic responses: Covariance function selection for theworking-
days model

Cov. function Ident. data Valid. data

� SMSE MSLL SMSE MSLL

SE −1120 0.4055 −0.4525 0.1120 −0.6448

SE + ARD −1125 0.3742 −0.4935 0.1471 −0.6286

LIN + ARD −1133 0.4427 −0.4078 0.1775 −0.5676

SE + ARD +
LIN + ARD

−1113 0.3543 −0.5201 0.1422 −0.6388

NN −1114 0.4036 −0.4540 0.1123 −0.6495

Matérn d = 3
2 −1118 0.3923 −0.4694 0.1125 −0.6495

Validation data is evaluatedwith regards to targetmean values. Notation in the table:�—logmarginal
likelihood for selected identification data, SMSE and MSLL—prediction performance measures
for selected validation data, SE—square exponential covariance function, LIN—linear covariance
function, NN—neural network covariance function, ARD—the variant of covariance function with
ARD property
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Fig. 6.19 Alternativemodel predictions on the selection of validation data representing oneworking
day (upper figure) and residuals of predictions with 99% interval (lower figure)

Predictions based on validation data that are taken from measurements on a dif-
ferent day in a different week are shown in Fig. 6.19. The visual inspection of the
prediction responses does not show large differences in the model’s input/output
consistency with the primary GP-NAR model from Fig. 6.17. The mean value of
GP-NAR model from Fig. 6.17 is more noisy because of the noise in regressors used
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for the model identification. This is the errors-in-variables problem. A possible way
to overcome it, demonstrated for the squared exponential covariance function, is
described in [30].

Using the model described with Eq.6.26 we avoid the deterioration of the perfor-
mance obtained with an iterative multistep-ahead prediction at the cost of keeping
the necessary amount of data history. However, the presumed hardware constraints
excluded the alternative model described with Eq.6.26. In the continuation, the ful-
filment of other requirements by the primary GP-NAR model is validated.

The model’s purposiveness or usefulness tells us whether or not the obtained
model satisfies its purpose, which means the model is validated when the problem
that motivated the modelling exercise can be solved using the obtained model. In
our case, the model has to give an output prediction where the standard deviation of
the prediction will be used as a threshold of the measurement validity. In the case
that the measurement is recognised as ‘not valid’ it is replaced with a prediction that
might not be mirroring the actual value, but will be close enough so that the control
system will continue its regular operation without exhibiting any extreme modes.
Our model, even though not expressing high prediction accuracy, satisfies all the
described requirements and is able to calculate the predictions quickly.

The threshold at which a measurement is characterised as not realistic is set at
3σ, i.e. at three times standard deviation of the output distribution given by the GP
model prediction. This is the threshold frequently used in offline outliers detection
algorithms, e.g. [16].

The proposed algorithm that runs in soft sensor and online in every time sample
detects irregularities and tries to reconstruct the data is as follows:

Algorithm: Failure detection(M)

repeat
take the measurement M
calculate the prediction P = N (μ,σ2)

if |M − μ| > 3σ

then
{

M ← P
indicate possible fault

until end of sample period

Figure6.20 shows the detection of faulty data and their reconstruction by amodel,
i.e. soft sensor.

As can be seen from the proposed algorithm, the reconstruction is made as a
replacement of the faulty measurement with model predictions. In the case that the
fault is not just an outlier, but a longer period fault, then the model starts to predict
the queue length until the operator detects and removes the fault.
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Fig. 6.20 Soft sensor applied on faulty data. Upper graph depicts measurements that are corrupted
from the 320th sample until the 340th sample and predictions of soft sensor. Bottom graph depicts
measurements with reconstructed samples of corrupted measurements

Discussion

This case study is about a possible application of a time-series autoregressive model
as the soft sensor for faulty measurement detection and reconstruction in urban
traffic. The proposed method for developing a computational model that serves
as a soft sensor is based on a GP model. The resultant soft sensor detects single-
measurement outliers as well as longer-lasting faults and will be used to replace
the faulty measurements with a model prediction. In this way, it will increase the
reliability of the hardware sensors that are used in an urban traffic-control system.

The main conclusions are as follows:

• GPmodels can be used as a method for modelling data when an excessive amount
of noise is present.

• The obtained model that will serve as a soft sensor was validated as appropriate
for fulfilling its task, i.e. outlier detection and the reconstruction of measurements.

• Soft sensors are also a useful technology for fault detection and signal reconstruc-
tion in traffic-control engineering.

The presented study is a feasibility study, the purpose of which is to show the
potentials of the soft-sensor approach based on a GP model. The results for working
days are mainly demonstrated, but the same valid conclusions can be drawn for the
other two types of data, i.e. weekends and holidays.
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6.3 Prediction of Ozone Concentration in the Air

The content of this section is adopted in part from [31]. Ozone (O3) [32, 33] is a
highly unstable and poisonous gas that can form and react in the atmosphere under
the action of light and is present in two layers of the atmosphere. Ozone is a very
specific air substance that is present throughout the whole of the Earth’s atmosphere,
from ground level to the top of the atmosphere. The stratospheric ozone prevents the
harmful solar ultraviolet radiation from reaching the Earth’s surface. However, in the
tropospheric layer, which is at ground level, the ozone is an air pollutant that damages
human respiratory system and the equilibrium of the ecosystem [34]. Overexposure
to ozone can cause serious health problems in plants and people, and, thus, ozone
pollution is a major problem in some regions of the world. It tends to increase during
periods with high temperatures, intense sunlight, lots of air pollutants and stable air
masses [32]. The ozone content changes in the troposphere, and the complexity of the
processes defining these changes is the reason why the atmospheric ozone dynamics
is the object of intensive research.

The most direct way to obtain accurate air-quality information is from measure-
ments made at surface-monitoring stations across many countries. Fixed measure-
ments of the hourly ozone concentrations in compliance with the European Directive
on ambient air quality and cleaner air for Europe [35] give continuous information
about the evolution of the surface ozone pollution at a large number of sites across
Europe. In several European Union member states they are increasingly being sup-
plemented by numerical model outputs delivered on a regional or local scale, in
keeping with the European directive. The European standards that guarantee human-
health protection are as follows: ‘health protection level’, 120 µg/m3 eight hours
mean concentration; ‘informing the public level’, 180 µg/m3 one hour mean con-
centration; and ‘warning the public level’, 240 µg/m3 one hour mean concentration.
Therefore, predicting the ozone concentration and informing the population when
the air-quality standards are not being met are important tasks.

The objective of this case study is to present a method for the prediction of the
ozone concentration based on an online updated dynamic GP model obtained from
measurement data, as described in Sect. 2.4.3, for the city of Burgas in Bulgaria.
Ground-based measurements of the air quality have been carried out in places spread
all over Bulgaria, similar to the situation in other countries in the world. These
measurements are in the form of a series of simultaneous observations of the time
evolution of the surface ozone concentrations for differentmeteorological conditions.

Ozone concentration can be modelled and forecasted using a variety of methods,
andmethods that describe the nonlinear dynamics from the available data are particu-
larly useful. Thus, there are a number of methods for ozone-concentration prediction
based on various modelling techniques, e.g. based on neural network NARXmodels
(e.g. [36–38]), polynomial NARX models (e.g. [39]), fuzzy systems (e.g. [40, 41]),
support vector machines (e.g. [42]), ARIMA stochastic models (e.g. [43]), and GP

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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models (e.g. [37, 44, 45]). There are also methods that are based on a combination
of some of the mentioned techniques, e.g. the approach in [46] combines the use of
neural networks, support vector machines, and genetic algorithms.

Process and Problem Description

Burgas is in one of the regions in Bulgaria (Fig. 6.21) with the highest levels of ozone
pollution in the air, which makes it important to obtain a prediction model for this
region.

In [45], dynamic GP models of the first order based on measurements of the air-
pollutant concentrations are identified and verified for one-step-ahead predictions
of the ozone concentration in the air of Burgas. Furthermore, in [44] dynamic GP
models of higher order are identified and verified by using measurements of both the
air pollutants and the meteorological parameters. In both cases the GP models are
trained offline using only a subset of the available data due to the high computational
burden of modelling GP models. However, this limitation and, consequently, the
quality of the GP models can be improved with sparse-matrix methods and online
updating using the most recent measurements.

The purpose of this case study, which builds upon and extends the results of
[31, 44, 45], is to illustrate a solution to the problem of ozone prediction that is
operational throughout the year and is based on online learning of the model used
for the prediction. The proposed solution is based on an online Gaussian process
(OGP) [47] model that can also be utilised for few-hour-ahead predictions of the
ozone concentration with the necessary amendments. For this purpose, the sparse
OGP learning method is used in [48]. As the weather and its characteristics are
constantly changing, the model should be updated and adjusted as well. This means
it should not only update the model with information contained in the streaming

Sofia
BULGARIA Burgas

Black sea

Fig. 6.21 Map of Bulgaria with Burgas
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data, but it should concurrently optimise the hyperparameter values as well. The
OGP method does not rely on selection heuristics. Usually, it requires several passes
over the data and could exhibit some numerical instabilities, as reported in [49] and
as we experienced ourselves. Therefore, what in our opinion is a more robust method
is used in this case study for the online updating, i.e. evolving, of a GP model. Its
performance is compared with offline trained GP models. The case study, adopted
from [31], illustrates the method from Sect. 2.4, where the concept of the GP model
evolving is described.

Modelling

The ozone concentration has a strong daily cycle. Figure6.22 shows the daily cycle
of the average hourly ozone concentrations for all seasons. It is clear that the average
ozone concentration has a minimum at 5–8h, depending on the season. After 6–
8h it increases rapidly, i.e. the formation and collection of ozone in the air starts
after 6–8h. The maximum is reached at 11–16h. Therefore, if we are able to predict
correctly the ozone concentration at that hourly interval, we will be able to predict
the maximum hourly concentration for the day in all cases of high health risk.

We only have measurements from 2008, with some data gaps, available. Only
measurements where complete data for days are available were used for the mod-
elling. There are 194 of such days. This data set was then randomly re-sampled into
the identification or training data set, which is about 30% of the complete data set,
and the validation data, which is about 70% of the complete data set.

The identification data set is then further divided into ten subsets and a 10-fold
cross-validation is used for the model selection.
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Fig. 6.22 Average hourly ozone concentrations for each season
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Table 6.6 The logmarginal likelihoods (�), SMSEandMSLLmeasures for 10-fold cross-validation
on the identification data set and on the validation data set for first-order models

Model Ident. data Valid. data

� SMSE10-fold MSLL10-fold SMSE MSLL

A1 630.5 0.1876 −0.8333 0.1604 −0.9105

B1 754.2 0.1437 −0.9620 0.1330 −1.0100

C1 720.9 0.1617 −0.9066 0.1626 −0.9080

D1 758.9 0.1605 −0.9149 0.1365 −0.9969

Model Structure Investigation

Four first-order GPmodels, i.e. models containing the output variable with one delay
as one of the regressors, for the prediction of the ozone concentration are identified
and verified based on the preprocessed, available measurement data. In addition
to the log-likelihoods (L) of the identified models, the standardised mean-squared
error (SMSE) and the mean standardised log loss (MSLL) computed for tenfold
cross-validation on the training data and for the simulation with the validation data
are given in Table6.6.

Various combinations of regressors were investigated. Let us present the most
representative models among them also from the physical aspect.

The four identified first-order GP models have the following regressors:

Model A1: The value of the ozone concentration in the previous hour:

cO3(k) = fA1(cO3(k − 1)) + ν (6.27)

where k is the current hour of the day and cO3 is the concentration of ozone in the
air.

Model B1: The values of the ozone concentration, the concentrations of the air
pollutants, and the meteorological parameters in the previous hour:

cO3(k) = fB1(cO3(k − 1), cN O2(k − 1), cSO2(k − 1), cC6H5O H (k − 1),

cC6H6(k − 1), h(k − 1), p(k − 1), sr(k − 1), temp(k − 1),

ws(k − 1)) + ν (6.28)

Here, cN O2 , cSO2 , cC6H5O H , and cC6H6 are the concentrations of nitrogen dioxide,
sulphur dioxide, phenol, and benzene in the air, h is the air humidity, p is the air
pressure, sr is the sun’s radiation, temp is the air temperature and ws is the wind
speed.

Model C1: The values of the ozone concentration and the concentrations of the air
pollutants in the previous hour:

cO3(k) = fC1(cO3(k − 1), cN O2(k − 1), cSO2(k − 1),

cC6H5O H (k − 1), cC6H6(k − 1)) + ν (6.29)
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Table 6.7 The logmarginal likelihoods (�), SMSEandMSLLmeasures for 10-fold cross-validation
on the identification data set and on the validation data set for high-order models

Model Ident. data Valid. data

� SMSE10-fold MSLL10-fold SMSE MSLL

A2 746.6 0.1663 −0.9006 0.1530 −0.9357

A3 650.8 0.1729 −0.766 0.1477 −0.9592

B2 805.5 0.1405 −0.9862 0.1254 −1.0444

C2 724.8 0.1642 −0.9076 0.1554 −0.9602

D2 769.3 0.1461 −0.9659 0.1255 −1.0417

Model D1: The values of the ozone concentration and the meteorological parame-
ters in the previous hour:

cO3(k) = fD1(cO3(k−1), h(k−1), p(k−1), sr(k−1), temp(k−1), ws(k−1)) + ν
(6.30)

In Table6.6, the best obtained values for all the performancemeasures are given in
bold. It is clear that the best values are obtained with the model B1. This is expected
from the physical point of view. We also investigated high-order models as well.
Again, we present only the most representative models.

Four second-order GP models and one third-order GP model for the prediction of
the ozone concentration are identified and validated. The training and the validation
data are formed in the same way as for the first-order models. The performance
measures are given in Table6.7.

The presented identified high-order GP models have the following regressors:

Model A2: The values of the ozone concentration in the two previous hours

cO3(k) = fA2(cO3(k − 1), cO3(k − 2)) + ν. (6.31)

Model A3: The values of the ozone concentration in the three previous hours

cO3(k) = fA3(cO3(k − 1), cO3(k − 2), cO3(k − 3)) + ν. (6.32)

Model B2: The values of the ozone concentration, the concentrations of the air
pollutants, and the meteorological parameters in the two previous hours

cO3(k) = fB2(cO3(k − 1), cN O2 (k − 1), cSO2 (k − 1), cC6H5O H (k − 1),

cC6H6(k − 1), h(k − 1), p(k − 1), sr(k − 1), temp(k − 1), ws(k − 1),

cO3 (k − 2), cN O2 (k − 2), cSO2 (k − 2), cC6H5O H (k − 2),

cC6H6(k − 2), h(k − 2), p(k − 2), sr(k − 2), temp(k − 2), ws(k − 2)) + ν.

(6.33)
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Model C2: The values of the ozone concentration and the concentrations of the air
pollutants in the two previous hours

cO3(k) = fC2(cO3(k − 1), cN O2(k − 1), cSO2(k − 1), cC6H5O H (k − 1),

cC6H6(k − 1), cO3(k − 2), cN O2(k − 2), cSO2(k − 2),

cC6H5O H (k − 2), cC6H6(k − 2)) + ν. (6.34)

Model D2: The values of the ozone concentration and the meteorological parame-
ters in the two previous hours

cO3(k) = fD2(cO3(k − 1), h(k − 1), p(k − 1), sr(k − 1), temp(k − 1),

ws(k − 1), cO3(k − 2), h(k − 2), p(k − 2), sr(k − 2),

temp(k − 2), ws(k − 2)) + ν. (6.35)

It is clear from Tables6.6 and 6.7 that for the same model type, the higher-order
models are more accurate than the first-order models (model A2 is more accurate
than model A1, model B2 is more accurate than model B1, etc.).

It is clear from Table6.7 that the best performance is obtained for the model B2.
However, the results obtained with model D2, which is much simpler than model B2,
are not that different. Other higher-order GP models were also tested, but they did
not provide a significant improvement in the prediction quality. It might be argued
that the increase in the complexity of model B2 and those of higher order not shown
here is not worth the computational effort, in terms of the predictive performance of
these models in comparison to model D2. Favouring simple models in the face of the
complexity/performance trade-off model D2 is selected and used in the subsequent
investigation.

All the models considered in this section are trained offline on the data of a one-
year period only. As the weather is constantly changing, an alternative approach that
updates with in-coming data is used as follows.

Modelling with Evolving GP Models

Data for the whole period of interest, in our case the year 2008, was available for
training and validation. It should be noted that the same data was not used for the
training and the validation, but the data was from the same period. Therefore, all
the characteristics of the data from the whole period can be trained. In the continu-
ation we use an alternative approach to training GP models that is needed when the
training data is not available for the whole period of interest, and consequently, not
all the characteristics of the period can be trained. In this case, the model should be
constantly adapted in accordance with the new characteristics. Such an approach can
be used in environments that are constantly changing. As the weather is constantly
changing, this approach seems promising.

To assess the effectiveness of the proposed method we divided the data into
four periods: astronomical winter, astronomical spring, astronomical summer and
astronomical autumn. The astronomical winter lasts from December 21 to March
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20, the astronomical spring lasts from March 21 to June 20, the summer lasts from
June 21 to September 22 and the autumn lasts from September 23 to December 20.
The division is like this because the data is only available for the year 2008 and it
can be shown (Fig. 6.22) that the selected seasons have different characteristics.

From Fig. 6.22 it can be seen that the selected four groups can be further divided
into two main groups. In the first group are the seasons spring and summer, which
have a high-ozone concentration from 10 to 17h, and in the second group are the
seasons autumn and winter, which have a high-ozone concentration from 12 to 15h.
The first group has a much higher and longer high-ozone-concentration peak than
the second group.

To demonstrate the effectiveness of the online trainingmodel in the case of chang-
ing characteristics we performed both an offline and online, without forgetting, train-
ing of the GP models on winter-season data and validated the models on summer-
season data. It should be noted that as the basis for the online training, the offline
trained model was used and then this was constantly adapted through the validation
data, i.e. the whole year. Considering the previously made analysis of the regressors,
the model structure D2 was used.

The predictions of the ozone concentration for one day (July 20, 2008) based on
both models are shown in Fig. 6.23 and their performance measures are written in
Table6.8. This day was chosen as it is from the summer season and it has a harmful
ozone concentration.

It is clear that the predictions of the ozone concentration basedon the online trained
model aremuchmore accurate than the predictions based on the offline trainedmodel,
especially in the period between 10 and 18h, when the ozone concentration usually
reaches harmful levels.

To analyse the influence of the exponential forgetting on predictions of the ozone
concentration, several evaluations of the online trained GP models with various
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Fig. 6.23 The predicted mean value and 95% confidence interval of the ozone concentration for
July 20, 2008: a using offline training in the winter season; b using online training through the
whole validation data, i.e. the whole year
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Table 6.8 Performance measures of the ozone-concentration predictions for one day (July 20,
2008) based on an offline trained and an online trained model.

Model SMSE MSLL

Offline 0.3469 0.7130

Online 0.0530 −1.4349

Table 6.9 Performance measures of the ozone-concentration predictions for all the available data
based on online trained models with forgetting factors λ: 1, 0.99995, 0.99985, 0.99975 and 0.99965

Model SMSE MSLL

Online λ = 1 0.12082 −1.0293

λ = 0.99995 0.12079 −1.03577

λ = 0.99985 0.12019 −1.04904
λ = 0.99975 0.12033 −1.04857

λ = 0.99965 0.12049 −1.04529

The best obtained results are in bold text

forgetting factors λ: 1 (without forgetting), 0.99995, 0.99985, 0.99975, 0.99965
and below were performed. The performance measures of the ozone-concentration
predictions for all the validation data (spring, summer and autumn seasons) of each
model are written in Table6.9.

As the online trained model with forgetting factor λ = 0.99985 has minimal
performance measures (Table6.9), its predictions of the ozone concentration for two
days are depicted inFig. 6.24. It is clear that the predictions are very similar; therefore,
the proposed approach seems to be a promising alternative for training GP models
that predict the ozone concentration.

Figure6.25 depicts the plot of predicted mean values versus the measured values
for the whole of 2008 obtained from the online trained model.
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Fig. 6.24 The predicted mean value and 95% confidence interval of the ozone concentration for
August 9 and November 13, 2008
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Fig. 6.25 Predicted mean values versus measured values for the year 2008

Discussion

In this case study, various first- and higher-order GP models for the prediction of
the ozone concentration in the air of Burgas, Bulgaria are identified offline and
compared. The results show that for the same model type, the higher-order models
are more accurate than the first-order models. The best model according to the SMSE
and MSLL performance measures used on the validation data is the second-order
model,whose regressors are values of the ozone concentration and themeteorological
parameters for the two previous hours.

Furthermore, as an alternative approach, an online updating (evolving) GP model
is proposed. Such an approach is needed when the training data is not available for
the whole period of interest and consequently not all the characteristics of the period
can be trained or when the environment that is to be modelled is constantly changing.
The proposed approach is evaluated as a second-order model with the model struc-
ture obtained in the first experiment with various forgetting factors. The analysis of
the influence of the exponential forgetting for predictions of the ozone concentration
shows that the forgetting factor λ = 0.99985 provides the most accurate predic-
tions according to the used performance measures. The investigation shows that the
predictions obtained with the proposed approach are very similar to the predictions
obtained with a model that is trained offline on all-year data. Nevertheless, the online
updated GP model is more suitable for changing environments and, consequently,
gives better results for the prediction of the ozone concentration. Note that the inves-
tigation results are considered satisfactory for one-step-ahead predictions only. For
longer horizons, the model structure has to be re-investigated.
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Appendix A
Mathematical Preliminaries

Random Variable

Roughly speaking, a random variable is a variable with a value that is subject to
variations due to chance. It does not have a single value, rather it has a set of possible
different values, each with an associated probability. A random variable x is defined
as a function that assigns real numbers to samples

x : Ω → R (A.1)

where Ω is a sample space. The random variable maps the possible outcomes of an
experiment, rather than describing the actual outcome. See mathematical references,
e.g., [1–3], for a correct mathematical introduction to random variables.

There is a difference between probabilities for discrete variables and probability
densities for continuous variables. The term ‘probability’ is used throughout the book
to refer to both.

Mean and Variance

The mean value of the random variable x is the average of all its possible values χ,
denoted by E(x) and is defined as

E(x) =
∫ ∞

−∞
χp(χ)dχ, (A.2)

where p(·) is the probability density function of a random variable x .
The variance value of the random variable x is a measure of howmuch variability

is in the values of x around the mean value of x and is defined as the average value
of the squared difference between x and its mean

var(x) = E((x − E(x))2). (A.3)
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The standard deviation of the random variable x is defined as the positive square
root of the variance

σx = σ(x) = +√
var(x). (A.4)

The covariance of the two random variables xi and x j expresses the extent to
which two random variables change together

cov(xi , x j ) = E((xi − E(xi ))(x j − E(x j ))). (A.5)

When the covariance of two random variables is zero, they are uncorrelated. When
the covariance of two random variables is positive, their values mainly vary together
with the same trend. If the values of two variables mainly vary in an opposing trend,
the covariance is negative.

Stochastic Process

Avector x ∈ R
N is called a random vector if all its components are random variables.

The mean of a random vector is the vector of the mean values of its components

E(x) =

⎡
⎢⎢⎢⎣

E(x1)
E(x2)

...

E(xN )

⎤
⎥⎥⎥⎦ . (A.6)

The variance of a random vector is an N × N covariance matrix composed of the
covariances between the components of a random vector

var(x) = �(x) = E((x − E(x))(x − E(x))T)

=

⎡
⎢⎢⎢⎣

cov(x1, x1) cov(x1, x2) · · · cov(x1, xN )

cov(x2, x1) cov(x2, x2) · · · cov(x2, xN )
...

...
...

...

cov(xN , x1) cov(xN , x2) · · · cov(xN , xN )

⎤
⎥⎥⎥⎦ . (A.7)

The covariance of two random vectors xi ∈ R
N and x j ∈ R

M is an N ×M covariance
matrix composed of the covariances between the components of two random vectors

cov(xi , x j ) = �(xi , x j ) = E((xi − E(xi ))(x j − E(x j ))
T)

=

⎡
⎢⎢⎢⎣

cov(xi1, x j1) cov(xi1, xi2) · · · cov(xi1, x j M)

cov(xi2, x j1) cov(xi2, x j2) · · · cov(xi2, x j M)
...

...
...

...

cov(xi N , x j1) cov(xi N , x j2) · · · cov(xi N , x j M)

⎤
⎥⎥⎥⎦ . (A.8)
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The stochastic process is a collection or family of random variables. In our case these
are random variables whose values change frequently with respect to values of some
independent variable.

A stochastic process may also be seen as a random function with each function
value being a random variable.

Gaussian Probability Density Function

AGaussian or normal probability density function for a random variable x is defined
as

p(x) = N (μ,σ2) = 1√
2πσ

e− 1
2

(x−μ)2

σ2 , (A.9)

where μ stands for E(x) and σ2 for var(x).
AGaussian or normal probability density function for a randomvector x is defined

as

p(x) = N (μ,�) = 1

(2π)
n
2 |�| 1

2

e− 1
2 (x−μ)T�−1(x−μ), (A.10)

where μ stands for E(x) and � for var(x).

Conditional Probability, Bayes’ Theorem, Marginal Probability

The conditional probability function for the random variables a and b is

p(a|b) = p(a, b)

p(b)
(A.11)

where p(a, b) is the joint probability and p(b) is the probability of the random
variable b. If a and b are independent, then p(a) and the conditional p(a|b) are
equal.

Equation (A.11) can be transformed using the rule p(a, b) = p(b, a) in

p(a|b) = p(b|a)p(a) = p(a|b)p(b). (A.12)

Using this equation we obtain Bayes’ theorem

p(b|a) = p(a|b)p(b)

p(a)
(A.13)

where p(b|a) is the posterior probability distribution or posterior, p(a|b) is the
likelihood, p(b) is the prior probability distribution or prior and p(a) is called the
marginal probability or evidence of a and can be obtained as

p(a) =
∫

p(a, b)db. (A.14)
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The integral is replaced by a sum if the variable b is not continuous but has discrete
values.
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Appendix B
Predictions

Predictions at Deterministic Inputs

Predictions for a Single Output

The mean value and the variance for the prediction with the Gaussian distribution
y∗ ∈ R from the vector of deterministic input values z∗ ∈ R

D [1]:

μ∗ = E(y∗) = kT(z∗)K−1y

= kT(z∗)β =
N∑

i=1

βi C(zi , z∗), (B.1)

σ2∗ = var(y∗) = κ(z∗) − kT(z∗)K−1k(z∗), (B.2)

where β = K−1y, K = � f + σ2
nI ∈ R

N×N , k(z∗) = [C(z1, z∗), . . . , C(zN , z∗)]T ∈
R

N , and κ(z∗) = C(z∗, z∗) ∈ R.

Predictions for Multiple Conditionally Independent Outputs

Themeanvalue and the variance for the predictionwith the jointGaussian distribution
y∗ ∈ R

E from the vector of deterministic input values z∗ ∈ R
D [2]:

μ∗ = E(y∗) = [
μ∗
1 . . . μ∗

E

]
= [

E(y∗
1 ) . . . E(y∗

E )
]
, (B.3)

�∗ =

⎡
⎢⎢⎢⎣

σ2∗
1 0 . . . 0
0 σ2∗

2 . . . 0
...

...
. . .

...

0 0 . . . σ2∗
E

⎤
⎥⎥⎥⎦ , (B.4)
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Predictions at Stochastic Inputs with the Gaussian Distribution

Predictions for a Single Output with Approximate Moments

The mean value and the variance for the predictions with the Gaussian distribution
y∗ ∈ R from the vector of stochastic inputs z∗ ∼ N (μz∗ ,�z∗) ∈ R

D for the
approximation of moments with a Taylor expansion [3]:

μ∗ = E(y∗) ≈ k(μz∗)TK−1y (B.5)

σ2∗ = var(y∗) ≈ σ2(μz∗) + 1

2
tr

(
∂2σ2(z∗)
∂z∗∂z∗T

∣∣∣∣
z∗=μz∗

�z∗

)

+ ∂μ(z∗)
∂z∗

∣∣∣∣
T

z∗=μz∗
�z∗

∂μ(z∗)
∂z∗

∣∣∣∣∣
z∗=μz∗

, (B.6)

where σ2(μz∗) denotes the variance of the Gaussian predictive distribution in the
case when there are no uncertain input values. The partial derivatives in Eq. (B.6) are
calculated by components of dimension [4]

∂μ(z∗)
∂z∗

d

= ∂k(z∗)
∂z∗

d

K−1y, (B.7)

∂2σ2(z∗)
∂z∗

d∂z∗
e

= ∂2κ(z∗)
∂z∗

d∂z∗
e

− 2
∂k(z∗)T

∂z∗
d

K−1 ∂k(z∗)
∂z∗

e

− 2
∂2k(z∗)T

∂z∗
d∂z∗

e

K−1k(z∗),

(B.8)

according to the input dimensions d, e = 1, . . . , D and then evaluated at z∗ = μz∗ .
For the squared exponential covariance function described with Eq. (2.14) and

denoted as C f these partial derivatives are calculated by components of dimension
[4, 5]:

∂C f (z, z∗
i )

∂z∗
di

= −l−2d(z∗
di − z∗

d j )C(z∗
i , z∗

j ) = −∂C f (z, z∗
j )

∂z∗
d j

, (B.9)

∂2σ2(z∗
i )

∂z∗
di∂zei

= (−l−2dδde + l−2d(z∗
di − z∗

d j )l
−2e(z∗

ei − z∗
ej ))C f (z∗

i , z∗
j ) (B.10)

and

∂2σ2(z∗
i )

∂z∗
di∂zej

= (l−2dδde − l−2d(z∗
di − z∗

d j )l
−2e(z∗

ei − z∗
ej ))C f (z∗

i , z∗
j ) (B.11)

where l−2d; d = 1, . . . , D are hyperparameters from Eq. (2.14) and δde = 1 if d = e
and δde = 0 otherwise.
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Predictions for a Single Output with Exact Moments

Squared Exponential Covariance Function

Themean value and the variance of the predictions which is the Gaussian distribution
y∗ ∈ R from the vector of stochastic inputs z∗ ∼ N (μz∗ ,�z∗) ∈ R

D for the squared
exponential covariance function of Eq. (2.14) and the noise covariance function of
Eq. (2.11) for the approximation with exact moments [2, 5]:

μ∗ = E(y∗) = βTq, (B.12)

where the elements of vector q are

qi = σ2
f |�z∗�−1 + I|− 1

2 exp

(
−1

2
(zi − μz∗)T(�z∗ + �)−1(zi − μz∗)

)
, (B.13)

where σ2
f and �−1 are hyperparameters of the squared exponential covariance func-

tion, as defined in Eq. (2.14). qi is an expectation of C f (zi , z∗) with respect to the
probability distribution of z∗.

σ2∗ = var(y∗) = βTQ̃β − μ∗2 + σ2
f − tr

(
(� f + σ2

nI)−1Q̃
)

+ σ2
n, (B.14)

where the elements of Q̃ ∈ R
N×N are given by

Q̃i j = C(zi ,μz∗)C(z j ,μz∗)

|2�z∗�−1 + I|− 1
2

exp

(
−1

2
(ζ̃i j − μz∗)T(�z∗ + 1

2
�2)−1�z∗�−1(ζ̃i j − μz∗)

)
, (B.15)

with ζ̃i j = 1
2 (zi + z j ).

Linear Covariance Function

The mean value and the variance for the predictions with the Gaussian distribution
y∗ ∈ R from the vector of stochastic inputs z∗ ∼ N (μz∗ ,�z∗) ∈ R

D for the linear
covariance function of Eq. (2.22) and the noise covariance function of Eq. (2.11)
[5, 6]:

μ∗ = E(y∗) = μz∗(�−1Z)(ZT�−1Z + σ2
nI)−1y, (B.16)

where Z = [z1, z2, . . . zN ] ∈ R
D×N and �−1 is a matrix of hyperparameters of the

linear covariance function as defined in Eq. (2.22).

σ2∗ = var(y∗) = μz∗αμT
z∗ + tr[α�z∗ ] + tr[γ�z∗ ] + σ2

n, (B.17)

http://dx.doi.org/10.1007/978-3-319-21021-6_2
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http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
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where
α = �−1 − (�−1Z)(ZT�−1Z + σ2

nI)−1(ZT�−1)

and

γ = (�−1Z)(ZT�−1Z + σ2
nI)−1yyT((ZT�−1Z + σ2

nI)−1)T(ZT�−1).

Predictions for Multiple Outputs with Exact Moments

The mean value and the variance of the prediction which is the joint Gaussian distri-
bution y∗ ∈ R

E from the vector of stochastic inputs z∗ ∼ N (μz∗ ,�z∗) ∈ R
D using

the squared exponential covariance function of Eq. (2.14) together with the noise
covariance function of Eq. (2.11) and the approximation with exact moments [2, 7]:

μ∗ = E(y∗) = [
βT
1q1 . . . βT

E qE

]
, (B.18)

where the vectors qi ; i = 1, . . . , E are given by Eq. (B.13).

�∗ =
⎡
⎢⎣

var(y∗
1 ) . . . cov(y∗

1 , y∗
E )

...
. . .

...

cov(y∗
E , y∗

1 ) . . . var(y∗
E )

⎤
⎥⎦ . (B.19)

The cross-covariances in Eq. (B.19) are given by

cov(y∗
a , y∗

b ) = E(y∗
a y∗

b ) − μ∗
aμ

∗
b; a, b ∈ {1, . . . , E} (B.20)

which leads to [2]:

cov(y∗
a , y∗

b )

=
{

βT
a Qβb − E(y∗

a )E(y∗
b ), a 	= b

βT
a Qβa − E(y∗

a )E(y∗
a ) + σ2

fa
− tr

(
(� fa + σ2

nI)−1Q
) + σ2

n, a = b

(B.21)

where the elements of Q are

Qi j = Ca(zi ,μz∗)Cb(z j ,μz∗)

|�z∗(�−1
a + �−1

b ) + I| 1
2

exp

(
1

2
(ζT

i j (�z∗(�−1
a + �−1

b ) + I)−1�z∗ζ i j )

)
, (B.22)

with ζi j = �−1
a (zi − μz∗) + �−1

b (z j − μz∗).

http://dx.doi.org/10.1007/978-3-319-21021-6_2
http://dx.doi.org/10.1007/978-3-319-21021-6_2
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Cross-Covariances Between Stochastic Inputs and Outputs

Cross-covariances between the stochastic inputs and the stochastic outputs are [2]:

cov(z∗, y∗) = E(z∗y∗T) − μz∗μ∗T. (B.23)

For each output dimension a = 1, . . . , E we compute cov(z∗, y∗
a ) as

cov(z∗, y∗
a ) =

N∑
i=1

βai qai �z∗(�z∗ + �a)
−1(zi − μz∗). (B.24)
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Appendix C
Matlab Code

Implementations of some of the presented algorithms in Matlab� are available for
download at the website:

https://github.com/Dynamic-Systems-and-GP/GPdyn.git or
http://extras.springer.com

The programs are short stand-alone implementations and not part of a larger
package. They are based on GPML package of Carl E. Rasmussen and Chris K.I.
Williams that is available on the website of book [1]. The GPML package is provided
together with the provided code.
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A
Adaptive controller, 186
Adaptive dual control, 186, 194
Analytical approximation of statistical

moments with a Taylor expansion,
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Analytical approximation with exact match-
ing of statistical moments, 83, 259

Approximate Explicit Nonlinear predictive
Control, 176

Automatic relevance determination, 39, 71

B
Bayesian filters, 32
Bayesian inference, 49, 51
Bayesian information criterion, 79
Bayes’ theorem, 6, 255
Bellman equation, 158, 187

C
Closed-loop adaptive systems, 186
Closed-loop control, 147
Closed-loop performance, 148
Closed-loop stability, 148, 163, 190, 194
Covariance function, 8, 35, 106
Covariance function, composite, 47
Covariance function, constant, 37
Covariance function, exponential, 39
Covariance function, linear, 43
Covariance function, Matérn, 41
Covariance function, neural network, 45
Covariance function, nonstationary, 36, 43
Covariance function, periodic, 43

Covariance function, polynomial, 45
Covariance function, rational quadratic, 41
Covariance function, squared exponential,

37, 106
Covariance function, stationary, 36, 37
Cross-validation, 76
Curse of dimensionality, 23

D
Data preprocessing, 28
Design of the experiment, 26
Deterministic training conditional, 68
Differential evolution, 53
Disturbance-rejection control, 147, 178
Divide-and-conquer principle, 69, 120, 188
Dual adaptive controller, 187
Dynamic programming, 158, 162

E
Errors-in-variables, 57, 239
Estimation data, 76
Evidence, 6, 10, 49, 50
Evolving Gaussian process model, 70, 194,

246
Evolving systems, 70
Explicit model predictive control, 162, 176
Extended local linear equivalence, 134

F
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Feedback adaptive systems, 186
Feedforward adaptive systems, 186, 188
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Feedforward control, 151
Fixed-structure Gaussian process model,

132, 133, 135, 189
Forgetting, 67
Fully independent training conditional, 68

G
Gain-scheduled controller, 189
Gain-scheduling control, 188
Gaussian process, 7, 122
Gaussian process dynamic programming,

199
Gaussian process model, 3, 8, 21, 104, 133,

209
Gaussian-process regression, 7
Genetic algorithm, 52
GP model inference, 48
Greedy algorithm, 66

H
Hamilton-Jacobi-Bellman equation, 158,

187
Hammerstein model, 113
Hyperparameter, 5, 9, 36, 47, 50

I
Identification data, 76
Identification problem, 21
Information consistency, 61
Information criteria, 79
Instrumental variables, 57
Internal model control, 164
Inverse dynamics control, 151
Iterative feedback tuning, 198
Iterative learning control, 198

K
Kalman filter, 32
Kernel function, 5
Kernel methods, 5
K-fold cross-validation, 77
Kriging, 2

L
Leave-one-out-validation, 77
Likelihood, 6, 49
Linear parameter-varying model, 132
Local model network, 23, 119
Local models, 69, 123

Local models incorporated into a Gaussian
process, 122, 132

Log predictive density error, 78

M
Marginal likelihood, 6, 10, 49
Matrix-vector multiplication, 64
Maximum a posteriori, 50
Mean function, 59
Mean-squared error, 77
Mean standardised log loss, 78
Measurement function, 31
Minimum-variance controller, 167
Mixture of GP experts, 69, 122
Mixture of GP models, 69, 122
Model falseness, 76
Model identification adaptive control, 193
Model plausibility, 76
Model predictive control, 159, 162
Model purposiveness, 76
Model validation, 75
Monte Carlo approximation, 81

N
Naive simulation, 80
Non-dual adaptive controller, 187
Nonlinear autoregressive and moving aver-

age model with exogenous input, 31
Nonlinear autoregressive model with exoge-

nous input, 29, 57
Nonlinear Box-Jenkins model, 31
Nonlinear finite impulse response model, 29
Nonlinear output-error model, 29, 57, 80
Nonparametric system identification, 22

O
Occam’s razor, 51
Online data selection, 67
Online model clustering, 67
Open-loop adaptive systems, 186, 188
Open-loop control, 151
Optimal control, 155
Optimisation, 25, 51, 52, 58, 161
Optimisation-based data selection, 66
Overfitting, 16, 49, 51

P
Parallel processing, 62
Parametric system identification, 22
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Partially independent training conditional,
68

Particle swarm optimisation, 53
Policy search, 201
Posterior, 6, 10, 48, 51
Posterior consistency, 61
Prediction, 11, 25, 236
Predictive functional control, 166
Prior, 6, 10, 48, 103
Probabilistic dynamics model, 24
Probabilistic inference and learning for con-

trol, 201
Propagation of uncertainty, 84, 86
Pseudo-inputs, 66
Pseudo training sets, 32

R
Reference-tracking control, 147, 178
Regression, 3
Regression vector, 4, 21
Regressor, 4, 28
Reinforcement learning, 158, 198
Residual analysis, 79

S
Selection of model order, 33
Selection of regressors, 33
Sequential selection, 67
Simulation, 25, 80, 149
Sparse matrix method, 64, 65

Sparse pseudo-input Gaussian processes, 66
Standardised mean-squared error, 78
State-space model, 31, 155, 209
Stationary process, 9
Subset of data, 68
Subset of regressors, 68
System analysis, 25
System control, 25, 147, 209
System identification, 16, 21, 233, 243

T
Test data, 76
Training data, 76
Transition function, 31

U
Uncertainty, 24
Unscented transformation, 82

V
Validation data, 76
Velocity-based linearisation, 133, 135, 190

W
Warping, 47
Wiener model, 108
Windowing, 67
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