ME 133A - Odometry

Released: Wednesday 11/22/2017
Due: Friday 12/01/2017
In this lab you will be modifying a script to command a TurtleBot (Fig. 1) to trace out a simple shape while it is being tracked by the OptiTrack system. During the test the TurtleBot will be logging readings from the encoders on each of its wheels, which you will convert into Cartesian position using the differential vehicle equations and compare with the path you intended it to follow. We can then compare the intended path, the measured path from encoder odometry, and ground truth from OptiTrack to see the level of accuracy we can expect from this type of sensing.

Figure 1: TurtleBot 2 based on the Kobuki platform

Lab Preparation

Appointments for the hardware demonstration can be made via the doodle poll that will be sent out via email and under announcements on the course website. Before your scheduled demo time you will need to add code to a script to make the TurtleBot trace any simple pattern of your choice that keeps it within 1 meter of the starting location and completes within 20 seconds. The template for this script can be downloaded here. Units for linear and angular velocity in the script are in m / s and $\mathrm{rad} / \mathrm{s}$ which should be kept below $0.3 \mathrm{~m} / \mathrm{s}$ and $\pi / 2 \mathrm{rad} / \mathrm{s}$.

Testing in Simulation

You will modify the script and test it in simulation before bringing it to your chosen hardware demo slot to make sure everything is working as expected. This can be achieved by opening the virtual machine as described in the pdf from week 5 , transferring the modified script to an easily accessibly location such as the 'home' directory (if you didn't already edit the script in the VM), open the simulator in a new terminal $(C T R L+A L T+T)$ and running the command:
\$ roslaunch turtlebot_stage turtlebot_in_stage.launch

Once the simulation has opened you can test your script in a second terminal navigated to the location of the script with the command:
\$ python me133a_lab2.py
If everything has been written correctly you should see the turtlebot trace out your desired shape and then come to a stop. If anything goes wrong then check through your code and debug any issues until the script works as expected. If you need to move the turtlebot around so that it won't collide with any walls during a test you can control it with the command:
\$ roslaunch turtlebot_teleop keyboard_teleop.launch
Don't forget to stop keyboard control with CTRL $+C$ before running the python script again. Note that the encoders and other sensors are not simulated in this program, so the csv file created by the script will be empty as no sensor messages are published.

Hardware demonstration

Show up to your scheduled time slot with your modified python script ready to be transferred to the control computer. The TurtleBot will be placed on a marked starting position and then your script will be run, moving through whatever pattern you designed as OptiTrack records its position.

After the program finishes, we will provide you with the data recorded by the TurtleBot and OptiTrack for use in plotting these for the homework deliverables.

Odometry Data processing

Use the kinematic equations from the class handout on differential drive vehicles to calculate the XY position and orientation of the TurtleBot over the course of your program, and plot the results as you did in lab 1a. Equation 27 on page 6 will allow you to calculate the new XY position and orientation at each timestep.

The values in the csv you receive after testing give the number of 'ticks' seen by the encoder on each wheel. There are 2578.33 ticks per wheel revolution which can then can be multiplied by 2π to give ϕ, with a wheel radius of $\rho=3.5 \mathrm{~cm}$. The encoder values are 16 -bit numbers which means if they exceed 65535 they will roll back to zero, which you may need to account for. The distance between the wheels or 'wheel base' is $2 \mathrm{~W}=23 \mathrm{~cm}$.

The encoder readings are taken at a rate of 50 Hz , but when using the backward difference equation the time step is not needed as the relation is purely kinematic.

Homework Deliverables

Submit a plot of the XY plane that includes three trajectories: your original intended path, the path traced by the odometry measurements, and the ground truth provided by the OptiTrack system. Secondly, plot the orientation θ for each of the three paths against time (rotation about the Z axis, which will need to be converted from Quaternion for OptiTrack).

Comment on both the accuracy of the odometry estimate and how well the motion of the TurtleBot adhered to your intended pattern.

