Function: PROCESS-STATE ()

L1
L2
L3
L4
L5
L6
L7
L8
LY
L10
L11
L12
L13
L4
L15
L16
L17
L18
L19
L20
L21
L.22
L23
L.24
L25
L26

X = MIN-STATE()
if X = NULL then return -1
k., = GET—KMIN(); DELETE(X)
if k< hX) then
for each neighbor Y of X:
it h(Y) <k, and h(X) > I(Y) + c(Y, X) then
bX) = Y: h(X) = W)+ «(¥.X)
itk ,, = h(X) then
for each neighbor ¥ of X:
it «(Y)y = NEW or
(b(Y) = X and A(Y) # h(X) + (X, V) or
(b(Y) =X and h(Y) > h(X) + ¢(X, Y)) then
B(Y) = X; INSERT(Y, h(X) + c(X, Y))
else
for each neighbor ¥ of X:
it «(Y)y = NEW or
(b(Y) = X and h(Y) #h(X) + (X, Y)) then
B(Y) = X: INSERT(Y, h(X) + ¢(X,)
else
if () 2 X and 7(Y) > h(X) + c(X, Y) then
INSERT(X, h(X))
else

if b(Y)#X and h(X) > h(Y) + (Y, X) and

#(Y) = CLOSED and h(Y) >k, then

INSERIT(Y, h(Y))
return GET - KMIN ()

.

N = e

If X is current robot position, success

Path through X is no longer optimal due to
new information. Go throughY

See if neighbors of X can go through new
lower cost X due to updated information.
Also, update out-of-date costs to each
neighbor of X.

Propagate changes to NEW states and
descendents of X.

If change in X can lower costs in non-
descendent states, queue for processing

If path cost of X can be lowered through
neighbor, queue Y for processing

Path through X no
longer optimal
(RAISE state)

Path through X is
still optimal

A new cheaper
path may have
been found in

sensory update

Function: PROCESS-STATE ()

L1
L2
L3
L4
L5
L6
L7
L8
LY
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26

X = MIN-STATE () < Select X in OPEN with mininum k
if X = NULL then return —1 <€<—— |f OPEN empty, then failure
k,, = GET-KMIN(), DELETE(Y) < Get min value of kon OPEN,
if k. <h(X) then set t(X)=CLOSED
Q

for each neighbor ¥ of X:
if A(F) <k, and AX) > h(T) + c(T, X) then <—'t‘;°heapl?rkt° gt‘r’] Echr“ ”;br K
en relin d rom
bO) = T3 A0 = WD)+ oT, X) g
if k£, = hX) then

for each neighbor ¥ of X
if {¥) = NEW or <—— Nhbr Y is unvisited
(b(Y) = X and A(Y) = A(X) + (X, ¥)) or €— Cost is out of date
(b(1) 2 X and A(Y) > h(X) + (X, ¥)) then €—— Path thru Y is higher cost than thru X
b(Y) = X, INSERT(Y, h(X) + c(X, 1)) Relink Y’s path thru X, put on OPEN
else
for each neighbor ¥ of X:
if (¥) = NEW or <€—— Nhbr Y is unvisited
(b(Y) = X and A(Y) = h(X) + (X,) then €— Cost is out of date
b(Y) = X, INSERT(Y, h(X) + ¢(X, I)) <€— Relink Y’s path thru X, put on OPEN
else
if 5() =X and #(T) > h(X) + (X, V) then €— This step prevents loops in plan
INSERT(X, h(X))
else
if 5(Y) =X and AQY) > A(Y) + c(¥,X) and <— Ppath thru Y may be lower cost
(Y) = CLOSED and i(¥)>k_,, then alternative
INSERT(Y, h(T)) <€— Put Y on OPEN for later processing
return GET —KMIN()

Originally stated D* Algorithm

h(G)=0:
do
{
k,,,,"PROCESS-STATE();
twhile(k,;, = -1 && start state not removed from open list);

Ky, == -1) , Function: MODIFY-COST (X, Y, cval)
{ goal unreachable; exit;}
else ! Ll X, Y) = cval
dof 12 if(X) = CLOSED then INSERT(X, h(X))
L3 return GET-KMIN()
do{

trace optimal path();
twhile (goal 1s not reached && map == environment);

if (goal 1s reached)
{ exit;}

else

{

Y= State of discrepancy reached trying to move from some State X
MODIFY-COST(Y.X,newe(Y.X)):
do
{
k,,,,“PROCESS-STATE();
twhile(k,, < h(X) && k1= -1):
1f(niu::-l)
exit():
}

twhile(1);

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4

