Function: PROCESS-STATE ()

X = MIN - STATE()L1 if X = NULL then return -1L2 L3 $k_{old} = GET - KMIN(); DELETE(X)$ if $k_{old} < h(X)$ then L4 L5 for each neighbor *Y* of *X*: if $h(Y) \le k_{old}$ and h(X) > h(Y) + c(Y, X) then L6 L7 b(X) = Y; h(X) = h(Y) + c(Y, X)if $k_{old} = h(X)$ then L8 for each neighbor *Y* of *X*: L9 L10 if t(Y) = NEW or L11 $(b(Y) = X \text{ and } h(Y) \neq h(X) + c(X, Y)) \text{ or }$ L12 $(b(Y) \neq X \text{ and } h(Y) > h(X) + c(X, Y))$ then L13 b(Y) = X; INSERT(Y, h(X) + c(X, Y)) L14 else L15 for each neighbor *Y* of *X*: if t(Y) = NEW or L16 L17 $(b(Y) = X \text{ and } h(Y) \neq h(X) + c(X, Y))$ then L18 b(Y) = X; INSERT(Y, h(X) + c(X, Y)) L19 else L20 if $b(Y) \neq X$ and h(Y) > h(X) + c(X, Y) then L21 INSERT(X, h(X))L22 else L23 if $b(Y) \neq X$ and h(X) > h(Y) + c(Y, X) and L24 t(Y) = CLOSED and $h(Y) > k_{old}$ then L25 INSERT(Y, h(Y))L26 return GET - KMIN()

If X is current robot position, success

Path through X is no longer optimal due to new information. Go through Y

See if neighbors of X can go through new lower cost X due to updated information. Also, update out-of-date costs to each neighbor of X.

Propagate changes to *NEW* states and descendents of X.

If change in X can lower costs in nondescendent states, queue for processing

If path cost of X can be lowered through neighbor, queue Y for processing

	Function: PROCESS-STATE ()
	L1 $X = MIN - STATE()$ Select X in OPEN with mininum k
	L2 if $X = NULL$ then return -1 If OPEN empty, then failure
	L3 $k_{old} = GET - KMIN(); DELETE(X)$ Get min value of k on OPEN,
Path through X no	L4 if $k_{old} < h(X)$ then set t(X)=CLOSED
longer optimal	L5 for each neighbor Y of X:
(RAISE state)	L6 if $h(Y) \le k_{old}$ and $h(X) > h(Y) + c(Y, X)$ then \leftarrow If cheaper to go thru nhbr Y,
	L7 $b(X) = Y; h(X) = h(Y) + c(Y, X)$ then relink path from X
Path through X is	L8 if $k_{old} = h(X)$ then
still optimal	L9 for each neighbor <i>Y</i> of <i>X</i> :
	L10 if $t(Y) = NEW$ or \leftarrow Nhbr Y is unvisited
	L11 $(b(Y) = X \text{ and } h(Y) \neq h(X) + c(X, Y)) \text{ or } \leftarrow \text{Cost is out of date}$
	L12 $(b(Y) \neq X \text{ and } h(Y) > h(X) + c(X, Y))$ then \leftarrow Path thru Y is higher cost than thru X
	L13 $b(Y) = X$; INSERT(Y, $h(X) + c(X, Y)$) Relink Y's path thru X, put on OPEN
A new cheaper	L14 else
path may have	L15 for each neighbor Y of X:
been found in	L16 if $t(Y) = NEW$ or \leftarrow Nhbr Y is unvisited
sensory update	L17 $(b(Y) = X \text{ and } h(Y) \neq h(X) + c(X, Y))$ then \leftarrow Cost is out of date
sensory update	L18 $b(Y) = X$; INSERT(Y, $h(X) + c(X, Y)$) Relink Y's path thru X, put on OPEN
	L19 else
	L20 if $b(Y) \neq X$ and $h(Y) > h(X) + c(X, Y)$ then \leftarrow This step prevents loops in plan
	L21 $INSERT(X, h(X))$
	L22 else
	L23 if $b(Y) \neq X$ and $h(X) > h(Y) + c(Y, X)$ and \leftarrow Path thru Y may be lower cost
	L24 $t(Y) = CLOSED$ and $h(Y) > k_{old}$ then alternative
	L25 $INSERT(Y, h(Y))$ \leftarrow Put Y on OPEN for later processing

L26 return GET - KMIN()

Originally stated D* Algorithm

h(G)=0;

do {

}

k_{min}=PROCESS-STATE();

do{

```
trace optimal path();
```

```
}while (goal is not reached && map == environment);
```

Function: MODIFY-COST (X, Y, cval)

- L1 c(X, Y) = cval
- L2 if t(X) = CLOSED then INSERT(X, h(X))
- L3 return GET KMIN()

