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Abstract

Critically ill-patients often experience stress-induced hyperglycemia. This research demonstrates the effectiveness of a simple

automated insulin infusion for controlling the rise and duration of blood glucose excursion in critically ill-patients. Heavy derivative

controllers derived from a simple, two-compartment model reduced blood glucose excursion 79–89% after a glucose input in proof-

of-concept clinical trials. Modelled performance is very similar to clinical results, including a strong correlation between modelled

and actual insulin consumed, validating the fundamental models and methods. However, the need for additional dynamics in the

model employed is clearly illustrated despite capturing the essential dynamics for this problem.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Diabetes is a disorder of the metabolism whereby
insufficient insulin is produced by the beta cells, and as
such, blood glucose cannot be transported out of the
blood. Lack of insulin results in blood glucose levels
remaining dangerously high, which untreated over time
leads to costly complications, including kidney failure,
blindness, nerve damage, heart attack and stroke. Over
120 million people are affected by diabetes worldwide,
and this number is expected to rise to 300 million by the
year 2025 (Thomson et al., 2001).
e front matter r 2004 Elsevier Ltd. All rights reserved.
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Critically ill-patients often experience stress-induced
hyperglycaemia and high levels of insulin resistance,
even if they have no history of diabetes (Capes, Hunt,
Malmberg, & Gerstein, 2000; Christensen, 2001; Ous-
man, 2002; Umpierrez et al., 2002; Bloomgarden, 2003;
Finney, Zekveld, Elia, & Evans, 2003; Van den Berghe
et al., 2001, 2003). Hyperglycaemia can lead to an
increased risk of further complications such as severe
infections, myocardial infarctions (Capes et al., 2000),
polyneuropathy, and multiple-organ failure (Van den
Berghe et al., 2001). Tight glucose control has been
shown to reduce intensive care unit (ICU) patient
mortality by as much as 45% (Van den Berghe et al.,
2001). Current protocols lack the consistency to ensure
tight control of blood glucose levels, while automated
algorithms are still in their infancy.
While ICU patients are often sedated and in a highly

monitored state, they are extremely diverse in the causes
and dynamics of their hyperglycaemia. As a result, their
response to a glucose input can vary significantly due to
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equally extreme variations in insulin levels, effective
insulin utilization, glucose absorption and a variety of
other factors. Hence, these trials represent a fairly
extreme test of the ability of the models and control
systems developed, and highlight the need for simplicity
in a clinical environment.
Automated treatment promises better control of

blood glucose with higher consistency and an associated
reduction in diabetes related complications. Existing
insulin pumps and emerging non-invasive and semi-
invasive glucose monitoring systems may be easily
interconnected to realise a closed loop system. Ulti-
mately, the control unit should be able to automate
90–95% of the day-to-day insulin care. Therefore, the
goal is to control the essential dynamics rather than all
of the dynamics and exceptional behaviours.
Years of research on modelling and managing

diabetes have led to no shortage of theoretical auto-
mated solutions (e.g. Ollerton, 1989; Kienitz, & Yo-
neyama, 1993; Fisher, 1991; Furler, Kraegen,
Smallwood, & Chisholm, 1985). However, due to either
the complexity of the proposed implementation, models
that are not physiologically verified, or lack of required
data these solutions have not been trialled. Several
researchers have examined the analysis and automation
of insulin administration as reviewed by Lehman and
Deutsch (1996). In each case, the focus has been on
controlling absolute blood glucose excursion rather than
the shape of the glucose curve, as is done in heavy
derivative control (Chase, Lam, Lee, & Hwang, 2002).
Practical solutions that have reached implementation

have been applied primarily to ambulatory diabetic
individuals and less often to the more difficult,
hyperglycaemic critically ill patient who may not be
insulin resistant when healthy. Those implemented in
the critical care environment have been based on a
sliding scale format to determine the insulin input as a
function of blood glucose level alone (e.g. Chee,
Fernando, & van Heerden, 2002; Van den Berghe et
al., 2001, 2003). These approaches merely add consis-
tency in a semi-automated fashion to the selection of
insulin infusion level by medical staff. Since glucose level
alone is the determining factor the control implemented
is essentially pure proportional. To the best of the
author’s knowledge, no model based automatic control
methods have been clinically trialled for critical care.
Prior work in tightly controlling elevated blood

glucose levels using heavy derivative control employed
a physiologically verified three compartment model
based on the work of Bergman, Finegood, and Ader
(1985). Performance was shown to improve with
decreased sensor lag and sampling period and the
controlled solution outperformed the simulated normal
human response at a sample period of 1min (Lam, Lee,
Hwang, Chase, & Wake, 2002). The primary feature of
derivative weighted control is the focus on controlling
the shape of the blood glucose curve rather than the
absolute magnitude of blood glucose. This approach
adds robustness because it can more readily account for
varying rates of glucose absorption and other patient
specific behaviours. The research presented here devel-
ops this heavy derivative control approach to a proof-
of-concept clinical trial with ICU patients. Results are
compared to predicted values to verify the modelling
methods and overall approach to controlling blood
glucose.
2. Clinical trial method

The proof-of-concept clinical trials conducted effec-
tively simulate a true feedback control system with a 15-
min sampling period, which works well and represents a
realistic level of system performance (Chase et al., 2002;
Chase, Shaw, Doran, Hudson, & Moorhead, 2003; Lam
et al., 2002). They are designed specifically to test the
effectiveness of the heavy derivative control methods
under variable glucose inputs and to verify the simula-
tions of the essential dynamics and design that led to
them.
Qualifying patients had to be stable, have elevated

blood glucose levels over 8mmol/L (average blood
glucose in a healthy individual is 4.5–5mmol/L), have
an arterial line and a nasogastric feed, and be expected
to remain in the ICU for at least 3 days. In addition,
patients with morbid obesity (BMI435 kg/m2) or
neuromuscular blockade were not considered. The
clinical trials are a 2-day procedure for each participant.
The first day of the trial measures the uncontrolled
glucose regulatory system response and the second day
implements active insulin control. The Canterbury
Ethics Committee granted ethics approval for these
trials.
2.1. Clinical trial day one

The trial begins at 0700 h at which time the patient is
fasted for 4 h. Blood glucose readings are taken every
hour to determine a basal blood glucose level. At 1100 h,
blood is taken for C-peptide and blood insulin tests to
screen for insulin contamination and determine the
basal insulin level, respectively. The patient is then given
a 75 g oral glucose tolerance test (OGTT) glucose dose
over 1min via the nasogastric tube. Plasma glucose is
measured at 15-min intervals until 1500 h. Paired
samples are taken, with one analysed using a bedside
GlucocardTM Test Strip 2 glucose testing kit and the
other sent to the laboratory for comparison. The error
in the absolute readings are approximately 7% for the
GlucocardTM Test Strip 2 tests, and 3% for the
laboratory tests at typical elevated blood glucose levels
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(Phillips, Clark, Hales, & Osmond, 1994; Peters,
Davidson, Schriger, & Hasselblad, 1996).

2.2. Clinical trial day two

The procedure is repeated as per day one, however
short acting soluble insulin with 0.2U/ml in 0.9% saline
is infused via an intravenous cannula using a Graseby
3500 syringe pump. Plasma glucose is measured at 15-
min intervals as previously and the insulin infusion rate
is manually adjusted every 15min according to the
heavy derivative control algorithm. This approach is
designed to specifically test the algorithm. Hence, only
glucose measurements were made to simulate a practical
implementation and eliminate the impact of any specific
equipment.
3. Mathematical modelling

Implementing tight glucose control in critically ill-
patients via a fully automated insulin infusion system
requires a simple model of the glucose regulatory system
that accounts for the relationship between intravenous
infusion of exogenous insulin and the measured blood
glucose level. The initial physiologically verified model
employed originated from the work of Bergman et al.
(1985), utilising the concept of a remote compartment
for the transport of insulin between the subcutaneous
infusion site and its utilisation to reduce blood glucose
levels.
ICU patients have direct arterial/venous lines that

bypass the subcutaneous compartment in the three-
compartment model, and require only two compart-
ments. The first compartment models insulin uptake
into the blood, and the second models blood glucose
level and insulin mediated transport of glucose from
the blood. The model is shown schematically in Fig. 1
Bloo
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Insulin injection or
infusion (u(t)) 

Pancreas
Endogenous insulin 
production (IB) 

I = −n(I+IB)+ G=

I(t)

u(t)
V

Fig. 1. Two compartment glucose–insulin system model with I(t) and P(t) inp

Each input to the plasma is broken into exogenous and endogenous sources
and defined:

_G ¼ �pGG � SI IðG þ GBÞ þ PðtÞ; (1)

_I ¼ �nðI þ IBÞ þ uðtÞ=V I ; (2)

where G (mmol/L) is the concentration of the plasma
glucose above basal level, GB (mmol/L). I (mU/L) is the
concentration of the plasma insulin above basal level, IB

(mU/L). u(t) (mU/min) is the exogenous insulin infusion
rate, PðtÞ (mmol/L/min) is the exogenous glucose input,
VI (L) is the volume of distribution, and n (min�1) is the
rate constant associated with the interstitial transfer of
insulin to be utilised. pG (min

�1) and SI (L/mU/min) are
patient specific parameters, where pG is the fractional
clearance of plasma glucose at basal insulin, and SI is
insulin sensitivity as described by Bergman et al. (1985).
The model is therefore patient specific and is adapted to
each person before a controller is developed.
Fig. 1 shows the fundamental physiological inputs to

Eq. (1), specifically insulin and glucose. The insulin
inputs on the left side are broken into endogenous, or
basal, insulin production, IB; and exogenous insulin
input, uðtÞ; with their compartment dynamics defined by
Eq. (2) resulting in the insulin input, IðtÞ: The glucose
inputs in the bottom of the figure are similarly
categorised as endogenous, basal production from the
liver, GB; and exogenous input, PðtÞ; with no additional
compartment dynamics. Eq. (1) is the pharmaco-
dynamic equation for the utilisation of insulin and
removal of glucose in the blood plasma and at
interstitial sites in this simplified model, and its
output is the net change of blood glucose from basal
levels, GðtÞ:
Additional model dynamics linking the two compart-

ments in Eqs. (1) and (2) may be needed, however any
missing dynamics would influence SI and the insulin
utilisation term with little effect on the ability to derive
an appropriate controller that acts on blood glucose
d Plasma
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moval of glucose  
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rise. More specifically, the upward rise of glucose
concentration over the first 45–60min does not depend
heavily on this term, and it is this rise that the heavy
derivative control focuses on limiting.
Hence, a second aspect of this research is to determine

from the clinical results whether this simple control
model lacks the complexity to sufficiently capture the
essential dynamics required for model-based blood
glucose control. Given the difficulty of modelling the
dynamics of hyperglycaemic critical care patients due to
their lack of diabetes history, high glucose intolerance
and hyper-insulinemia, the simplest realistic model was
used with the goal of adding critical dynamics as they
became apparent from clinical results.
Controller parameter determination is therefore

accomplished in three steps. First, data is gathered from
an uncontrolled OGTT. Second, the patient specific
parameters, pG and SI ; are obtained using uncon-
strained optimisation designed to minimise the differ-
ence between modelled and test behaviour. Finally,
given a model that fits the error bounds of the
uncontrolled patient data, particularly the initial rise,
proportional-derivative (PD) control gains, Kp and Kd ;
are developed using a second unconstrained optimisa-
tion to find derivative weighted gains that minimise the
magnitude and duration of blood glucose excursion
from the patient’s basal level for the same OGTT input.

3.1. Parameter determination

The total amount of glucose infused simulating an
OGTT is 412mmol, a value obtained by converting 75 g
of glucose and assuming the patient has the glucose
evenly distributed in a VI ¼ 12L fluid volume with rate
constant n ¼ 0:16 (Furler et al., 1985; Bergman et al.,
1985). To account for the different rates of uptake, the
peak of the simulated exogenous glucose infusion
profile, PðtÞ; is set at approximately 80% of the time
required for the patient’s uncontrolled OGTT peak
glucose reading, and modelled as a continuous lognor-
mal function. Hence, the simulated and actual uptake
rates for uncontrolled OGTT will be similar and the
total glucose input will be identical.
A continuous function is fitted to the patient’s

uncontrolled, day one, OGTT data using a log-normal
function, which captures the fundamental dynamics of
such data well (Lam et al., 2002). This function is used
to derive a function, Gpatient, which can be discretised for
optimisation into a series of time points, Gpatient; to
enhance the number of points available for data fitting,
where Gpatient includes the actual data points taken at the
proper times. This approach effectively augments the
data taken and smoothes out some of the noise.
Similarly, the same data points can be obtained from a
simulation of Eqs. (1) and (2), a set labelled Gm; to
enable a comparison between model and data in the
optimisation routine. Unconstrained optimisation using
Matlab is then used to determine SI and pG so that the
square error defined below is minimised:

R ¼ ðGpatient � GmÞ
T
ðGpatient � GmÞ þ e�pGC þ e�SI C ;

(3)

where C is a large positive constant (e.g. 1000 for this
model), defined to ensure that pG and SI remain positive.
These exponential terms add the constraints pG40 and
SI40, creating an unconstrained optimisation problem,
since meeting these terms are zero when the constraints
are satisfied, and lead to a very large penalty otherwise.
By changing the discretisation of Gpatient, certain

points in the model solution and the continuous
function Gpatient can be constrained to match more
accurately. Typically, several extra time points around
the peak of the glucose response curve are added to
ensure the rise and inflection of the glucose curve are
adequately captured. It is this rise and inflection that are
critical for effective control of the blood glucose rise, as
it is this portion of the curve that instigates the vast
majority of the controlled insulin infusion input.

3.2. Control design

The controller determines the amount of exogenous
insulin, uðtÞ; infused. The model is set to run with a
15min sampling interval to match the clinical trial
program. A heavy derivative PD controller is employed:

uðtÞ ¼ max 0;U0ð1þ KpðG þ GprimeÞ þ Kd
_GÞ

� �
; (4)

where U0 (mU/min) is the basal insulin infusion rate
typically equivalent to approximately 1U/h, Kp is the
proportional gain and Kd the much larger derivative
gain (Lam et al., 2002). More specifically, the propor-
tional gain is typically 20–50x smaller than the
derivative gain so it dominates the control input during
the rise and fall of blood glucose. Finally, Gprime (mmol/
L) is an offset term to the proportional control input, so
a high basal glucose level, GB; can be controlled to a
lower target blood glucose level, Gt, by increasing Gprime;
the difference between the target blood glucose level (Gt)
and the actual, elevated basal blood glucose level (GB):

Gprime ¼ GB � Gt: (5)

When Gprime is more positive, the proportional feed-
back term is greater. The ‘max’ function, with argument
‘‘0’’, in Eq. (4) ensures that negative insulin demands,
encountered as blood glucose falls, are treated as a zero
input.
It is important to note that the PD controller defined

in Eqs. (4) and (5) is non-linear. More specifically, it
only provides insulin for positive control inputs and
does nothing when ‘‘negative insulin’’ is commanded.
Per the work in Lam et al. (2002), the use of derivative
focused PD control in this way helps predict glucose



ARTICLE IN PRESS
C.V. Doran et al. / Control Engineering Practice 13 (2005) 1129–1137 1133
surges, such as after a meal or OGTT input, and
therefore provide the proper insulin, which in this case is
much like a bolus injection. Similarly, when the glucose
is falling the derivative is negative and no insulin is
therefore commanded, which would destabilise this
system by adding insulin to already falling blood glucose
levels and resulting in hypoglycaemia. Therefore, this
non-linear PD controller effectively avoids destabilising
inputs with a derivative focused PD controller for this
process, even though a small lag may occur between
intravenous insulin infusion and its utilisation to reduce
blood glucose.
The control gains are determined by minimising the

objective function (R) defined:

R ¼ C1 Gð~tÞ � Gt

� �T
Gð~tÞ � Gt

� �

þ C2
_Gð~tÞT _Gð~tÞ þ e�Kd C þ e�KpC ; ð6Þ

where C1, C2 and C are positive constants that weight
each of their respective terms. The Gð~tÞ terms are the
measured glucose data and in Eq. (6) are used to
minimise the area between the blood glucose levels from
the measured data and the target blood glucose levels,
Gt: Similarly, the _Gð~tÞ terms in the objective function
minimise the slope of the output glucose levels, reducing
oscillation in the blood glucose response curve, a
problem that can occur if the gains are too large. The
exponential terms in the objective function ensure that
Kd and Kp remain positive, using the same approach as
in Eq. (3). The control gains are patient specific,
however typical ranges for Kd and Kp found in this
study are (0.1–3) and (10–40), respectively, with a typical
ratio of approximately 25 of Kd to Kp: Overall,
optimisation is employed not to find a best solution
but to efficiently search a large domain of possible
control gains.
Where a proportional controller only infuses signifi-

cant insulin at elevated blood glucose levels, heavy
derivative control predicts the approaching high blood
glucose level from the steep gradient and infuses insulin
pre-emptively, thus enabling a faster response to
Table 1

Patient summary and day 1 results

Patient Age Condition Basal glucose,

GB (mmol/L)

Peak glucose

(mmol/L)

In

(p

1 67 Kidney failure 9.5 11.5 7

2 48 ARDS, Tetraplegic 12.5 24.5 5

3 75 Head injury 13.8 22.1

4 59 Sepsis 10.8 11.8 29

sa
increasing blood glucose levels. This approach is similar
to a healthy response to increasing blood glucose levels,
where gastrointestinal hormones stimulate an anticipa-
tory increase in insulin concentration in preparation for
glucose and amino acids to be absorbed from a meal
creating an initial insulin spike (Guyton and Hall, 1996).
Simulation by Lam et al. (2002) have shown that the

heavy-derivative control method results in an infusion
profile similar to a bolus with a background infusion as
commonly done by diabetics. This bolus with a back-
ground infusion also mimics the post-prandial first and
second phase insulin release exhibited by healthy
individuals (Del Prato, Marchetti, & Bonadonna,
2002). An infusion that is proportional to blood glucose
level alone will infuse insulin when blood glucose is still
above the desired level but dropping rapidly, leading to
an increased risk of hypoglycaemia (Lam et al., 2002).
Pure proportional control will also not mimic the initial
sharp, bolus-like, first-phase insulin release that occurs
in normal individuals following a glucose input or
challenge, as proportional control is strictly a function
of the slower rising glucose level that initially starts at
the basal level.
4. Clinical results and discussion

Table 1 gives the patient age, condition, insulin levels,
GB; peak glucose levels, and patient specific parameters,
pG and SI ; from day one of the trial. The four patients
display a diverse range of glucose responses to the
OGTT from relatively flat to extremely volatile. The
insulin sensitivity values, SI ; are of the same order or
higher than existing data for sub-cutaneous delivery
(Bergman, Phillips, & Cobelli, 1981; Avogaro, Bristow,
Bier, Cobelli, & Toffolo, 1989). However, sub-cutaneous
infusions can be subject to up to 20% losses in
transportation (Kraegen and Chisholm, 1984). These
losses are typically accounted for by a reduced value for
SI ; and for intra-venous infusion, the higher values
might be expected.
sulin level

mol/L)

Patient specific parameters Diabetic type

pG (min
�1) SI (L/mU/min)

0 0.1549 0.0317 Hyperglycaemic,

and

hyperinsulinemic

9 0.0187 1.1� 10�4 Type 2

3 0.0074 0.0036 �Type 1

5 (infected

mple)

0.1 0.0025 Hyperglycaemic,

and

hyperinsulinemic
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Patient 1 was a 67 year old female subject in the ICU
for 3 days suffering from kidney failure. The kidneys can
remove up to 30% of effective insulin, so kidney failure
is an ‘‘insulin sparing’’ condition that can lead to a
flatter glucose response (Charpentier, Riveline, &
Varroud-Vial, 2000). The patient was both hypergly-
caemic and somewhat hyper-insulinemic as well as
indicated by a basal insulin level of 70 pmol/L.
Fig. 2 shows the measured and model predicted

glucose response for day one (uncontrolled) and day two
(controlled). The measured data is presented with the
7% error associated with GlucoCardTM 2 (Arkray Inc,
2001) measurements. The magnitude and duration of
blood glucose excursion from the basal level are reduced
over 50%. The target sub-basal glucose level of
5.5mmol/L was not fully reached, as the relatively low
proportional control is not effective as the tail of the
glucose response curve flattens off. This result is an
example of the need for gain scheduling or a modified
control approach in this flatter response regime. Also
note that the uncontrolled response is relatively flat for
an OGTT, which is a result of the patient’s relative
hyper-insulinaemia.
Overall, the automated algorithm provided rapid,

effective control of the OGTT input and the simulated
controlled response was an extremely good match for
the measured data, as seen in Fig. 2. The difference in
day one and day two basal levels is due to changes in
feeding and insulin administration over the night
between the OGTTs. Finally, the patient’s blood glucose
concentration began to increase steadily back to
10mmol/L after the controlled day two test when
hospital staff returned to their sliding scale protocol,
showing the need for, and effectiveness of, automated
methods for tight glucose regulation.
Patient 2 was a 48 year old male tetraplegic with

Acute Respiratory Distress Syndrome (ARDS). This
patient’s history exhibited an extremely variable re-
sponse to most medications and this experience was
reiterated during the trial. As shown in Fig. 3, the
patient’s glucose absorption was much faster on day
two, due to delayed gastric emptying on day one. The
response on day two also shows the possible effect of an
unmodelled insulin accumulation dynamic at 200min.
The faster day two gastric emptying and insulin
accumulation dynamic were manually modelled with
the result shown by the dashed line in Fig. 3. The day
two simulations also include the sensor error shown in
Fig. 3. Local hospital protocol generally sets the
maximum insulin infusion rate at 6U/h, however, due
to the high glucose levels and large derivative, _G
following the OGTT dose, the control algorithm
commanded up to 37U/h for a given 15min period. A
constant infusion rate of approximately 6U/h was
required to maintain the final steady state blood glucose
level, and along with the relatively low SI in Table 1,
indicates this patient’s high insulin resistance. The result
is an insulin profile that looks very similar to an insulin
injection combined with a steady background infusion,
matching current treatment protocols (Lam et al., 2002;
Pickup and Keen, 2002).
Patient 3 was a 75 year old male with a head injury.

Uncontrolled data from day one, in Fig. 4 shows the
patient behaves essentially as a Type 1 diabetic,
although not previously diagnosed. Insulin level tests
confirmed this assumption with a very low insulin level
of 3 pmol/L. The controlled glucose response simulation
does not capture the unmodelled dip in the glucose
profile at 180min, or the initial stronger glucose rise,
further illustrating how the simple insulin utilisation
dynamics in Eq. (1) are not necessarily fully adequate.
These results indicate that some insulin appears to
accumulate, or take a slower path, in a remote
compartment before utilisation, as shown by the dashed
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Table 2

Comparison between predicted insulin and trial insulin infused

Patient Model predicted

total insulin (U)

Day 2 clinical trial

total insulin (U)

Percentage

difference between

predicted and

infused (%)

1 4.50 4.43 �1.6

2 38.24 42.65 10.4

3 4.90 4.50 �8.9

4 8.90 8.07 �10.0
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line in Fig. 4 generated using an approximation of this
dynamic in the model. This slower acting insulin
accumulation has been recently proposed by other
researchers (Hovorka, Chassin, Luzio, Playle, & Owens,
1998; Cobelli, Bettini, Caumo, & Quon, 1998).
Patient 4 was a 59 year old female with sepsis and

infection. Day one of the trial gave an almost flat
glucose response curve, implying the patient was both
hyperglycaemic and (potentially) hyper-insulinaemic.
However, the insulin level test was potentially infected
as shown by the high insulin laboratory test measure-
ment in Table 1. With the lack of a significant increase in
glucose levels from basal and resulting low derivative
values, the insulin infusion was effectively constant on
day two. The sub-basal target glucose level
(Gt ¼ 5:4mmol=L) was chosen 1mmol/L below the
patient’s day two basal level of GB ¼ 6:4mmol=L and
the control algorithm proved efficient at obtaining this
slightly reduced level. Fig. 5 also shows an initial dip in
the measured data and simulation output on both
controlled and uncontrolled data that may be attributed
to an unmodelled delay in glucose uptake.
A comparison between the predicted and actual

insulin dose for all four patients is shown in Table 2.
The total insulin infused over four hours differed from
the predicted insulin infusion total by no more than
10.4% with an average error of approximately 3% over
the four trials. This strong correlation helps validate the
fundamental models and methods employed, despite
potential missing dynamics that must be added. Where
the model tends to under predict insulin consumption, it
can be attributed to one of at least three factors. First,
the discrete 0.2U/mL insulin infusion levels are not the
analogue values available in the model. Second is that
for large doses, such as with patient 2, some insulin may
be ‘‘lost’’ along the length of the infuser tubing or in
physiological saturation dynamics that are not mod-
elled. Third, the patient specific parameters, pG and SI;
may change over the trial period due to drug interac-
tions or natural fluctuations.
To determine control effectiveness, blood glucose

excursion is quantified as the sum of the area under the
measured blood glucose curve above the basal glucose
level, as illustrated in Fig. 6, where A1 and A2 denote the
blood glucose excursion on day one and two, respec-
tively. The ratio between the controlled, A2; and
uncontrolled areas, A1; quantifies the effectiveness of
the controller. The reduction in basal glucose level from
the beginning, GB; to the end of day two, GBðfinalÞ;
measures the improvement obtained as the controller
aims for the lower target basal glucose level. Fig. 6
illustrates both performance metrics. For the first four
patients the excursion from basal blood glucose level is
reduced 79–89%, and the basal glucose level is reduced
12–41% with specific values given in Table 3.
The unmodelled accumulator dynamic noted in most

of the clinical results has four potential causes. The first
possible cause is the physiological battle between the
body’s desire to return to the (elevated) basal level and
the controller’s attempts to hold it down, as best seen in
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Fig. 2. The second possibility is that the demand for
insulin in the blood is secondary to those of the brain
and liver, such that meeting these demands first causes a
reduction in useful insulin in the blood and a later over
reaction. Third, saturation in transport or utilisation
could also lead to a delayed response as seen in these
trials. Lastly, it is believed that insulo-penic, or very low
insulin level, patients can develop lipo-toxicity, suppres-
sing insulin release from any active beta cells. Therefore,
when exogenous insulin is infused these beta cells are
free to release endogenous insulin not initially accounted
for (Del Prato et al., 2002). Further tests will help clarify
the specific causes of this dynamic, and improve the
models and clinical trial methods employed.
A second limitation of the proof of concept trials

performed that should be noted is the lack of
intermittent plasma insulin samples. This data would
have aided any model verification, despite using a well-
established model. It should be noted that the primary
goal was to test the control algorithm, which used only
glucose measurements as inputs to the controller, and
that plasma insulin levels are not typically able to be
determined as rapidly as glucose samples in a clinical
environment. The latter aspect points to the potential
for estimation of plasma insulin levels as a possible
avenue to achieve better control.
Finally, the use of an OGTT to obtain patient specific

parameters adds significant time and complexity,
especially for a practical implementation. While the
OGTT does provide a useful set of data on the patient
specific glucose–insulin response a similar result can be
seen with an insulin challenge using a fixed insulin bolus
in the range of 1.5–2U. The OGTT and the insulin
challenge provide similar data about the hyperglycaemic
patient specific metabolic system response that can be
Table 3

Comparison of glucose excursion for controlled vs. uncontrolled data

Patient Day 1–OGTT Day 2–clinical trial

GB (mmol/L) A1 GB (mmol/L)

1 9.6 292 7.2

2 12.5 1524 11.6

3 13.1 1082 11.1

4 10.8 170 6.4

Time

Blood 
Glucose 

Level over
Basal

A1

A2 Gb

Gb(final)

Fig. 6. Calculation of excursion from basal glucose level where A1 and

A2 represents the areas under the glucose curve on days 1 and 2,

respectively.
used to fit the endogenous glucose removal and insulin
sensitivity parameters pG and SI : Another approach
would be to use a default set of parameters based on data
from the literature and then adapt these values as the trial
progressed to obtain better accuracy between predicted
and actual results from insulin and/or glucose inputs.
5. Conclusions

The research has succeeded in demonstrating tight
feedback controlled blood glucose level regulation in
response to a glucose input in critically ill-patients using
a heavy-derivative controller. The first four trials show a
good level of correlation between the simple model and
patient data, verifying the basic models and methods
employed. In particular, the model’s ability to capture
the insulin dose to within 10% of actual values validates
the fundamental assumptions made. More specifically,
heavy derivative control has been demonstrated to be
effective in practice and to match the essential dynamics
encountered reasonably well, resulting in reductions in
glucose excursion of up to 89% and basal glucose
reductions of up to 41%. However, the results have also
clearly demonstrated the need for additional dynamics
in the system model. Hence, the simple glucose–insulin
system model employed captures the fundamental
dynamics well for these relatively short tests, but is
likely too simple for long-term effectiveness over several
hours or days. Finally, it has been shown that glucose
challenges can be managed effectively and basal values
reduced for the difficult hyperglycaemic critical care
patient using this very simple feedback control method.
Additionally, two simple measures for capturing the

effectiveness of automated glucose regulation are
introduced. The comparison of blood glucose excursion
area, for a given input, is seen to capture the essential
details of the magnitude and duration of the blood
glucose excursion from the patient’s basal level.
Secondly, many ICU patients have elevated basal blood
glucose levels so that comparing the final basal value
that the controller achieves is a simple measure of the
controller’s ability. Future developments include
model development, parameter estimate improvements
A2/A1

A2 GB(final) (mmol/L) GB(final)/GB

60 6.1 0.85 0.21

172 6.9 0.59 0.11

196 7.9 0.71 0.18

23 5.6 0.88 0.14
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including the use of insulin challenges instead of the
OGTT, and enhancement of the control systems
employed with an emphasis on adaptive control
methods.
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