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Abstract

For mobile robots to be successful, they have to navigate
safely in populated and dynamic environments. While recent
research has led to a variety of localization methods that can
track robots well in static environments, we still lack methods
that can robustly localize mobile robots in dynamic environ-
ments, in which people block the robot’s sensors for extensive
periods of time or the position of furniture may change. This
paper proposes extensions to Markov localization algorithms
enabling them to localize mobile robots even in densely pop-
ulated environments. Two different filters for determining the
“believability” of sensor readings are employed. These fil-
ters are designed to detect sensor readings that are corrupted
by humans or unexpected changes in the environment. The
technique was recently implemented and applied as part of an
installation, in which a mobile robot gave interactive tours to
visitors of the “Deutsches Museum Bonn.” Extensive empiri-
cal tests involving datasets recorded during peak traffic hours
in the museum demonstrate that this approach is able to accu-
rately estimate the robot’s position in more than 98% of the
cases even in such highly dynamic environments.

Introduction
To operate autonomously, mobile robots must know where
they are. Mobile robot localization, that is the process of
determining and tracking the position (location) of a mobile
robot relative to its environment, has received considerable
attention over the past few years. Accurate localization is a
key prerequisite for successful navigation in large-scale envi-
ronments, particularly when global models are used, such as
maps, drawings, topological descriptions, and CAD models
(Kortenkamp, Bonasso, & Murphy 1998). As demonstrated
by a recent survey of localization methods (Borenstein, Ev-
erett, & Feng 1996), the number of existing approaches is
diverse. Mobile robot localization techniques can be cate-
gorized at least along the following two dimensions: local
vs. global approaches, and approaches for static vs. dynamic
environments:

1. Local vs. global localization Local approaches to
localization are designed to compensate odometric error
based on sensor data. They usually require that the initial lo-
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cation of the robot is known, and are only capable of track-
ing the location of a robot. The majority of existing localiza-
tion approaches falls into this category. Global approaches
are more general. They can localize a robot globally, that
is, they can determine its location without knowledge of the
initial location and thus can handle the “kidnaped robot prob-
lem” (Engelson 1994). Recently, several researchers pro-
posed a new localization paradigm, called Markov local-
ization, which enables robots to localize themselves under
global uncertainty. Global approaches have two important
advantages over local ones: First, the initial location of the
robot does not have to be specified and, second, they pro-
vide an additional level of robustness, due to their ability to
recover from localization failures.

2. Static vs. dynamic environments A second dimension
along which localization methods can be grouped is con-
cerned with the nature of the environment which they can
master. The majority of approaches can only cope with static
environments, that is, environments where, according to the
robot’s sensors, the only aspect that may change over time
is the robot’s own location. However, these approaches are
typically brittle in environments where the dynamics are per-
ceived through the robot’s sensors. The approach of (King &
Weiman 1990) uses cameras pointed towards the ceiling and
thus cannot perceive most of the changes that occur in typical
office environments. Unfortunately, such an approach is only
applicable if the ceiling contains enough structure for accu-
rate position estimation. Thus, the development of methods
that can localize a robot in dynamic environments is still an
important goal of research on mobile robot navigation.

This paper proposes a localization algorithm that can lo-
calize robots in the most difficult of all situations, namely
localization under global uncertainty and in highly dynamic
environments. The approach is based on Markov localiza-
tion. Like Markov localization, it localizes robots probabilis-
tically, that is, it maintains multiple hypotheses as to where
the robot might be, weighted by a numerical probability fac-
tor. As a consequence, our approach inherits from Markov
localization the ability to localize a robot under global un-
certainty (see (Burgard et al. 1996)). Markov localization
is based on the assumption that the position of the robot is
the only state in the world. Unfortunately, this assumption



is violated if not all aspects of the environment are covered
by the world model, which is the case for most dynamic en-
vironments. Thus, although Markov localization has been
found to be robust to occasional dynamical effects (such as
people walking by or doors being closed), it typically fails
to localize a robot in densely crowded environments. Unlike
Markov localization, however, our approach actively filters
sensor data to eliminate the damaging effect of sensor data
corrupted by external (unmodeled) dynamics. In this paper,
we propose and compare two such filters, one that filters sen-
sor data based on entropy change, and one that incorporates
additional knowledge concerning the nature of possible cor-
ruptions.

In an experimental study, our extended Markov localiza-
tion is compared to the original Markov localization with-
out filtering. These experiments are conducted using data
gathered during a six-day deployment of our mobile robot
RHINO in the “Deutsches Museum Bonn” shown in Fig-
ure 1(a) (see also (Burgard et al. 1998)). Our comparisons
show that in such situations, conventional Markov localiza-
tion fails to track the robot’s location. Our filter techniques,
in contrast, successfully accommodate the environment’s dy-
namics. Additionally, our approach can reliably recover from
localization errors.

RHINO

(a) (b)

Fig. 1. (a) RHINO surrounded by visitors and (b) a highly
corrupted sensor scan.

The remainder of this paper is organized as follows. After
introducing Markov localization in the following section, we
will describe our extension, followed by experimental com-
parisons and a discussion section.

Markov localization
This section briefly outlines the basic Markov localization
algorithm upon which our approach is based. The key idea
of Markov localization which has recently been applied with
great success at various sites (Nourbakhsh, Powers, & Birch-
field 1995; Simmons & Koenig 1995; Kaelbling, Cassan-
dra, & Kurien 1996; Burgard et al. 1996) is to compute a
probability distribution over all possible locations in the en-
vironment. Let ���������
	����� denote a location in the state
space of the robot, where � and 	 are the robot’s coordi-
nates in a world-centered Cartesian reference frame, and � is
the robot’s orientation. The distribution ���������� over all lo-
cations � expresses the robot’s subjective belief for being at
position � . Initially, �����
����� reflects the initial state of knowl-

edge: if the robot knows its initial position, ���������� is cen-
tered on the correct location; if the robot does not know its
initial location, ���������� is uniformly distributed to reflect the
global uncertainty of the robot. As the robot operates, ����������
is incrementally refined.

Markov localization applies two different probabilistic
models to update ���������� , an action model to incorporate
movements of the robot into ���������� and a perception model
to update the belief upon sensory input.

Robot motion is modeled by a conditional probability� �����������
 !� specifying the probability that a measured move-
ment action  , when executed at ��� , carries the robot to � .���������� is then updated according to the following general
formula coming from the domain of Markov chains (Chung
1960):

����������#"%$ &('*),+-���.�/� � �0 ��.12�������� � � (1)

The term � ���3�4�����0 !� represents a model of the robot’s kine-
matics. In our implementation we assume the errors of the
odometry to be normally distributed.

Sensor readings are integrated according to the well-
known Bayesian update formula. Let 5 denote a sensor read-
ing and � ��5%����� the likelihood of perceiving 5 given that the
robot is at position � , then �����
����� is updated according to the
following rule:

����������#"%$ 6 � ��5��7���8�����
����� (2)

Here 6 is a normalizer ensuring that ���������� sums up to 9 over
all � .

Strictly speaking, both update steps are only applicable
if the problem is Markovian, that is, if past sensor readings
are conditionally independent of future readings given the
location of the robot. The Markov assumption thus assumes
that the world is static. While in practice, the approach has
been applied even in environments that contained people and
hence violate the Markov assumption, the experiments re-
ported here indicate that it does not scale to densely popu-
lated environments.

In this paper we use a fine-grained grid-based represen-
tation of the state space, just like the approach described in
(Burgard et al. 1996). In all our experiments, the resolution
of robot orientation was :<; , and the spatial resolution was9�= cm. Different optimization techniques described in (Fox,
Burgard, & Thrun to appear) allow the robot to efficiently
update such large state spaces in real-time, without restrict-
ing the power of the approach in any noticeable way. The
primary advantage of the high resolution are the resulting
accuracy of position estimates and the ability to incorporate
raw data of proximity sensors, which were required in the
specific application domain described below.

Localization in Highly Dynamic Environments
The standard Markov localization approach has been found
to be robust in static environments. However, as argued in



the introduction to this paper (and demonstrated in the results
section), it is prone to fail in densely populated environments
which violate the underlying Markov assumption. In the mu-
seum, where the robot is naturally accompanied by crowds of
people, this assumption is clearly violated. To illustrate this
point, Figure 1(b) shows a typical example situation where
RHINO has been projected into the map at its correct posi-
tion. The lines indicate the current proximity measurements
and the different shading of the measurements indicates the
two classes they belong to: the black values correspond to
static obstacles that are part of the map, whereas others are
caused by humans and thus violate the Markov assumption
(max-range measurements are not shown).

The proximity of people usually increases the robot’s be-
lief of being close to modeled obstacles, which has the ef-
fect that the robot frequently loses track of its position when
relying on all sensor measurements. Approaches for con-
current estimation of the state of the world and of the posi-
tion of the robot as proposed in (Gutmann & Schlegel 1996;
Lu & Milios 1997; Thrun, Fox, & Burgard to appear), un-
fortunately, require too many computational resources to be
applied on-line or even in real-time. Our approach to solve
this problem is to develop filters which select those readings
of a complete scan which with high likelihood are not due
to static obstacles in the map thus making the system more
robust against such kind of noise.

In the following two sections we will describe two dif-
ferent filters aiming at detecting corrupted readings and thus
allowing the robot to keep track of its location even in con-
siderably difficult situations, in which more than 50% of all
readings are misleading. The first filter is a general method
for filtering sensor data in dynamic environments. It selects
only those readings that increase the robot’s certainty, which
is measured by the entropy of the belief ���������� . The sec-
ond filter is especially designed for proximity sensors, as it
attempts to filter such readings which with high probability
are shorter than expected according to the model of the envi-
ronment and the current belief state �����
����� of the robot.

Entropy filter

The first filter used in our implementation is called entropy
filter. The entropy � ����� of a distribution over � is defined by

� ����� � $ & ' ���������������� ������������ (3)

Entropy is a measure of uncertainty: The larger the entropy,
the higher the robot’s uncertainty as to where it is. The en-
tropy filter measures the relative change of entropy upon in-
corporating a sensor reading into the belief ���������� . More
specifically, let 5 denote the measurement of a sensor (in our
case a single range measurement). The change of the entropy
of �����
����� given 5 is defined as:
	 � ��� � 5���
 � � �����8$�� ���.�75��� (4)

While a positive change of entropy indicates that after in-
corporating 5 , the robot is less certain about its position, a
negative change indicates an increase in certainty.

RHINO’s entropy filter uses only such sensor measure-
ments 5 for which

	 � ��� ��5������ . Thus, the entropy filter
makes robot perception highly selective, in that it considers
only sensor readings confirming the robot’s current belief.

Novelty filter
While the entropy filter makes no assumptions about the na-
ture of the sensor data and the kind of disturbances to expect
in dynamic environments, the second filter is especially de-
signed for proximity sensors and detects additional obstacles
in the environment. This filter is called novelty filter, since
it selects sensor readings based on the degree of their “nov-
elty.” To be more specific, a measurement 5 is assumed to
be “novel” to the robot, if it is reflected by an obstacle not
represented in the map. Obviously, for proximity measure-
ments such a case can only be detected if the measurement is
shorter than expected.

The novelty filter removes those proximity measurements
which with probability higher than � (this threshold is set to
��� ��� in all experiments) are shorter than expected. Suppose��� �������2� ��� is a discrete set of possible distances measured
by a proximity sensor. Let � � ��� � ��� denote the probability of
measuring distance

���
if the sensor detects the next obstacle

in the map. This distribution describes the expected mea-
surement, and a distribution for laser-range finder given the
distance �

'
to the next obstacle is shown by the dashed line

in Figure 2 (see (Fox, Burgard, & Thrun to appear) for fur-
ther discussion of the proximity sensor models we use). Now
we can derive � � � ��� ����� , namely the probability of

���
being

shorter than expected, by the following equation (c.f. 2):� � � � � �/��� � 9�� � $ & � � � � �!� � ����� (5)

In order to deal with situations in which the position of the
robot is not known with absolute certainty, we average over
all possible locations of the robot to obtain the probability
that

� �
is shorter than expected:� � � ��� � � & ' � � � ��� � ��� ������������ (6)

The selection scheme of the novelty filter is to exclude all
measurements

�
with � � � � �#" � .

The difference between both filters can be characterized as
follows: the entropy filter always tries to confirm the current
belief of the robot (whether this is right or wrong) while the
novelty filter also forces the incorporation of very unlikely
sensor measurements (especially too long readings).

Experimental Results
Localization using the entropy filter was a central component
of the tour-guide robot in the Deutsches Museum Bonn. Ac-
curate position estimation was a crucial component, as many
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Fig. 2. Probability ���������
	��� that the sensing
� � is shorter than the expected sensing.

Fig. 3. Path of the robot
in the second dataset.

Fig. 4. Percentage of noisy sensor
measurements.

of the obstacles were “invisible” to the robot’s sensors (such
as glass cages, metal bars, staircases, and the alike). Only
through accurate localization could collisions with those ob-
stacles be avoided (Fox et al. 1998). Using Markov local-
ization with entropy filters, our approach led only to a single
software-related collision, which involved an “invisible” ob-
stacle and which was caused by a localization error that was
slightly larger than a 30cm safety margin. During six days
of operation, RHINO traversed approximately 18.5 km at an
average speed of approximately 36.6 cm/sec. In this appli-
cation, the entropy filter was used and the novelty filter was
developed post the fact, based on an analysis of the collision
reported above, in an attempt to prevent similar effects in fu-
ture installations.

The evidence from the museum is purely anecdotal. We
also investigated the merit of the approaches proposed here
more systematically, and under even more extreme condi-
tions. In particular, we were interested in the localization re-
sults (1) when the environment is densely populated and (2)
when the robot suffers from extreme dead-reckoning errors.

Datasets
Two datasets were used in our comparison, which both were
recorded in the museum, and which mainly differed by the
amount of disturbances.

1. The first dataset was collected during 2.0 hours of
robot motion, during which the robot traversed as much as
1,000 meters. This data was collected when the museum was
closed, and the robot guided only remote internet-visitors
through the museum. The robot’s top speed was limited to
50cm/sec. Thus, this dataset was “ideal” in that the environ-
ment was only extremely sparsely populated, and the robot
moved slowly.

2. Figure 3 shows the second dataset, which represents
1,540 meters of robot motion through dense crowds over a
period of 4.8 hours. This dataset was collected during peak
traffic hours on the most crowded day during the entire ex-
hibition. When collecting this data, the robot was frequently
faced with situations as illustrated in Figure 1(a) and (b). The
top speed in this dataset was 80cm/sec.

Both datasets consist of logs of odometry and laser-range
finder scans collected while the robot moved through the mu-

seum. Using the time stamps in the logs, all tests have been
conducted in real-time simulation on a SUN-Ultra-Sparc 1
(177-MHz). The first dataset contained more than 32,000,
and the second dataset more than 73,000 laser scans. The
reader may notice that only the obstacles shown in black in
Figure 3 were actually used for localization; the others were
either invisible, or could not be detected reliably.

Figure 4 shows the estimated percentage of corrupted sen-
sor readings over time for both datasets. The dashed line
corresponds to the first dataset while the solid line illustrates
the corruption of the second (longer) dataset. In the second
dataset, more than half of all measurements were corrupted
for extended durations of time. These numbers are estimates
only; they were obtained by analyzing each laser reading as
to whether it could be “explained” by the obstacles repre-
sented in the map.

To evaluate the different localization methods, we gener-
ated two reference paths through nine independent runs for
each filter on the datasets (with small random disturbances)
to determine the location of all sensor scans. Visual inspec-
tion made us believe that the resulting reference locations
were indeed correct and accurate enough. In order to esti-
mate the accuracy of the methods on the second dataset, we
selected 979�� representative reference positions, for which we
manually determined the robot’s location as closely as pos-
sible through careful comparison of sensor scans, the robot’s
path, and the environment.

Localization in densely populated environments
In our first series of experiments, we were interested in com-
paring the localization performance of all three approaches
— plain Markov localization, localization with entropy fil-
ters, and localization with novelty filters — under normal
working conditions.

Table 1 summarizes the results obtained for the different
approaches. The first row provides the percentage of failures
(including 95% confidence intervals) for the different filters
on the first dataset. Position estimates were considered as a
“failure,” if the estimated location deviated from the refer-
ence path by more than 45cm. All three approaches worked
nicely for tracking the robot’s position in the empty museum
(first dataset), exhibiting only negligible errors in localiza-



Filter None Entropy Novelty
Tracking Ability

failuresI [%] 9�� ������� � ��� ������� � � � �����	� �
failuresII [%] :	� � ����
�� � 9�� 9������ � 9�� :���	� �

Accuracy in Dataset II�
[cm] 9�� � � ����
���� � � � :���	� � 979�� �����	� �

Recovery�
recI [sec] :�������
�� 9��	� ��������� 9�� �������
recII [sec] :���������� 9�� 9���������� :��<=������

Table 1: Experimental results.

tion. The results obtained for the second, more challenging
dataset, however, were quite different. While plain Markov
localization failed in 27% of all cases, both filter techniques
showed a failure rate well below 2% (see second row). The
third row, labeled

�
, gives the average Euclidean error be-

tween the estimated position and the 979�� reference positions.
Here as well, the gap between conventional Markov localiza-
tion and our approaches is large. The reader may notice that
the accuracy of the filter techniques is higher than the grid
resolution of 15cm.

To shed light onto the question as to why Markov local-
ization performs so poorly when compared to the algorithms
proposed in this paper, we analyzed the sensor readings that
each method considered during localization. Figure 5 shows,
for a small fraction of the data, the endpoints of the mea-
surements that were incorporated into the robot’s belief. The
figures illustrate that both approaches proposed here man-
age to focus their attention on the “right” sensor measure-
ments, whereas conventional Markov localization incorpo-
rates massive amounts of corrupted (misleading) measure-
ments. Moreover, both filters show similar behavior. As also
can be seen in Figure 5, both filter-based approaches produce
more accurate results for this example. These results demon-
strate that our approach scales much better to populated and
dynamic environments than Markov localization.

Recovery from extreme localization failures

One of the key advantage of the original Markov localization
technique lies in its ability to recover from extreme local-
ization failures. Re-localization after a failure is often more
difficult than global localization from scratch, since the robot
has to (1) detect that its current belief is wrong and (2) glob-
ally re-localize itself afterwards. Since the filter-based ap-
proaches incorporate sensor data selectively, it is not clear
that they still maintain the ability to recover from global lo-
calization failures.

Our experiments under normal operation conditions did
not lead to such failures for the two methods proposed in this
paper; thus, we manually introduced such failures into the
data to test the robustness of these methods in the extreme.
More specifically, in our experiments we “tele-ported” the
robot at random points in time to other locations. Techni-

cally, this was done by changing the robot’s orientation by9���������� degree and shifting it by ���� !��� cm, without letting
the robot know. These perturbations were introduced ran-
domly, with a probability of � � ���<= per meter of robot motion.
Obviously, such incidents make the robot lose its position.
Each method was tested on 23 differently corrupted datasets.
This resulted in an overall of 133 position failures. For each
of these failures we measured the time until the methods re-
localized the robot correctly. Re-localization was assumed
to have succeeded if the distance between the estimated po-
sition and the reference position was smaller than 45cm for
more than 10 seconds.

The two bottom rows in Table 1 summarize the results for
the two datasets.

�
rec represents the average time in seconds

needed to recover from a situation when the position was
lost. Both conventional Markov localization and the exten-
sion using novelty filters are relatively efficient in recovering
from extreme positioning errors, whereas the entropy filter-
based approach is an order of magnitude less efficient. The
results illustrate that despite the fact that sensor readings are
processed selectively, the novelty filter-based approach re-
covers as efficiently from extreme localization errors as the
conventional Markov approach. These findings are specifi-
cally interesting in the light of the fact that in the Deutsches
Museum Bonn the entropy-based filter was used, which, ac-
cording to these results, would have led to poor recovery
from extreme failures.

In summary, these experiments suggest that only the lo-
calization algorithm with the novelty filter is able to localize
robots in densely crowded environments, while retaining the
ability to efficiently recover from extreme localization errors.

Conclusions
This paper proposed an approach for global robot localiza-
tion that has been demonstrated to reliably localize mobile
robots even in extremely challenging dynamic environments.
These environments are characterized by the presence of var-
ious dynamic effects, such as crowds of people that fre-
quently block the robot’s sensors. Our approach is based
on Markov localization, a popular method for mobile robot
localization, which provides the ability to recover from arbi-
trary failures in localization. It extends Markov localization
by an approach that filters sensor data, so that the damaging
effect of corrupted data is reduced. Two specific filters were
proposed and evaluated, one which considers conditional en-
tropy for selecting sensor readings, and one which takes into
account additional knowledge about the effects of possible
environment dynamics.

Our approach was essential for operating a robot success-
fully in a crowded museum. Experimental comparisons us-
ing data collected there demonstrated that the technique pro-
posed in this paper is superior to state-of-the-art localization
methods. These results also demonstrated that by processing
sensor readings selectively, one of the proposed approaches
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Fig. 5. Estimated and real paths of the robot along with endpoints of integrated sensor measurements using (a) no filter, (b) entropy filter,
and (c) novelty filter.

still retains the ability to recover from global failures in lo-
calization. Additional tests in our office environment have
shown that our technique can deal with situations in which
only an outline of the environment is used as a world model
(c.f. 6(a)). In this case sensor readings reflected by the fur-
niture (c.f. 6(b)) are successfully filtered out. We believe
that these results are essential for operating mobile robots
in highly dynamic and densely populated environments.

(a) (b)

Fig. 6. (a) Outline used for localization and (b) environment
including furniture.

How specific are these results to the problem of mobile
robot localization? We believe that the first filter proposed
here, the entropy filter, is applicable to a much wider vari-
ety of state estimation (and learning) problems in dynamic
environments. Loosely speaking, this filter makes robot per-
ception highly selective, in that only sensor readings are con-
sidered that confirm the robot’s current belief. This filter
rests only on two assumptions: First, that the variable to be
estimated is represented probabilistically, and second, that
sensor readings can be sorted into two bins, one which only
contains corrupted readings, and one that contains authentic
(non-corrupted) measurements. A promising application of
this filter is the compensation of hard-ware failures of sen-
sors, a problem addressed in (Murphy & Hershberger 1996).
Future work will aim at analyzing quantitatively, to what ex-
tent this filter can make robots more robust to sensor failures.
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