

CHIMERA

<u>CHI</u>Id drone deployment <u>ME</u>chanism and <u>R</u>etrieval <u>Apparatus</u>

Team: Adam St. Amand, Christopher Chamberlain, Griffin Esposito, Shannon Floyd, Justice Mack, Azalee Rafii, Christopher Rouw, Mitchell Smith, Amanda Turk, Alexander Walker

Customer: Barbara Streiffert, Jet Propulsion Laboratory

Advisor: Jelliffe Jackson

Mission Statement

CHIMERA (CHIId drone deployment <u>ME</u>chanism and <u>R</u>etrieval <u>Apparatus</u>) will support the autonomous deployment, landing, and securing of the INFERNO unmanned aerial system and act as a communications relay to assist firefighters in the monitoring and mitigation of wildfires.

Project Overview

- Wildfire containment and mitigation efforts are a primary concern for those living in or near wildfire-prone regions of the United States
- Autonomous vehicle systems are an active area of research and development for a wide range of applications
- An autonomous drone and mother rover surveying system can support long-range missions
- Such systems will be able to perform reconnaissance operations and assist firefighters that are unable to reach remote locations of interest

Project Heritage

INtegrated Flight Enabled Rover for Natural disaster Observation²

- 2015-2016 JPL sponsored senior design project
- Semi-autonomous drone capable of delivering temperature-sensing package to wildfire area of interest
- CHIMERA will utilize existing INFERNO hardware shown:

Autonomous

Landing

- INFERNO Capabilities:
 - Mission Duration: 13.5 minutes
 - Fully Autonomous Takeoff
 - 10 m/s Translational Flight

Project Overview

- Video/Imaging: 720p at 30fps
- Sensor Package: >90% transmission of SPS data

Definitions

- Alight: To descend from the air and settle
- Charge: Transfer of electricity from MRS battery to CDS battery
- Deploy: The CDS vertically ascends from DSS
- Disarm: CDS is no longer capable of flight
- **Drive:** MRS motors are initiated on axle, propelling MRS in a forward direction
- Land: CDS alights with all four feet on DSS
- Mission: The CDS is deployed from the DSS, flies to area of interest, drops SPS, returns to MRS, and lands on DSS
- Secure: DSS electromagnets are activated, restraining CDS on the DSS

Acronyms

- <u>CDS:</u> Child Drone System
- COM: Communication System
- CRG: Charging System
- DSS: Drone Securing System
- GND: Ground Station
- MRS: Mother Rover System
- SPS: Sensor Package System
- SRS: Sensor Package Release System
- WLS: Wheel Locking System

- FOV: Landing Camera Diagonal Field of View
- P_R = Power received
- \blacktriangleright P_T = Transmitted Power
- $G_T = Transmit Gain$
- \blacktriangleright G_R = Received Gain
- \blacktriangleright L_S = Space Loss
- \blacktriangleright L_L = Line Loss

Concept of Operations

Functional Block Diagram: System Level

Functional Requirements

Functional Requirement	Description		
FR 1.0	The CDS shall autonomously land on DSS.		
FR 2.0	The CDS shall autonomously deploy from the DSS.		
FR 3.0	The DSS shall secure the CDS using electromagnets.		
FR 4.0	The MRS shall drive forward a minimum of 10 meters on a flat level paved surface.		
FR 5.0	The COM shall wirelessly transmit data at a minimum horizontal range of 200 meters at 915 MHz.		
FR 6.0	The COM shall wirelessly receive data at a minimum horizontal range of 500 meters at 915 MHz.		
FR 7.0	The COM shall wirelessly receive SPS data at a minimum horizontal distance of 700 meters at 900 MHz.		
FR 8.0	The COM shall wirelessly receive video at a maximum horizontal range of 700 meters at 5.8 GHz.		
FR 9.0	The CRG shall autonomously increase the CDS battery voltage.		
Project Overv	view Autonomous Securing Charging Communication Conclusion		

Design Requirements Autonomous Landing

Functional Requirement	Description	
FR 1.0	The CDS shall autonomously land on DSS.	
Design Requirement	Description	
DR 1.1	The CDS shall land within a 1.1 by 1.1 m ² area.	
DR 1.2	The CDS shall land within 15 minutes of deployment.	
DR 1.3	The CDS shall autonomously land under 3 minutes after landing command is sent.	
Functional Requirement	Description	
FR 2.0	The CDS shall autonomously deploy from the DSS.	
Design Requirement	Description	
DR 2.1	The CDS shall deploy to a minimum height of 1 m above the DSS.	

Design Requirements Securing

Functional Requirement	Description			
FR 3.0	The DSS shall secure the CDS using electromagnets.			
Design Requirement	Description			
DR 3.1	The DSS shall secure the CDS while MRS is driving.			
DR 3.2	The DSS shall command the electromagnets off prior to CDS deployment.			
Charging				
Functional Requirement	Description			
FR 9.0	The CRG shall autonomously increase the CDS battery voltage.			
Design Requirement	Description			
DR 9.1	The CRG shall charge the CDS battery one time by a minimum of 1 Volt.			
DR 9.2	The CRG shall adjust CDS orientation on DSS for maximum landing yaw error of 45°.			
Project Overview	Autonomous Securing Charging Communication Conclusion			

Autonomous Landing

Autonomous Landing

- 0:40 CDS uses GPS to get MRS in FOV of camera
- 1:10
 IRS finds center of DSS platform and sends position command
- 2:50 CDS descends at constant rate while maintaining DSS in center of image
 - Camera no longer sees full image
 - Last position is commanded
- 3:00 Landing accuracy relies on accuracy of accelerometer in Pixhawk.
 - Landing timeline TBR (flight testing)

Project Overview Autonomous Landing

Securing

Charging

Communication

GPS <= 5 m

Conclusion

Pattern width matches FOV of camera

Landing Feasibility

Assumptions:

- After platform fills camera FOV, accurate position can no longer be determined
- Camera height is z-position of CDS legs
- CDS offset from center and wind effects accounted for with 20% design margin
- Max camera resolution error of 1 pixel
- Constant descent rate
- Camera mounted on CDS geometric center
- Known Pixhawk Error
 - Gyro error: 0.1 [deg/s]
 - Accelerometer error: 1.11 x 10⁻³ g [m/s²]

Landing Feasibility

Sensitivity parameters:

- Camera FOV
- Descent rate, ż
- Platform pattern width
- Requirements for feasibility:
 - Land within a radius of 55 cm. (FR 1.0, DR 1.1)
 - Land with yaw error less than 45°. (FR 9.0, DR 9.2)

Landing Feasibility

- Sensitivity parameters:
 - Camera FOV
 - Descent rate, ż
 - Platform pattern width
- Requirements for feasibility:
 - Land within a radius of 55 cm. (FR 1.0, DR 1.1)
 - Land with yaw error less than 45°. (FR 9.0, DR 9.2)
- FEASIBLE by analysis

Image Recognition Feasibility

- Find center of four different hues to get center of MRS platform.
 - Color thresholding, shape detection, and image masking can improve performance.
- Convert pixel offset of MRS platform from center of image to distance using known dimensions of platform.
- Testing method: Flight simulation software, pilot override option
- FEASIBLE by demonstration

Hardware/Software Components

Camera module

Charging

- Higher FOV preferred
- Companion computer on INFERNO
- IRS prototyped from Python libraries
- Pixhawk flight controller (already equipped)
 - MAVLink communication protocol

Communication

DSS pattern for recognition

20

Conclusion

Securing

Securing

- Modifications to CDS:
 - Replace rubber feet with high carbon steel

- Design of DSS:
 - High carbon steel across DSS platform
 - 3 electro-permanent magnets

Magnet placement **under** DSS Platform

Communication

Magnetic Securing Feasibility

- Maximum securing force needed: ~80 N
- Maximum magnetic force available: 200 N
- Assumptions:
 - External force: 10 N

FEASIBLE by analysis

 Coefficient of friction for steel on steel (0.5-0.8)

FR 3.0, **DR 3.1**

Centering CDS on DSS Platform

Charging

Charging Mechanism on DSS

- Charge bars positioned on either side of DSS
- Motors will slide charging bars onto CDS
- Once CDS is disarmed charging will initiate
- Future Work: Ensure quality copper contact, INFERNO stability, safety precautions

Charging Modifications to CDS

Copper plate on two faces of CDS

- Bracket and support structure will be attached to CDS legs
- Bracket does not interfere with SPS deployment or GoPro FOV
- INFERNO baseline mass: 2520 g
- Estimated added mass: 521 g
- Estimated final mass: 3041 g
- Maximum allowable mass for 15 minute flight: 3530 g
- FEASIBLE by analysis

CDS charging bracket

Communication

Link Margin Analysis

Link Margin for INFERNO Child Drone System Video Transmission

- Immersion RC Video Tx/Rx (600 mW)
- 5.8 GHz at Data Rate of 2500 kbps
- Max: 700 meter distance
- **FR 5.0**, 6.0, 7.0, 8.0
- Feasible by analysis

Immersion RC (5.8 GHz)	Transmitter (INFERNO)	Receiver (GND)
Power Transmitted (P_T)	-2 dBW	-2 dBW
Gain Transmit (G_T)	1 dBi	N/A
Gain Received (G_R)	N/A	10 dbi
Space Loss (L_S)	-105 dB	-105 dB
Additional Error (Line Loss) (L_L)	-0.5 dB	-0.5 dB
Power Received (Actual) (P_R)	-109 dB	-99 dB
Power Received (Minimum) (P _{R,min})	-118 dB	-117 dB
Link Margin	9 dB	18 dB

Conclusion

Verification and Validation

Functional Requirement	Testing
FR 1.0	Demonstration and Visual Inspection – CDS landing will be demonstrated and visually inspected
FR 2.0	Test and Demonstration – CDS deployment will be demonstrated and height will be measured.
FR 3.0	Test and Demonstration – CDS will be secured to the MRS using electromagnets.
FR 4.0	Test and Demonstration – The ability for MRS to drive forward will be demonstrated and the distance will be measured.
FR 5.0	Test and Demonstration – Data will be transmitted at a horizontal range of 200 m.
FR 6.0	Test and Demonstration – Data will be received at a horizontal range of 500 m.
FR 7.0	Test and Demonstration – SPS data will be received from a horizontal distance of 700 m.
FR 8.0	Test and Demonstration – Video will be received over a maximum range of 700 m.
FR 9.0	Test – Battery voltage will be measured.

Project Overview

Charging - Safety

- Safety Procedure for Operating High voltage
 - De-energize equipment before working
 - Touch circuit with back of your hand first
 - Keep one hand in your pocket
 - Wear rubber shoes
- Charging Tests
 - Unit testing will occur throughout design and manufacturing process
 - Controlled, away from equipment
 - Fire precautions (CO_2 fire extinguisher, BBQ grill, etc.)

Facilities and Resources

Required Facilities

- RIFLE: RECUV Indoor Flight Environment
- Boulder South Campus (flight testing)
- Flat, open area
 - ▶ 10 m radius for MRS
 - 700 m open area for COM testing

Required Resources

- Pilot
- Spectrum analyzer (COM testing)
- Multimeter

In Development...

Wheel Locking Mechanism

- Problem: If the CDS lands on (or deploys from) the MRS with a horizontal velocity component, the MRS could move
- Solution: Prevent the wheels from moving by applying a horizontal force to each wheel
- Determining if necessary through analysis and test

Design Margin: 1.2

Budget

SUMMARY				
System		System Cost		
Adminstrative	\$	192.00		
MRS Manufacturing		1,310.40		
WLS Manufacturing	\$	254.40		
GND Manufacturing	\$	207.60		
DSS Manufacturing	\$	1,298.40		
CDS Upgrades		543.60		
CDS Replacement Parts	\$	127.20		
Testing and Safety	\$	288.00		
Remaining Funds	\$	778.40		
Budget		5,000.00		

Project

Overview

Schedule to CDR

Preliminary Design Summary

Critical Project Element	Design Solution	Feasible?
Autonomous Landing	Image Recognition	Yes
Securing	Electromagnets	Yes
Charging	Conduction Brackets	Yes
Communications	Rx/Tx Connection	Yes

QUESTIONS?

References

- <u>http://www.colorado.edu/aerospace/current-students/undergraduates/senior-design-projects/past-senior-projects/jet-propulsion</u>
- 2. <u>http://www.colorado.edu/aerospace/sites/default/files/attached-files/inferno_sfr.pdf</u>
- Pixafy*/, By. "106 Astro "Blinky" Battery Balancer." 106 Astro "Blinky" Battery Balancer. Astro Flight, n.d. Web. 06 Oct. 2016. http://www.astroflight.com/106.
- 4. "Friction and Friction Coefficients." Friction and Friction Coefficients. Engineering Toolbox, n.d. Web. 09 Oct. 2016. http://www.engineeringtoolbox.com/friction-coefficientsd_778.html.

References (Software)

- "Communicating with Raspberry Pi via MAVLink." Ardupilot.org. N.p., n.d. Web. 07 Oct. 2016.
- "Trajectory following with MAVROS on Raspberry Pi." 404warehouse. N.p., 20 Aug. 2016. Web. 07 Oct. 2016.
- "ROS Getting Started Tutorial." PX4 Autopilot. N.p., n.d. Web. 07 Oct. 2016. https://pixhawk.org/dev/ros/getting_started_tutorial.
- "MAVROS Offboard Example." PX4 Devguide. N.p., n.d. Web. 07 Oct. 2016. http://dev.px4.io/ros-mavros-offboard.html.
- "Cameras." ROS.org. N.p., n.d. Web. 07 Oct. 2016. http://wiki.ros.org/Sensors/Cameras.
- "Motor Controller Drivers." ROS.org. N.p., n.d. Web. 07 Oct. 2016. http://wiki.ros.org/Motor%20Controller%20Drivers.

Backup Slides

TABLE OF CONTENTS - MAIN

Project Overview	Design Requirements (CRG)
Mission Statement	<u>CPEs</u>
Project Overview	Baseline Design
Project Heritage	Autonomous Landing
<u>Definitions</u>	Image Recognition Animation
<u>Acronyms</u>	Landing Feasibility I
CONOPS	Landing Feasibility II
FBD - System Level	Image Recog. Feasibility
Functional Requirements	Software Flowchart
Design Requirements (COM)	Image Rec. Hardware

<u>Securing</u>

Incrinis (CRO)CDS ModificationsMagnetic FeasibilityMagnetic FeasibilityIndingCDS Centering Animationtion AnimationCharginglity ICharging Mechanism on DSSlity IICharging Modifications to CDSSeasibilityElectronics DiagramhartCommunication

on DSS Budget as to CDS Gantt Cha Reference

Communications Methodology Link Margin Analysis

<u>Conclusion</u>

Verification and ValidationCharging SafetyFacilities and ResourcesWheel Locking MechanismBudgetGantt ChartReferences

TABLE OF CONTENTS - Back Up

CONOPS (old) Design Requirements Functional Block Diagrams Securing Autonomous Landing Charging

Power Budget Motor Torque Wheel Locking Communication Al&T Charts Budget

Concept of Operations

Securing

Functional Requirement	Description
FR 3.0	The DSS shall secure the CDS using electromagnets.
Design Requirement	Description
DR 3.1	The DSS shall secure the CDS while MRS is driving.
DR 3.2	The DSS shall command the electromagnets off prior to CDS deployment.

Driving

Functional Requirement	Description
FR 4.0	The MRS shall drive forward a minimum of 10 meters on a flat level paved surface.
Design Requirement	Description
DR 4.1	The MRS shall remain stationary during the entire CDS mission.

Communication

Functional Requirement	Description
FR 5.0	The COM shall wirelessly transmit data at a minimum horizontal range of 200 meters at 915 MHz.
Design Requirement	Description
DR 5.1	The DSS COM shall be designed with a signal strength to noise ratio margin of at least 6dB to CDS.
DR 5.2	The DSS COM shall transmit commanded GPS waypoints to the CDS COM.
DR 5.3	The DSS COM shall command the CDS COM to begin landing sequence.
DR 5.4	The DSS COM shall command the CDS COM to begin take off sequence.
DR 5.5	The DSS COM shall transmit a command to release the mechanism that secures the CDS.

Communication

Functional Requirement	Description
FR 6.0	The COM shall wirelessly receive data at a minimum horizontal range of 500 meters 915 MHz.
Design Requirement	Description
DR 6.1	The DSS COM shall be designed with a signal strength to noise ratio margin of at least 6dB to GND.
DR 6.2	The DSS COM shall receive commanded GPS waypoints from the GND
DR 6.3	The DSS COM shall receive the command for the CDS to begin landing sequence
DR 6.4	The DSS COM shall receive the command for the CDS to begin take off sequence
DR 6.5	The DSS COM shall receive the command to release the mechanism that secures the CDS

Communication

Functional Requirement	Description
FR 7.0	The COM shall wirelessly receive SPS data at a minimum horizontal distance of 700 meters at 900 MHz.
Design Requirement	Description
DR 7.1	The DSS COM shall wirelessly transmit video at 720p at 30 fps.
DR 7.2	The DSS COM shall wirelessly transmit 5 minutes of video
DR 7.3	The DSS COM shall wirelessly transmit CDS telemetry.
Functional Requirement	Description
Functional Requirement FR 8.0	Description The COM shall wirelessly receive video at a maximum horizontal range of 700 meters at 5.8 GHz.
Functional Requirement FR 8.0 Design Requirement	Description The COM shall wirelessly receive video at a maximum horizontal range of 700 meters at 5.8 GHz. Description
Functional RequirementFR 8.0Design RequirementDR 8.1	Description The COM shall wirelessly receive video at a maximum horizontal range of 700 meters at 5.8 GHz. Description The GND COM shall wirelessly receive video at 720p at 30 fps.
Functional RequirementFR 8.0Design RequirementDR 8.1DR 8.2	Description The COM shall wirelessly receive video at a maximum horizontal range of 700 meters at 5.8 GHz. Description The GND COM shall wirelessly receive video at 720p at 30 fps. The GND COM shall wirelessly receive 5 minutes of video

Charging

Functional Requirement	Description
FR 9.0	The CRG shall autonomously increase the CDS battery voltage.
Design Requirement	Description
DR 9.1	The CRG shall charge the CDS battery one time by a minimum of 1 Volt.
DR 9.2	The CRG shall adjust CDS orientation on DSS for maximum landing yaw error of 45°.

Functional Block Diagram: Mother Rover System

Functional Block Diagram: Ground Station

Functional Block Diagram: Child Drone System

Functional Block Diagram: Sensor Package System

Landing Feasibility

Assumptions:

- After platform fills camera FOV, accurate position can no longer be determined
- Camera height is z-position of CDS legs
- CDS offset from center and wind effects accounted for with 10% design margin
- Error due to camera resolution is a max of 1 pixel
- Constant descent rate
- Camera mounted on geometric center of CDS
- Knowns (from Pixhawk spec sheet):
 - Pixhawk gyro error: 0.1 [deg/s]
 - Pixhawk accelerometer error: 1.11 x 10⁻³ g [m/s²]

Software Architecture

A ROUGER AN ANALY

- ROS Robot Operating System
- Libraries and packages
- Easy communication and message-passing between processes
- Nodes are medium through which information is streamed and are written in C++ or Python:
 - Topic Named buses over which nodes exchange messages
 - Publisher Sends messages to specified topic
 - Subscriber Receives messages from specified topic.
 - Master Acts as communications hub to route information between nodes.
- Allows easy message customization to send:
 - Sensor data
 - Control or actuator commands
 - **State** and **planning** information

Software Architecture

ROS Packages Available

Mavros

- MAVLink extendable communication node
- Driver for various autopilots with MAVLink protocol
 - ► Set Mode
 - ► Arm drone
 - Command local position

Camera Packages

- Standard USB cameras
- OpenCV with cameras
- Raspberry Pi camera module

Motor Drivers

- Serial Roboteq motor controllers
- Various brushed DC motor devices

Autonomous Landing

Metric	Weight	Image Recognition	Differential GPS	Sonar
Time Required	35%	4	5	3
Performance/ Effectiveness	35%	5	3	3
Complexity	15%	4	5	3
Cost	15%	4	4	5
Total	100%	4.35	4.15	3.30

Landing Metric Levels

Criteria	1	2	3	4	5
Time Required	> 100 hrs	50 -100 hrs	25 – 50 hrs	10 – 25 hrs	< 10 hrs
Performance/ Effectiveness	Performance does not meet requirements; accuracy is unacceptable	Performance is relatively poor; accuracy is below expectations	Performs with a moderate level of accuracy; Autonomous landing meets expectations	Performs to a relatively high degree of accuracy; Autonomous landing goes beyond what is required	Autonomous landing system performs to the highest level of accuracy
Complexity	Requires in-house manufacturing and assembly with custom design; rewriting all of open source code to meet expectations	Requires in-house manufacturing and assembly with custom design; most source code needs to be modified	System is a mix of manufactured and purchased components; some source code needs to be modified	System uses off the shelf components with assembly required; little source code needs to be modified	System is "plug and play" with all off the shelf components; source code needs no modifications
Cost	> \$1000	\$500 - \$1000	\$250 - \$500	\$100 - \$250	< \$100

Autonomous Landing Backup: Approach View

$$z = \frac{y}{2 \tan(\frac{FOV_v}{2})} ; y = 10 (GPS \ accuracy \ of \pm 5m)$$

Height required to see image on approach to MRS

•
$$\% = \frac{y_p^2}{x * y} * 100$$
 ; $x = 2 * z * \tan\left(\frac{FOV_H}{2}\right)$

Percent of picture filled by image on MRS

- Must be >0.25% (TBR testing) for recognition
- Using Rpi Camera: Platform image fills 0.27% of picture
 FEASIBLE

View on approach

Х

Autonomous Landing Backup: Landing Model Derivation (Position)

Equations:

\blacktriangleright \rightarrow

- Assumptions:
 - After platform fills camera FOV, accurate position can no longer be determined
 - Camera height is z-position of CDS legs
 - CDS offset from center and wind effects accounted for with 10% design margin
 - Error due to camera resolution is a max of 1 pixel
 - Constant descent rate
 - Camera mounted on geometric center of CDS
- Known Parameters:

Autonomous Landing Backup: Landing Model Derivation (Position)

x_{error,accelerometer} =
$$\iint_{0}^{t_{land}} a_{error} dt^{2}$$
; $t_{land} = \frac{z}{\dot{z}}$
z = $\frac{1.1*y_{p}}{2*\tan(\theta)}$; $\theta = \frac{FOV}{2}$, $1.1*y_{p} = platform image width with 10\% margin
xerror,pixel = $2*z*\frac{\tan(\theta)}{n}$; $n = \#of \ pixels$
x_{error,quad geometry} = d; $d = distance \ from \ geometric \ center \ to \ leg \ of \ INFERNO$$

•
$$x_{error} = d + \frac{1.1 \cdot y_p}{n} + 0.0013611 \cdot \left(\frac{1.1 \cdot y_p}{\dot{z} \cdot \tan(\theta)}\right)^2$$

Autonomous Landing Backup: Landing Model Derivation (Yaw)

Equations:

- ▶ $\theta = \int \omega dt$
- ▶ d = r * t (distance = rate * time)
- Assumptions are the same as Position Derivation
- Known Parameters:

$$\psi_{error} = \int_{0}^{t_{land}} 0.1 * dt ; t_{land} = \frac{z}{\dot{z}}, z = \frac{1.1 * y_p}{2 \tan(\theta)}$$
$$\psi_{error} = 0.05 * \frac{1.1 * y_p}{\dot{z} * \tan(\theta)} (degrees)$$

Estimated Flight Time from CDS Modifications

INFERNO Nominal Mass: 2520 g

Estimated Mass Addition: 521 g

Steel feet (x4): 18.6 g (74.4 g)

IRS: 75 g

- Charging (x2): 186 g (372 g)
- Estimated Final Mass: 3041 g
- Estimated Endurance: 18.2 min

*All values TBR (component selection)

Possible Alternate System

Endurance (min)	Maximum Mass (g)
15	3530
18	3130
20	2910
25	2515

From INFERNO SFR

Charging Modifications to CDS

Blinky Battery Balancer

- ▶ Low Cost: ~\$35
- Low mass: 0.014 kg

Recharge circuit:

Required Docking Force Model

- Assumptions:
 - CDS can be modeled as a point mass
 - Air resistance/ drag is negligible
 - All forces are acting on the CDS' center of mass
 - All forces are instantaneous
 - Gravity is constant
 - Applied force acts vertically
 - Docking force acts perpendicular to platform

$$D = \frac{\sin(\alpha)}{\mu} \left(mg - A \right) \left(1 - \mu \cot(\alpha) \right)$$

Securing

Magnetic Securement Component Feasibility

- Electro-permanent magnet
- Low power draw: ~50 mW nominal
- Compact form factor
- Low cost: ~\$54

	Nominal
F_max	200 [N]
V_supply	5.0 [V]
I_steady	10 [mA]
I_peak	1000 [mA]
mass	65 [g]

Power Budget: MRS Power Supply

Power Supply

- Chemistry: Lithium Polymer
- Nominal Voltage: 14.8V
- Minimum Voltage: 14V
- Capacity: 10Ah
- Maximum Constant Discharge Current: 100A
- Maximum Peak Discharge Current: 200A
- Maximum Discharge: 70%

- Power Regulation
 - 5V Linear Regulator
 Minimum Voltage: 7V
 - 3.3V Linear Regulator
 Minimum Voltage: 5V
 - 12V Linear Regulator
 Minimum Voltage: 14V

Power Budget: MRS Power Consumption

Components	Average Current[A]	Maximum Current[A]	Quantity	Voltage[V]
DC Motor	12	30	4	12
Actuator	0.4	1	4	12
Antenna	0.4	1	4	3.3
Processor	0.5	1	1	3.3
Totals	13.3	33		

Power Budget: MRS Battery Lifetime

$$T_{avg} = \left(\frac{C}{I_{Lavg}}\right) D_{max} = \left(\frac{10Ah}{13.3A}\right) 0.7 = 0.7h = 30min$$

$$I_{Lmax} \le I_{Omax} = 33A \le 100A$$

$$T_{min} = \left(\frac{C}{I_{Lmax}}\right) D_{max} = \left(\frac{10Ah}{33A}\right) 0.7 = 0.7h = 20min$$

 $V_{reg\,min} \le V_{batt\,min} = 14V \le 14V$

 $D_{max} = Max \ Discharge$ $I_{Lavg} = Average \ Load \ Current$ $I_{Lmax} = Max \ Load \ Current$ C = Capacity $T_{avg} = Average Time$ $T_{min} = Minimum Time$ $I_{Omax} = Max Constant Output Current$ $V_{reg min} = Minimum Input Voltage$ $V_{batt min} = Minimum Output Voltage$

Power Budget: MRS Power Supply

Power Supply

- Chemistry: Lithium Polymer
- Nominal Voltage: 14.8V
- Minimum Voltage: 14V
- Capacity: 10Ah
- Maximum Constant Discharge Current: 100A
- Maximum Peak Discharge Current: 200A
- Maximum Discharge: 70%

- Power Regulation
 - 5V Linear Regulator
 Minimum Voltage: 7V
 - 3.3V Linear Regulator
 Minimum Voltage: 5V
 - 12V Linear Regulator
 Minimum Voltage: 14V

PL

Motor Torque Model

Assumptions:

- Rubber-concrete contact between the wheel and road.
- The inclination of the surface is zero degrees.
- Air resistance is negligible.
- Motor efficiency is 65%

Motor Torque Model

 $F_a = ma$

 $F_r = \left(\frac{W}{4}\right) C_{rr}$ (C_{rr} is the coefficient of rolling resistance)

$$F_a = m\left(\frac{v}{t}\right)$$

 $F_{req} = m\left(\frac{v}{t}\right) + \left(\frac{mg}{4}\right)C_r$

 $T_{req} = \left(\frac{100}{e}\right) F_{req} R$ (T_{req} = required torque, e = efficiency)

 F_r = rolling resistanceR = radiusN = normal force F_a = acceleration forceW = weightf = frictional force

$$\mathbf{T}_{req} = \left\{ m\left(\frac{v}{t}\right) + \left(\frac{mg}{4}\right)C_r \right\} \left(\frac{100}{e}\right)R$$

Motor Torque Model Results

Required torque for each wheel motor for various radii versus the total mass of the CHIMERA system.

Motor Torque Feasibility

Current System Parameters

- Mass = 100 kg (based on SolidWorks model)
- Wheel Diameter = 10 inches (0.127 m).
- Assume motor efficiency = 65%.
- Maximum velocity of MRS = 0.5 m/s
- Time to accelerate to maximum speed = 1 s
- Result: Motor torque must be greater than or equal to 3.16 Nm and the motor must rotate at least 37.5 RPMs.
- The motor shown in the figure on the right provides 3.73 Nm of torque at 60 RPMs
- Feasible

High Torque DC Servo Motor 60RPM With UART/12C/PPM Drive

Wheel RPM Model

Wheel Locking Force Model

Assumptions:

- The mass of the MRS is evening distributed amongst the four wheels.
- The impact force of the CDS landing on the platform acts on all four wheels equally.
- Rubber-concrete contact between wheel and ground
- Rubber-rubber contact between wheel and brake

Wheel Locking Force Model

Communication

Conclusion

Charaina

Wheel Locking Force Model

Wheel Locking Feasibility

- Worst case scenario:
 - The mass of the MRS system is 100 kg (SolidWorks).
 - Impact force:

Feasible.

- CDS mass: 3.04 kg
- Maximum speed: 13.8 m/s
- Impact time = 0.05 s
- CDS hits the MRS horizontally.
- Impact force = m(v/t) = 839 N
- ▶ The required force from the actuators is 185 N.
- This \$30 linear actuator can provide 100 N to 2500 N of force.

80mm 3inch Stroke 24V 10mm/s 980N 220LBS Linear Actuator Electric Nursing Bed TOAUTO-A2-24-80-T4

Project Overview Autonomous Landing Docking and Securing Wheel Locking Charging Communication Conclusion

Drive and WLS

JPL

Communication Overview

Requirement	Description
FR 5.0	The COM shall wirelessly transmit data at a minimum horizontal range of 200 meters at 915 MHz.
FR 6.0	The COM shall wirelessly receive data at a minimum horizontal range of 500 meters 915 MHz.
FR 7.0	The COM shall wirelessly receive SPS data at a minimum horizontal distance of 700 meters at 900 MHz.
FR 8.0	The COM shall wirelessly receive video at a maximum horizontal range of 700 meters at 5.8 GHz.

Communication Assumptions

Assumptions

Primary Loss: Free Space Path Loss with no environmental interference (Rain/Snow)

All distances are open space with elevated ground station to avoid Fresnel affect

Min. Design Margin = 6 dB

Average temperature for July in Colorado is reference temperature (303 K)

Possible max distance analyzed for feasibility

Communication Methodology Backup Slide

Nomenclature

 $\begin{array}{l} P_t = {\sf Power Transmitted} \\ G_t = {\sf Receiving Antenna Gain} \\ G_r = {\sf Transmitting Antenna Gain} \\ L_s = {\sf Free Space Loss} \\ P_r = {\sf Power Received} \\ k = {\sf Boltzmann's Constant} \\ L_r = {\sf Line Loss} \\ d_r = {\sf Receive Antenna Diameter} \\ NF = {\sf Noise Figure} \\ T_0 = {\sf Reference Temperature} \\ N_0 = {\sf Noise Power} \\ T_s = {\sf System Noise Temperature} \\ \frac{E_b}{N_0} = {\sf Bit Energy to Noise Ratio} \end{array}$

System Noise Temp. [k]: $T_s = \frac{T_a}{L_r} + T_0 \left(1 - \frac{1}{L_r}\right) + T_0(NF - 1)$ Receive Antenna Gain [dB]: $10\log(\frac{d_r^2\pi^2\eta}{\lambda^2})$ Signal to Noise Ratio [dB-Hz]: $\left(\frac{P_r}{N_0}\right)$ System Noise Power [dB]: $N_0 = 10\log(k * T_s)$ Power Received [dB]: $P_r = P_t + G_t + G_r - L_s - Fade Margin$ Minimum Signal to Noise Ratio [dB-Hz]: $\left(\frac{P_r}{N_0}\right)_{min} = Bit Rate + Design Margin + \frac{E_b}{N_0}$ Link Margin [dB]: $\left(\frac{P_r}{N_0}\right) - \left(\frac{P_r}{N_0}\right)_{min}$

 Values for above calculations obtained from data sheets and literature

Reference: The spreadsheet and math was updated from INFERNO JPL Senior Project

Link Margin Analysis

Link Margin for Sensor Package System Data Transmission

(°) < (°)	Xbee-Pro 900 HP (900 MHz)	Transmitter (SPS)	Receiver (GND)
	Power Transmitted	-6 dBW	-6 dBW
GND	Gain Transmit	1 dBi	N/A
700 Meter Open Terrain	Gain Received	N/A	.1225 dBi
 Xbee transmitter and receiver 915 MHz at Data Rate of 9600 bps Max: 700 meter distance 	Space Loss	-88 dB	-88 dB
	Additional Error (Line Loss)	5 dB	5 dB
	Power Received (Actual)	-105 dB	-105 dB
	Power Received (Minimum)	-142 dB	-142 dB
	Link Margin	37 dB	37 dB

Link Margin Analysis

Link Margin for INFERNO Child Drone System Data Transmission

- 3DR Transmitter and Receiver
- 915 MHz at Data Rate of 250 kbps
- Max: 700 meter distance
- NOTE: Same system will be used for GND to MRS across distance of 500 meters.

3DR (915 MHz)	Transmitter (GND & CDS)	Receiver (GND & CDS)
Power Transmitted	-10 dbW	-10 dbW
Gain Transmit	1 dBi	1 dBi
Gain Received	.125 dBi	.125 dBi
Space Loss	-89 dB	-89 dB
Additional Error (Line Loss)	5 dB	5 dB
Power Received (Actual)	-109	-109
Power Received (Minimum)	-128 dB	-128 dB
Link Margin	19 dB	19 dB

Al&T Diagrams

MRS AI&T Diagram

DSS AI&T Diagram

CDS AI&T Diagram

GND AI&T Diagram

JPL

Budget: MRS Manufacturing

	Manufacturing- Mother Rover System										
Part Name	Description	Uni	t Cost	Quantity	Discounts	Total	Cost				
4ft x 8ft .032 thick 3003											
Aluminum Sheet	MRS Bed Material	\$	74.00	1	0%	\$	74.00				
Cold Finish Aluminum Bare					-						
Rectangle 2024 T351, 2 Teet	MRS Bed Struts	5	11.00	1	0%	5	11.00				
ATR Wheel and Shart Set											
Pair 8mm bore - 10 inch	Deire of Milesele				- 21						
Traction Lug	Pairs of wheels	S	95.00	Z	0%	Ş	190.00				
10000mAh Multi-Rotor Lipo											
Pack	Battery	\$	59.00	3	0%	\$	177.00				
High Torque DC Servo Motor 60RPM With											
LADT/12C/DDM Drive	Motor	¢	59.00	2	0%	¢	118.00				
UARI/12C/PPNI Drive	MOLOI	2	39.00	-	0.0	Ş	110.00				
Stepper Mounting Bracket	Motor Mounting Bracket	\$	6.00	4	0%	s	24.00				
DX2E 2Ch DSMR Surface	Remote Control										
Radio w/SR310	Transmitter	\$	60.00	1	0%	\$	60.00				
SR310 DSMR 3-Channel											
Sport Receiver	Remote Control Receiver	\$	45.00	1	0%	s	45.00				
Raspberry Pi Model 2	Data Handling Computer	\$	46.00	1	0%	\$	46.00				
Xbee PRO-900HP, Part											
Number: 602-1301-ND	Communication to GND	\$	39.00	1	0%	\$	39.00				
3DR Radio Set	Communication to CDS	\$	100.00	1	0%	\$	100.00				
900MHz Duck Antenna RP-											
SMA	Communcation to GND	\$	8.00	1	0%	\$	8.00				
	Miscellaneous										
	Communication										
-	Hardware	\$	100.00	1	0%	\$	100.00				
	Miscellaneous Hardware										
-	and Electronics	\$	100.00	1	0%	\$	100.00				
				Mother Rov	er System Total	\$	1.092.00				

Budget: CDS Upgrades

Upgrades: Child Drone System										
Part Name	Description	Uni	t Cost	Quantity	Discounts	Total Cost				
1215 Carbon Steel, Rod, 1"	Magnetic Inserts for CDS									
Diameter, 1' Length	Securement	\$	10.00	1	0%	\$ 10.00	0			
E-CAM50IMX6 - 5MP MIPI iMX6 Camera Board	Autonomous Landing Imaging System	Ş	69.00	1	0%	\$ 69.00	0			
Hummingboard- Gate	Autonomous Landing Onboard Computer	Ş	83.00	1	0%	\$ 83.00	o			
Xbee PRO-900HP, Part Number: 602-1301-ND	CDS to GND Antenna	Ş	39.00	1	0%	\$ 39.00	0			
Super-Conductive 101 Copper, Rectangular Bar, 1/16" x 1", 4' Length	Conductive Panels for Autonomous Charge	\$	28.00	2	0%	\$ 56.00	0			
White Delrin ^a Acetal Resin Rectangular Bar, 3/4" Thick x 1-1/2" Width	Mounting for Conductive Panels	s	13.00	2	0%	S 26.0(0			
Type 316 Stainless Steel Socket Head Cap Screw, 4- 40 Thread, 7/8" Length, packs of 25	Securement of Conductive Panels	<	12.00	,	0%	\$ 24.00	0			
Raspberry Pi Model 2	Data Handling Computer for Image Recognition System	\$	46.00	1	0%	\$ 46.00	0			
	Miscellaneous Hardware and Electrical Components	\$	100.00 child D	1	0%	\$ 100.00	0			
			cinita D	none system	opproves rotal		ся: Г			

Budget: DSS Manufacturing

Manufacturing- Docking and Securement System									
Part Name	Description	Unit	Cost	Quantity	Discounts	Total Cos	st		
Multipurpose 6061									
Aluminum, 1/4" Thick, 12" x					1 1				
48"	Bed Fabrication Material	\$	83.00	2	0%	\$	166.00		
General Purpose Low-									
Carbon Steel, Sheet, .075"	Magnetic panels for				1 1				
Thick, 24" x 48"	securement of CDS	\$	76.00	2	0%	\$	152.00		
Super-Conductive 101									
Copper, Rectangular Bar,	Panels for CDS				1 1				
1/16" x 1", 4' Length	Autonomous Charging	\$	28.00	2	0%	\$	56.00		
White Delrin ^e Acetal Resin					1 1				
Rectangular Bar, 3/4" Thick					1 1				
x 1-1/2" Width	Mounting for CRG Panels	\$	13.00	2	0%	\$	26.00		
OpenGrab EPM v3	Magnet	\$	54.00	3	0%	\$	162.00		
DC 12V 0.07A 3.5RPM High									
Torque Gear Box Electric					1 1				
Motor 37mm	Motor	\$	13.00	4	0%	\$	52.00		
Actobatics 48T Aluminum									
Hub Cear (0.5")	Motor Gear	¢	13.00	4	0%	e	52.00		
nuo dear (0.5 /	Wotor dear	2	15.00	-	574	*	52.00		
70 Tooth Timing Belt	Gear Track	\$	3.00	10	0%	s	30.00		
Multistar High Capacity 45									
10000mAh Multi-Rotor Lipo					1 1				
Pack	DSS Battery	\$	59.00	2	0%	\$	118.00		
Multistar High Capacity 45									
10000mAh Multi-Rotor Lipo					1 1				
Pack	CRG Battery	\$	59.00	2	0%	\$	118.00		
	Miscellaneous Hardware								
-	and Electrical	\$	150.00	1	0%	\$	150.00		
		D	ocking ar	nd Secureme	nt System Total	\$ 1	1,082.00		

Budget: GND & WLS Manufacturing

Manufacturing- Ground Station										
Part Name	Description	Unit	t Cost	Quantity	Discounts	Total Co	ost			
900 MHz 5dBi Rubber Duck										
Antenna	Communication to SP	\$	23.00	1	0%	\$	23.00			
	Miscellaneous									
-	Software/Interfacing	\$	50.00	1	0%	\$	50.00			
	Miscellaneous									
-	Hardware/Electronics	\$	100.00	1	0%	\$	100.00			
		-		Grou	nd Station Total	\$	173.00			

Manufacturing- Wheel Locking System										
Part Name	Description	Unit	t Cost	Quantity	Discounts	Total Cost				
Boston Gear D1418KRH Worm Gear, 14.5 Degree Pressure Angle, 0.750" Bore, 10 Pitch, 1.25 PD, RH	Worm Gear	Ş	43.00	2	0%	Ş	86.00			
Actobotics 48T Aluminum Hub Gear (0.5")	Motor Gear	\$	13.00	2	0%	ş	26.00			
_	Miscellaneous Hardware	Ş	100.00	1	0%	\$ 1	.00.00			
				Wheel Locki	ng System Total	\$2	12.00			

Budget: Administrative & Testing

Replacements: Child Drone System										
Part Name	Description	Unit Cost Quantity Discounts Total Cost \$14.00 2 0.00% \$2 \$25.00 1 0.00% \$2 \$10.00 1 0.00% \$2		Total Cost						
Gemfan T-Type CF Prop										
13x5.5	Propellers (pair)	\$14.00	2	0.00%	\$28.00					
Lumenier 30A ESC	Elec. Speed Controllers	\$25.00	1	0.00%	\$25.00					
Polou 12V, 2.2A Step-Down										
Reg	Voltage Regulator	\$10.00	1	0.00%	\$10.00					
Polou 5V, 1A Step-Down										
Reg	Voltage Regulator	\$8.00	1	0.00%	\$8.00					
Polou 5V Step-Up Reg	Voltage Regulator	\$5.00	7	0.00%	\$35.00					
	Testing Total									

Testing and Safety											
Part Name	Description	Unit Cost (Unit Cost		Unit Cost		Quantity	Discounts	Tota	al Cost
	Electrical Fire										
CO2 Fire Extinguisher	Extinguisher	\$	150.00	1	0%	\$	150.00				
Rushnall Valasity Speed Cup	Speedometer for MRS										
Bushnell Velocity Speed Gun	testing	\$	90.00	1	0%	\$	90.00				
					Testing Total	\$	240.00				

Administrative									
Description	Unit Cost		Unit Cost		Quantity	Discounts	Total C	ost	
Printing	\$	160.00	1	0%	\$	160.00			
	\$	160.00							

What is a Chimera?

Offspring of Typhon (giant, last son of Gaia) and Echidna (She-Viper).

Head of a lion, body (and head) of a goat, and snake tail.

Defeated by Bellerophon with the help of Pegasus.