CDS 101/110: Lecture 2.3
Stability (Continue), MATLAB

7 October 2016

Goals:
* Review stability of linear systems
* A little more detail on Lyapunov Functions
e Start of Tutorial on MATLAB functions for control system analysis

Reading:
e Astréom and Murray, Feedback Systems 2e, Sections 5.1-5.4



Equilibrium Points

ne equilibria of system x = f(x) are the points x, such that f(x,) = 0.

They represent stationary conditions for the dynamics

- Nonlinear systems may have multiple equilibria

- Linear systems have only one equilibria (unless characteristic
equation has zero eigenvalues)

dr T2 _|xnw
dt lsinml—f}fmg] = 'TE_[ 0 } m.
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An Equilibrium Point is:

Stable if initial conditions that start near the equilibrium point, stay near
the equilibrium point

® Also called “stable in the sense of Lyapunov”
® Technical:

= For all £ > 0, there exists 6 > 0 s.t.

||x(0)—xe||<5 — ||x(t)—xe||<e vVt >0

Asymptotically stable if all initial conditions near equilibrium converc-
to the equilibrium

® Stable + converging
® Technical: b

- x, is locally attractive if 36 > 0 s.t. ||x(0) — x¢|| < & and 05

lim x(t) = x -1
=00 ( ) e -4 -05 0 05 1

= x, IS locally asymptotically stable if it is locally stable & locally
attractive

0.5

Exponentially stable if it is asymptotically stable and 3 a, 8 > 0 s.t.
||X(t) — xe|| <a ||X(O) — Xe||e‘Bt t=>0



S Linear Systems

Recall: Linearity of Functions f:R" —» R"

e Addition: fx+y)=f(x)+ f(Y) f(OCX + By)
* Scaling: flax) =af(x) = af (x) + Bf (¥)
e Zero at the Origin:  f(0) =0 »

Linear System: S:u(t) — x(t)
o If S:uq(t) - x1(t); S:u,(t) - x,(t)
—  oxq(t) + Bx,(t) = S{ou, (t) + Bu,(t)}
Linear Control System: x(t) is system “state”;
o x(t) =A(t) x(t) + B(t) u(t)
» y() = C() x(t) + D(t) u(t)

u(t) are control inputs

y(t) is the system output,
(what is observed)



Linear Time Invariant Systems

Linear Time Invariant (LTI) System:

® Given that input u(t) leads to output y(t), if input u(t + T) leads to output y(t

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

0

)'C=Ax+% yy

y=Cx+9/ x(1) = e x,

At
y(t)=Ce" " x,

AA) = {s € C: det(sI — A) = 0}



Stability of Linear Systems

Coordinate (similarity) Transform: z = Tx, where T is invertible
e 2=Tx =TAx =TAT 'z
 |f system has equilibrium x = 0, then z = 0 Is also an equilibrium
o |f system is stable in x-coordinates, it is stable in z-coordinates
o If Tis invertible, eTAT™ = TeAT1

Diagonalized case: Eigenvectors are unique: A is diagonalizable (real, distinct eigenvalues)

A1 0 - 0 |
. A2 e Stableif2; <0
0 | )Y 0 e * Unstable if A; >0

Block diagonal case (distinct complex eigenvalues)

01w 0 0 | T2i-1(t) = e’:ri't(mgz([l) cos w;t + x;4+1(0) sinmjt)
. —w; 01 0 0 To; () = €77 (z;(0) sinw;t — z;41(0) cosw;t)
w0 o . o | | |
0 0 O Wi * System is asy stable if Re(1;) = 0; <0
0 0 —Wym  Om




Most general case is Jordan Form.
* For matrix A there exists invertible T such that A = T~ YT,

pAt — eT—le — T-1lolT = T-1

—ejlt
0

0 0

-

0

eJkt

Stability of Linear Systems: Jordan Form

A1 o0 0
0 A; -~
T; ]l — ,.l . 1
0 0 A

where J;is a Jordan Block. A; is the it" eigenvalue of A, m; is the size of J;

Remarks:

* Jordan Block decomposition is unique up to permutation of blocks

* Can have multiple blocks with same eigenvalues

e Solutions with Jordan blocks

e]kt — eﬂkt

t™m 1 /m!

t2/2
t

1

e IfRe(};) <0,elitzy >0
e IfRe(};) >0, elitz; >
o If Re(};) > 0, need more analysis



Stability of Linear Systems

Theorem:
e A linear system x = Ax IS asymptotically stable if and only Iif
Re(A;) = g; < 0 for all eigenvalues {44,:--,1,,} of A

Proof:
» Write z = Tx where T™1AT is in Jordan Form
« Solution to o.d.e. is then sum of terms having the form t¥e#t
e If Re(1) < 0, then tke?t -5 0ast— o

What about Re(4;) =0; =0 ?
 Stability depends upon Jordan structure.
* If Re(4;)) =0and m; > 1

1 t ... M- 1/m'
elitz, = 0 1 . Zg — © ast — oo
0 e e 1

o IfA; = +i, system IS stable (but_not asymp. Stable)

c1 cos(t) + c,sin(t)
/= [O —1 Zz+1] —c3 sin(t) + c4cos(t)



Real e-values

Re(A;) <0

Complex e-values

Re(A) =0
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Eigenstructure of Linear Systems
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Linearization Around an Equilibrium Point
x=f(x,u) z=Az+Bv 2 S

ﬁ

v =h(x,u) w=Cz+ Dy

“Linearize” around x=x,

f(x,u)=0 y, =h(x,u,)

Z=X-X, V=U-uU, w=y-—-y,

_9 A
ox (xo0.) ou (vo1.)
oh oh
C=— D=—
0X (2 ) OU| ()
Remarks

* |n examples, this is often
equivalent to small angle
approximations, etc

* Only works near to equili-
brium point

0.3 -02 -041 0 0.1 02 03 e 03 02 -041 0 0.1 02 03
X

Full nonlinear model Linear model (honest!)
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L ocal versus Global Behavior

Stability is a local concept
® Equilibrium points define the local behavior of the dynamical system
® Single dynamical system can have stable and unstable equilibrium points

Region of attraction
® Set of initial conditions that converge to a given equilibrium point

2
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Reasoning about Stability using Lyapunov Functions

Basic idea: capture system behavior by tracking its “energy”
® Find a single function that captures distance of system from equilibrium
® Try to reason about the long term behavior of all solutions, without explicit solution!

Technical: A function V: R"™ = R is a Lyapunov function for x = f(x)
- V(0)=0, V(x)>0VxeB,\{0} for B, a neighborhood of O

= Note that coordinates can be chosen sothatx, =0
6V dx

- V(x) ==V (x() = === f(x)
= The equilibrium is IocaIIy stable ifV(x) <0 VxeB,\{0}

= The equilibrium is locally asymptotically stable if V(x) < 0 Vx e B,\{0}
= Artstein’s Thm: if system is stable, a Lyapunov function exists.

Linear Systems: x = Ax
= Consider V(x) = x"Px, where PT = P > 0 (positive definite)

- V(x) = v, dx _ xT(ATP + PA)x = —xTQx

Ox dt
- Lyapunov Equation: ATP + PA = —Q
= Can show that solution P exists if A has eigenvalues in left-half plane.
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Reasoning about Stability using Lyapunov Functions

Lasalle’s Invariance Principle (Barbashin-Krasvoskii-Lasalle)
- Gives a way to show asymp. Stability when V(x) < 0
= Only for time-invariant or periodic systems

Technical:

= w-limit set of a trajectory x(t, xy) is the set of points p such that x(t,x,) — p as
t— oo for x = f(x).

= Aset Mis said to be invariant if for all x, € M, x(t,xy) € M forallt = 0

= Theorem (5.4, page 5-25): Let V:R™ — R be a locally positive definite function
such that on the compact set ). = {x eR" | V(x) < r}, Define

S ={xeR™ | V(x) = 0}.
as t— oo, the trajectory tends to the largest invariant set in S. If S contains no
Invariant set except other than x=0, then x=0 Iis asymptotically stable.

g(t)

1 1 . -
Viz) = §kmf + §mm§ V = —ng. ; %
E L m - ul)
dx To ] T1 =g V'V
—_— . — k
dt —%331 — iiﬂg To :q

13



Example #2: Predator Prey (ODE version)

Continuous time (ODE) version of predator prey dynamics:

ai _ rH (1 _ E) _ ailL H>0 ° Continuous time (ODE) model

dt k c+H - * MATLAB: predprey.m (from web page)
ﬁ _ aHL _dr >0
dt ¢+ H -

Equilibrium points (2)
® —(20.5, 29.5): unstable
® (0, 0): unstable

Limit cycle
® Population of each species
oscillates over time

® Limit cycle is stable (nearby
solutions converge to limit cycle)

® This is a global feature of the
dynamics (not local to an equilibr
point)

Lynxes
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Simpler Example of a Limit Cycle
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® Note that limit cycle is an invariant set

® From simulation, x(t+T) = x(t)

1
Viz) = i(l—m?—:ﬂg

Stability of invariant set

V()

= (r1Z1 + T2x2)(1l — x

)2

2

—(z1 +23) (1 — 21 — 2

2

2

1 — L9

)2

)
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Summary: Stability and Performance

Key topics for this lecture

® Stability of equilibrium points

® Eigenvalues determine stability
for linear systems

® Local versus global behavior
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