
CDS 101/110: Lecture 2.3
Stability (Continue), MATLAB

7 October 2016

Goals:
• Review stability of linear systems
• A little more detail on Lyapunov Functions
• Start of Tutorial on MATLAB functions for control system analysis

Reading: 
• Åström and Murray, Feedback Systems 2e, Sections 5.1-5.4



The equilibria of system �̇�𝑥 = 𝑓𝑓(𝑥𝑥) are the points xe such that f(xe) = 0.

They represent stationary conditions for the dynamics
- Nonlinear systems may have multiple equilibria
- Linear systems have only one equilibria (unless characteristic 

equation has zero eigenvalues)
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Equilibrium Points

⇒



An Equilibrium Point is:
Stable if initial conditions that start near the equilibrium point, stay near 
the equilibrium point
• Also called “stable in the sense of Lyapunov”
• Technical: 

- For all 𝜀𝜀 > 0, there exists 𝛿𝛿 > 0 𝑠𝑠. 𝑡𝑡.

𝑥𝑥 0 − 𝑥𝑥𝑒𝑒 < 𝛿𝛿 → 𝑥𝑥 𝑡𝑡 − 𝑥𝑥𝑒𝑒 < 𝜀𝜀 ∀𝑡𝑡 ≥ 0

Asymptotically stable if all initial conditions near equilibrium converge 
to the equilibrium
• Stable + converging
• Technical: 

- 𝑥𝑥𝑒𝑒 is locally attractive if ∃𝛿𝛿 > 0 s.t. x(0 − xe | < 𝛿𝛿 and 
lim
𝑡𝑡→∞

𝑥𝑥(𝑡𝑡) = 𝑥𝑥𝑒𝑒
- 𝑥𝑥𝑒𝑒 is locally asymptotically stable if it is locally stable & locally 

attractive

Exponentially stable if it is asymptotically stable and ∃ 𝛼𝛼,𝛽𝛽 > 0 s.t.
x(𝑡𝑡 − xe | ≤ α x 0 − xe e−βt t ≥ 0
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Linear Systems
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Recall: Linearity of Functions f:ℝ𝑛𝑛 → ℝ𝑛𝑛

• Addition:                   𝑓𝑓 x + y = 𝑓𝑓 𝑥𝑥 + 𝑓𝑓(𝑦𝑦)
• Scaling:                      𝑓𝑓(α x) = α 𝑓𝑓(x)
• Zero at the Origin:   𝑓𝑓(0) = 0

𝑓𝑓 αx + βy
= α𝑓𝑓 𝑥𝑥 + β𝑓𝑓(𝑦𝑦)

Linear System:  𝑆𝑆:𝑢𝑢 𝑡𝑡 → 𝑥𝑥 𝑡𝑡
• If 𝑆𝑆:𝑢𝑢1 𝑡𝑡 → 𝑥𝑥1 𝑡𝑡 ;      𝑆𝑆:𝑢𝑢2 𝑡𝑡 → 𝑥𝑥2 𝑡𝑡

– α𝑥𝑥1 𝑡𝑡 + β𝑥𝑥2 𝑡𝑡 = 𝑆𝑆 α𝑢𝑢1 𝑡𝑡 + β𝑢𝑢2 𝑡𝑡

Linear Control System:

• �̇�𝑥(𝑡𝑡) = 𝐴𝐴(𝑡𝑡) 𝑥𝑥 𝑡𝑡 + 𝐵𝐵(𝑡𝑡) 𝑢𝑢 𝑡𝑡

• 𝑦𝑦 𝑡𝑡 = 𝐶𝐶(𝑡𝑡) 𝑥𝑥 𝑡𝑡 + 𝐷𝐷(𝑡𝑡) 𝑢𝑢 𝑡𝑡

𝑥𝑥 𝑡𝑡 is system “state”; 

𝑢𝑢 𝑡𝑡 are control inputs

y 𝑡𝑡 is the system output, 
(what is observed)



Linear Time Invariant Systems 

Linear Time Invariant (LTI) System:

• Given that input 𝑢𝑢(𝑡𝑡) leads to output 𝑦𝑦 𝑡𝑡 , if input 𝑢𝑢(𝑡𝑡 + 𝑇𝑇) leads to output 𝑦𝑦(𝑡𝑡
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0

0

�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥 𝑡𝑡 + 𝐵𝐵𝑢𝑢(𝑡𝑡)
𝑦𝑦 𝑡𝑡 = 𝐶𝐶𝑥𝑥 𝑡𝑡 + 𝐷𝐷𝑢𝑢(𝑡𝑡)



Diagonalized case: Eigenvectors are unique: A is diagonalizable (real, distinct eigenvalues)

Block diagonal case (distinct complex eigenvalues)

Stability of Linear Systems
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⇒
• Stable if λ𝑖𝑖 ≤ 0
• Asy stable if λ𝑖𝑖 < 0
• Unstable if λ𝑖𝑖 > 0

Coordinate (similarity) Transform: 𝑧𝑧 = 𝑇𝑇𝑥𝑥, where 𝑇𝑇 is invertible
• �̇�𝑧 = 𝑇𝑇�̇�𝑥 = 𝑇𝑇𝐴𝐴𝑥𝑥 = 𝑇𝑇𝐴𝐴𝑇𝑇−1𝑧𝑧
• If system has equilibrium x = 0, then z = 0 is also an equilibrium
• If system is stable in x-coordinates, it is stable in 𝑧𝑧-coordinates
• If 𝑇𝑇 is invertible, 𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇−1 = 𝑇𝑇𝑒𝑒𝑇𝑇T−1

• System is asy stable if 𝑅𝑅𝑒𝑒 𝜆𝜆𝑖𝑖 = 𝜎𝜎𝑖𝑖 < 0



Most general case is Jordan Form.  
 For matrix 𝐴𝐴 there exists invertible 𝑇𝑇 such that A = 𝑇𝑇−1𝐽𝐽𝑇𝑇,

𝑒𝑒𝑇𝑇𝑡𝑡 = 𝑒𝑒𝑇𝑇−1𝐽𝐽𝑇𝑇 = 𝑇𝑇−1𝑒𝑒𝐽𝐽𝑇𝑇 = 𝑇𝑇−1
𝑒𝑒𝐽𝐽1𝑡𝑡 ⋯ 0

0 ⋱ 0
0 0 𝑒𝑒𝐽𝐽𝑘𝑘𝑡𝑡

𝑇𝑇, 𝐽𝐽𝑖𝑖 =

𝜆𝜆𝑖𝑖 1
0 𝜆𝜆𝑖𝑖

⋯ 0
⋱ ⋮

⋮ ⋱
0 ⋯

⋱ 1
0 𝜆𝜆𝑖𝑖

where 𝐽𝐽𝑖𝑖is a Jordan Block.  𝝀𝝀𝒊𝒊 is the ith eigenvalue of 𝐴𝐴, 𝑚𝑚𝑖𝑖 is the size of 𝐽𝐽𝑖𝑖

Remarks:
 Jordan Block decomposition is unique up to permutation of blocks
 Can have multiple blocks with same eigenvalues
 Solutions with Jordan blocks

𝑒𝑒𝐽𝐽𝑘𝑘𝑡𝑡 = 𝑒𝑒𝜆𝜆𝑘𝑘𝑡𝑡

1 𝑡𝑡
0 1

𝑡𝑡2/2 ⋯ 𝑡𝑡𝑚𝑚−1/𝑚𝑚!
𝑡𝑡 ⋯

0 0
⋮ ⋮
0 0

1 𝑡𝑡 𝑡𝑡2/2
⋮ ⋱ 𝑡𝑡
0 0 1
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Stability of Linear Systems: Jordan Form

• If Re λ𝑖𝑖 < 0, 𝑒𝑒𝐽𝐽𝑖𝑖𝑡𝑡𝑧𝑧0 → 0
• If Re λ𝑖𝑖 > 0, 𝑒𝑒𝐽𝐽𝑖𝑖𝑡𝑡𝑧𝑧0 → ∞
• If Re λ𝑖𝑖 > 0, need more analysis



Stability of Linear Systems
Theorem:

• A linear system �̇�𝑥 = 𝐴𝐴𝑥𝑥 is asymptotically stable if and only if
𝑅𝑅𝑒𝑒 𝜆𝜆𝑖𝑖 = 𝜎𝜎𝑖𝑖 < 0 for all eigenvalues 𝜆𝜆1,⋯ , 𝜆𝜆𝑛𝑛 of 𝐴𝐴

Proof:
• Write 𝑧𝑧 = 𝑇𝑇𝑥𝑥 where 𝑇𝑇−1𝐴𝐴𝑇𝑇 is in Jordan Form
• Solution to o.d.e. is then sum of terms having the form 𝑡𝑡𝑘𝑘𝑒𝑒𝜆𝜆𝑡𝑡
• If Re 𝜆𝜆 < 0, then 𝑡𝑡𝑘𝑘𝑒𝑒𝜆𝜆𝑡𝑡 → 0 as t → ∞

What about 𝑅𝑅𝑒𝑒 𝜆𝜆𝑖𝑖 = 𝜎𝜎𝑖𝑖 = 0 ?
• Stability depends upon Jordan structure.
• If 𝑅𝑅𝑒𝑒 𝜆𝜆𝑖𝑖 = 0 and 𝑚𝑚𝑖𝑖 > 1

𝑒𝑒𝐽𝐽𝑖𝑖𝑡𝑡𝑧𝑧0 =
1 𝑡𝑡
0 1

⋯ 𝑡𝑡𝑚𝑚−1/𝑚𝑚!

⋮ ⋮
0 ⋯

⋱ 𝑡𝑡
⋯ 1

𝑧𝑧0 → ∞ 𝑎𝑎𝑠𝑠 𝑡𝑡 → ∞

• If 𝜆𝜆𝑖𝑖 = ±𝑖𝑖, system is stable (but not asymp. Stable)

𝐽𝐽 = 𝑖𝑖 0
0 −𝑖𝑖 ,             

𝑧𝑧𝑖𝑖
𝑧𝑧𝑖𝑖+1 =

c1 cos(𝑡𝑡) + 𝑐𝑐2sin(𝑡𝑡)
−𝑐𝑐3 sin 𝑡𝑡 + 𝑐𝑐4cos(𝑡𝑡)



Eigenstructure of Linear Systems
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Real e-values

Re(λi) < 0
Real e-values

Re(λi) < 0

Re(λi) > 0

Complex e-values

Re(λi) = 0

Complex e-values

Re(λi) < 0
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Linearization Around an Equilibrium Point

Remarks
 In examples, this is often 

equivalent to small angle 
approximations, etc
 Only works near to equili-

brium point

-2� 0 2�
-2

0

2

x1

x2

Full nonlinear model Linear model (honest!)

“Linearize” around x=xe
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Local versus Global Behavior
Stability is a local concept
• Equilibrium points define the local behavior of the dynamical system
• Single dynamical system can have stable and unstable equilibrium points

Region of attraction
• Set of initial conditions that converge to a given equilibrium point



Basic idea: capture system behavior by tracking its “energy”
• Find a single function that captures distance of system from equilibrium
• Try to reason about the long term behavior of all solutions, without explicit solution!

Technical: A function 𝑉𝑉:ℝ𝑛𝑛 → ℝ is a Lyapunov function for �̇�𝑥 = 𝑓𝑓(𝑥𝑥)
- 𝑉𝑉 0 = 0, 𝑉𝑉 𝑥𝑥 > 0 ∀𝑥𝑥 𝜖𝜖 𝐵𝐵𝑟𝑟\ 0 for 𝐵𝐵𝑟𝑟 a neighborhood of 0 
- Note that coordinates can be chosen so that xe = 0

- �̇�𝑉 𝑥𝑥 = 𝑑𝑑
𝑑𝑑𝑡𝑡
𝑉𝑉 𝑥𝑥 𝑡𝑡 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 𝑑𝑑𝜕𝜕
𝑑𝑑𝑡𝑡

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑓𝑓(𝑥𝑥)

- The equilibrium is locally stable if �̇�𝑉 𝑥𝑥 ≤ 0 ∀𝑥𝑥 𝜖𝜖 𝐵𝐵𝑟𝑟\ 0
- The equilibrium is locally asymptotically stable if �̇�𝑉 𝑥𝑥 < 0 ∀𝑥𝑥 𝜖𝜖 𝐵𝐵𝑟𝑟\ 0
- Artstein’s Thm: if system is stable, a Lyapunov function exists.

Linear Systems: �̇�𝑥 = 𝐴𝐴𝑥𝑥
- Consider 𝑉𝑉 𝑥𝑥 = 𝑥𝑥𝑇𝑇𝑃𝑃𝑥𝑥, where 𝑃𝑃𝑇𝑇 = 𝑃𝑃 > 0 (positive definite)

- �̇�𝑉 𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝜕𝜕
𝑑𝑑𝑡𝑡

= 𝑥𝑥𝑇𝑇 𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴𝐴 𝑥𝑥 = −𝑥𝑥𝑇𝑇𝑄𝑄𝑥𝑥

- Lyapunov Equation: 𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴𝐴 = −𝑄𝑄
- Can show that solution 𝑃𝑃 exists if 𝐴𝐴 has eigenvalues in left-half plane.
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Reasoning about Stability using Lyapunov Functions



Lasalle’s Invariance Principle (Barbashin-Krasvoskii-Lasalle)
- Gives a way to show asymp. Stability when �̇�𝑉 𝑥𝑥 ≤ 0
- Only for time-invariant or periodic systems

Technical:
- 𝜔𝜔-limit set of a trajectory 𝑥𝑥 𝑡𝑡, 𝑥𝑥0 is the set of points 𝑝𝑝 such that 𝑥𝑥 𝑡𝑡, 𝑥𝑥0 → 𝑝𝑝 as 

t→ ∞ for �̇�𝑥 = 𝑓𝑓(𝑥𝑥).
- A set M is said to be invariant if for all 𝑥𝑥0 ∈ 𝑀𝑀, 𝑥𝑥(𝑡𝑡, 𝑥𝑥0) ∈ 𝑀𝑀 for all 𝑡𝑡 ≥ 0
- Theorem (5.4, page 5-25): Let 𝑉𝑉:ℝ𝑛𝑛 → ℝ be a locally positive definite function 

such that on the compact set Ω𝑟𝑟 = 𝑥𝑥 𝜖𝜖ℝ𝑛𝑛 | 𝑉𝑉(𝑥𝑥) ≤ 𝑟𝑟 , Define
𝑆𝑆 = 𝑥𝑥 𝜖𝜖ℝ𝑛𝑛 | �̇�𝑉 𝑥𝑥 = 0 .

as t→ ∞, the trajectory tends to the largest invariant set in S. If S contains no
invariant set except other than x=0, then x=0 is asymptotically stable.
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Reasoning about Stability using Lyapunov Functions

�̇�𝑉 = −𝑐𝑐𝑥𝑥22.



Continuous time (ODE) version of predator prey dynamics:

Equilibrium points (2)
• ~(20.5, 29.5): unstable 
• (0, 0): unstable

Limit cycle
• Population of each species 

oscillates over time
• Limit cycle is stable (nearby

solutions converge to limit cycle)
• This is a global feature of the 

dynamics (not local to an equilibrium 
point)
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Example #2: Predator Prey (ODE version) 

 Continuous time (ODE) model
 MATLAB: predprey.m (from web page)

unstable

stable



Dynamics: • Note that limit cycle is an invariant set
• From simulation, x(t+T) = x(t)

Stability of invariant set

Simpler Example of a Limit Cycle
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Summary: Stability and Performance
Key topics for this lecture
• Stability of equilibrium points

• Eigenvalues determine stability 
for linear systems

• Local versus global behavior
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