
CDS 270: Solution to Homework #1

Solution to Problem 1: (5 points) Problem #2 in Chapter 2 (page 73) of the MLS text.

Let g1 ∈ SE(n) and g2 ∈ SE(n) (n = 2, 3) take the form

g1 =

[
R1

~d1

~0T 1

]
g2 =

[
R2

~d2

~0T 1

]
where R1, R2 ∈ SO(n) and ~d1, ~d2 ∈ Rn. The product of g1 and g2 takes the form:

g1 · g2 =

[
R1R2

~d1 + R1
~d2

~0T 1

]
Since SO(n) forms a group, the product R1R2 ∈ SO(n). Since R1

~d2 ∈ Rn, ~d1+R1
~d2 ∈ Rn.

Thus, g1g2 ∈ SE(n). The identity matrix is the identity element of SE(n). The inverse of
matrix g1 is: [

RT
1 −RT

1
~d1

~0T 1

]
.

Since R1 ∈ SO(n), RT
1 ∈ SO(n). Similarly, RT

1
~d1 ∈ Rn. Hence, g−1

1 ∈ SE(n). Thus,
SE(n) forms a group.

Solution to Problem 2: (10 points) Problem #4 in Chapter 2 (page 73) of the MLS text.

Part (a): Let’s assume that the statement in part (b) of the problem is true. Let ~w be a
3 × 1 vector and let ~v be any 3 × 1 vector. Then:

(RŵRT )~v = Rŵ(RT~v)
= R(~w × (RT~v))
= (R~w) × (RRT~v)
= (R~w) × ~v

= (̂R~w)~v

Since this must be true for any vector ~v, then RŵRT = (R~w)ˆ.

Part (b): We can now assume that part (a) holds.

(R~v) × (R~w) = (̂R~v)(R~w)
= (Rv̂RT )(R~w)
= Rv̂RT R~w
= R(v̂ ~w)
= R(~v × ~w)
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Solution Problem 3: (10 points) Problem #10(b, c) in Chapter 2 (page 75) of the MLS
text. It is not necessary to answer the question about surjectivity.

Note that

ω̂ =

[
0 −w
w 0

]
= wJ where J =

[
0 −1
1 0

]
Then:

ω̂2 = w2

[
−1 0
0 −1

]
= −w2I; ω̂3 = −w3J

Hence the exponetial of ω̂ can be computed as:

exp (θω̂) =

(
I +

θ

1!
ω̂ + +

θ2

2!
ω̂2 + · · ·

)
=

(
I +

wθ

1!
J − w2θ2

2!
I − w3θ3

3!
J + · · ·

)
=

(
1 − w2θ2

2!
+ · · ·

)
I +

(
wθ

1!
− w3θ3

3!
+ · · ·

)
J

=

[
cos(wθ) − sin(wθ)
sin(wθ) cos(wθ)

]

Clearly, the exponential map from so(2) to SO(3) can not be surjective, as every point in
SO(3) can not be covered by every point in so(2). This map is not injective since exp(θω̂) =
exp((θ + 2π)ω̂).

Problem 4: (10 points) Prove (or show) that a body undergoing spherical motion (where
one point is fixed through the motion) has three degrees of freedom.

A body undergoing spherical motion has one fixed point. Let the body consist of N particles.
Let P1 denote the particle lying at the fixed point. A point in 3-dimensional Euclidean space
normally requires 3 independent variables to fix its location. However, since P1 does not
move, it actually has 0 degrees-of-freedom (DOF). Now consider a particle P2 in the body.
Particle P2 has 3 DOF as a particle. However, it is constrained to lie a fixed distance, d12

from particle P1 due to the fact that P1 and P2 are part of the same rigid body. The fixed
distance relationship imposes one constraint on P2. Next consider a point P3, which lie a
fixed distance from P1 and P2. Therefore, there are two constraints on its location. Now,
consider a particle P4. Since its must lie a fixed distance from P1, P2, and P3, there are three
constraints on its motion. Particles P5, . . ., PN similarly have 3 constraints.

The total number of degrees of freedom of the N particles are: 3(N − 1) + 0 = 3N − 3. The
total number of constraints on these particles are: 1 + 2 + 3(N − 3) = 3N − 6. Hence, the
total net DOF of a body is the number of freedoms of the particles minus the number of
constraints that bind them into a rigid body: (3N − 3) − (3N − 6) = 3.

Problem 5: (20 points) Problem #11(a, b, e) in Chapter 2 (page 76) of the MLS text.
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Part (a): Recall that the matrix exponential of a twist, ξ̂, is:

eφξ̂ = I +
φ

1!
ξ̂ +

φ2

2!
ξ̂2 +

φ3

3!
ξ̂3 + · · ·

First, let’s consider the case of ξ = (v, ω), with ω = 0. If:

ξ̂ =

0 0 vx

0 0 vy

0 0 0


then ξ̂2 = 0. Thus

eφξ̂ =

1 0 φvx

0 1 φvy

0 0 1

 =

[
I ~vφ
~0t 1

]
To compute the exponential for the more general case in which ω 6= 0, let us assume that
||ω|| = 1. In this case, note that ω̂2 = −I, where I is the 2× 2 identity matrix. It is easiest
if we choose a different coordinate system in which to perform the calculations. Let

ξ̂ =

0 −ω vx

ω 0 vy

0 0 0

 =

[
ω̂ ~v
~0T 0

]

Let

g =

[
I ω̂~v

~0T 1

]
Let is define a new twist, ξ̂

′
:

ξ̂
′

= g−1ξ̂g

=

[
I −ω̂~v
0 1

] [
ω̂ ~v
0 0

] [
I ω̂~v
0 1

]
=

[
ω̂ (ω̂2~v + ~v)
0 0

]
=

[
ω̂ 0
0 0

]
where we made use of the identity ω̂2 = −I. That is, we have chosen a coordinate system
in which ξ̂

′
corresponds to a pure rotation. Thus,

eφξ̂
′

=

[
eφω̂ 0
0 1

]
.

Using Eq. (2.35) on page 42 of the MLS text:

eφξ̂ = geφξ̂
′

g−1 =

[
eφω̂ (I − eφω̂)ω̂~vφ
0 1

]
which is clearly an element of SE(2).
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Part(b): It is easy to see from part (a) that the twist ξ = (vx, vy, 0)T maps directly to the
planar translation (vx, vy).

The twist corresponding to pure rotation about a point ~q = (qx, qy) can be thought of as the
Ad-transformation of a twist, ξ

′
= (0, 0, ω), which is pure rotation, by a transformation, g,

which is pure translation by ~q:

ξ = Adhξ
′
= (hξ̂

′
h−1)∨ (1)

where

h =

[
I ~q
0 1

]
and x̂i

′

=

[
ω̂ 0
~0T 0

]
.

Expanding Eq. (1) gives:

ξ = (hξ̂
′
h−1)∨ =

[
ω̂ −ω̂~q
~0T 0

]∨
=

 qy

−qx

1


assuming ω = 1.

Part (e): Let V̂ b denote the planar body velocity:

V̂ b =

[
ω̂b ~vb

~0T 0

]
where ω̂b ∈ so(2), ~vb ∈ R2. Then the planar spatial velocity is:

V̂ s = AdgV̂
b = gV̂ bg−1

=

[
R ~p
~0T 1

] [
ω̂b ~vb

~0T 0

] [
RT −RT ~p
~0T 0

]
=

[
Rω̂bRT −Rω̂bRT ~p + R~vb

~0T 0

]
Therefore:

ω̂s = Rω̂bRT ~vs = R~vb −Rω̂bRT ~p = R~vb − ω̂s~p

The spatial angular velocity can be simplified as follows:

ω̂s = Rω̂bRT =

[
r11 r12

r21 r22

] [
0 −ω
ω 0

] [
r11 r21

r12 r22

]
= ω

[
0 − det(R)

det(R) 0

]
= ω

[
0 −1
1 0

]
= ω̂b

Using this result:

~vs = R~vb − ω̂s~p = R~vb + ωb

[
py

−px

]
=

[
R

[
py

−px

]] [
~vb

ωb

]

Therefore:

V s =

[
~vs

ωs

]
=

R

[
py

−px

]
~0T 1

V b
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Solution Problem 6: (10 points) Problem #14(a, b) in Chapter 2 (page 77) of the MLS
text. It is not necessary to answer the question about surjectivity.

Part (a): Let g ∈ SE(3) denote a homogeneous transformation matrix:

g =

[
R ~p
~0T 1

]
Adg =

[
R p̂R
0 R

]
Then:

g−1 =

[
RT −RT ~p
~0T 1

]
Adg−1 =

[
RT −(̂RT ~p)RT

~0T RT

]
=

[
RT −RT p̂
0 RT

]
where we have made use of the identity (̂RT ~p) = RT p̂R. Let’s now compute AdgAdg−1 :

AdgAdg−1 =

[
R p̂R
0 R

] [
RT −RT p̂
0 RT

]
=

[
I 0
0 I

]
Hence, Adg−1 must equal (Adg)

−1 since AdgAdg−1 = I.

Part (b): If

g1 =

[
R1 ~p1

~0T 1

]
g2 =

[
R2 ~p2

~0T 1

]
Then

g1g2 =

[
R1R2 ~p1 + R1~p2

~0T 1

]
Hence:

Adg1g2 =

[
R1R2 (~p1 + R1~p2)

ˆR1R2

0 R1R2

]
=

[
R1R2 p̂1R1R2 + R1p̂2R

T
1 R1R2

0 R1R2

]
=

[
R1R2 p̂1R1R2 + R1p̂2R2

0 R1R2

]
=

[
R1 p̂1R1

0 R1

] [
R2 p̂2R2

0 R2

]
= Adg1Adg2
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