CDS 270: Solution to Homework \#1

Solution to Problem 1: (5 points) Problem \#2 in Chapter 2 (page 73) of the MLS text. Let $g_{1} \in S E(n)$ and $g_{2} \in S E(n)(n=2,3)$ take the form

$$
g_{1}=\left[\begin{array}{cc}
R_{1} & \vec{d}_{1} \\
\overrightarrow{0}^{T} & 1
\end{array}\right] \quad g_{2}=\left[\begin{array}{cc}
R_{2} & \vec{d}_{2} \\
\overrightarrow{0}^{T} & 1
\end{array}\right]
$$

where $R_{1}, R_{2} \in S O(n)$ and $\vec{d}_{1}, \vec{d}_{2} \in \mathbb{R}^{n}$. The product of g_{1} and g_{2} takes the form:

$$
g_{1} \cdot g_{2}=\left[\begin{array}{cc}
R_{1} R_{2} & \vec{d}_{1}+R_{1} \vec{d}_{2} \\
\overrightarrow{0}^{T} & 1
\end{array}\right]
$$

Since $S O(n)$ forms a group, the product $R_{1} R_{2} \in S O(n)$. Since $R_{1} \overrightarrow{d_{2}} \in \mathbb{R}^{n}, \vec{d}_{1}+R_{1} \vec{d}_{2} \in \mathbb{R}^{n}$. Thus, $g_{1} g_{2} \in S E(n)$. The identity matrix is the identity element of $S E(n)$. The inverse of matrix g_{1} is:

$$
\left[\begin{array}{cc}
R_{1}^{T} & -R_{1}^{T} \vec{d}_{1} \\
\overrightarrow{0}^{T} & 1
\end{array}\right] .
$$

Since $R_{1} \in S O(n), R_{1}^{T} \in S O(n)$. Similarly, $R_{1}^{T} \vec{d}_{1} \in \mathbb{R}^{n}$. Hence, $g_{1}^{-1} \in S E(n)$. Thus, $S E(n)$ forms a group.

Solution to Problem 2: (10 points) Problem \#4 in Chapter 2 (page 73) of the MLS text.
Part (a): Let's assume that the statement in part (b) of the problem is true. Let \vec{w} be a 3×1 vector and let \vec{v} be any 3×1 vector. Then:

$$
\begin{aligned}
\left(R \hat{w} R^{T}\right) \vec{v} & =R \hat{w}\left(R^{T} \vec{v}\right) \\
& =R\left(\vec{w} \times\left(R^{T} \vec{v}\right)\right) \\
& =(R \vec{w}) \times\left(R R^{T} \vec{v}\right) \\
& =(R \vec{w}) \times \vec{v} \\
& =(R \vec{w}) \vec{v}
\end{aligned}
$$

Since this must be true for any vector \vec{v}, then $R \hat{w} R^{T}=(R \vec{w})^{\hat{1}}$.
Part (b): We can now assume that part (a) holds.

$$
\begin{aligned}
(R \vec{v}) \times(R \vec{w}) & =\widehat{(R \vec{v})}(R \vec{w}) \\
& =\left(R \hat{v} R^{T}\right)(R \vec{w}) \\
& =R \hat{v} R^{T} R \vec{w} \\
& =R(\hat{v} \vec{w}) \\
& =R(\vec{v} \times \vec{w})
\end{aligned}
$$

Solution Problem 3: (10 points) Problem $\# 10(b, c)$ in Chapter 2 (page 75) of the MLS text. It is not necessary to answer the question about surjectivity.

Note that

$$
\hat{\omega}=\left[\begin{array}{cc}
0 & -w \\
w & 0
\end{array}\right]=w J \quad \text { where } J=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Then:

$$
\hat{\omega}^{2}=w^{2}\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=-w^{2} I ; \quad \hat{\omega}^{3}=-w^{3} J
$$

Hence the exponetial of $\hat{\omega}$ can be computed as:

$$
\begin{aligned}
\exp (\theta \hat{\omega}) & =\left(I+\frac{\theta}{1!} \hat{\omega}++\frac{\theta^{2}}{2!} \hat{\omega}^{2}+\cdots\right) \\
& =\left(I+\frac{w \theta}{1!} J-\frac{w^{2} \theta^{2}}{2!} I-\frac{w^{3} \theta^{3}}{3!} J+\cdots\right) \\
& =\left(1-\frac{w^{2} \theta^{2}}{2!}+\cdots\right) I+\left(\frac{w \theta}{1!}-\frac{w^{3} \theta^{3}}{3!}+\cdots\right) J \\
& =\left[\begin{array}{cc}
\cos (w \theta) & -\sin (w \theta) \\
\sin (w \theta) & \cos (w \theta)
\end{array}\right]
\end{aligned}
$$

Clearly, the exponential map from so(2) to $S O(3)$ can not be surjective, as every point in $S O(3)$ can not be covered by every point in $s o(2)$. This map is not injective since $\exp (\theta \hat{\omega})=$ $\exp ((\theta+2 \pi) \hat{\omega})$.

Problem 4: (10 points) Prove (or show) that a body undergoing spherical motion (where one point is fixed through the motion) has three degrees of freedom.

A body undergoing spherical motion has one fixed point. Let the body consist of N particles. Let P_{1} denote the particle lying at the fixed point. A point in 3-dimensional Euclidean space normally requires 3 independent variables to fix its location. However, since P_{1} does not move, it actually has 0 degrees-of-freedom (DOF). Now consider a particle P_{2} in the body. Particle P_{2} has 3 DOF as a particle. However, it is constrained to lie a fixed distance, d_{12} from particle P_{1} due to the fact that P_{1} and P_{2} are part of the same rigid body. The fixed distance relationship imposes one constraint on P_{2}. Next consider a point P_{3}, which lie a fixed distance from P_{1} and P_{2}. Therefore, there are two constraints on its location. Now, consider a particle P_{4}. Since its must lie a fixed distance from P_{1}, P_{2}, and P_{3}, there are three constraints on its motion. Particles P_{5}, \ldots, P_{N} similarly have 3 constraints.

The total number of degrees of freedom of the N particles are: $3(N-1)+0=3 N-3$. The total number of constraints on these particles are: $1+2+3(N-3)=3 N-6$. Hence, the total net DOF of a body is the number of freedoms of the particles minus the number of constraints that bind them into a rigid body: $(3 N-3)-(3 N-6)=3$.

Problem 5: (20 points) Problem \#11(a, b, e) in Chapter 2 (page 76) of the MLS text.

Part (a): Recall that the matrix exponential of a twist, $\hat{\xi}$, is:

$$
e^{\phi \hat{\xi}}=I+\frac{\phi}{1!} \hat{\xi}+\frac{\phi^{2}}{2!} \hat{\xi}^{2}+\frac{\phi^{3}}{3!} \hat{\xi}^{3}+\cdots
$$

First, let's consider the case of $\xi=(v, \omega)$, with $\omega=0$. If:

$$
\hat{\xi}=\left[\begin{array}{ccc}
0 & 0 & v_{x} \\
0 & 0 & v_{y} \\
0 & 0 & 0
\end{array}\right]
$$

then $\hat{\xi}^{2}=0$. Thus

$$
e^{\phi \hat{\xi}}=\left[\begin{array}{ccc}
1 & 0 & \phi v_{x} \\
0 & 1 & \phi v_{y} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
I & \vec{v} \phi \\
\overrightarrow{0}^{t} & 1
\end{array}\right]
$$

To compute the exponential for the more general case in which $\omega \neq 0$, let us assume that $\|\omega\|=1$. In this case, note that $\hat{\omega}^{2}=-I$, where I is the 2×2 identity matrix. It is easiest if we choose a different coordinate system in which to perform the calculations. Let

$$
\hat{\xi}=\left[\begin{array}{ccc}
0 & -\omega & v_{x} \\
\omega & 0 & v_{y} \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\hat{\omega} & \vec{v} \\
\overrightarrow{0}^{T} & 0
\end{array}\right]
$$

Let

$$
g=\left[\begin{array}{cc}
I & \hat{\omega} \vec{v} \\
\overrightarrow{0}^{T} & 1
\end{array}\right]
$$

Let is define a new twist, $\hat{\xi}^{\prime}$:

$$
\begin{aligned}
\hat{\xi}^{\prime} & =g^{-1} \hat{\xi} g \\
& =\left[\begin{array}{cc}
I & -\hat{\omega} \vec{v} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\hat{\omega} & \vec{v} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
I & \hat{\omega} \vec{v} \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\hat{\omega} & \left(\hat{\omega}^{2} \vec{v}+\vec{v}\right) \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
\hat{\omega} & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

where we made use of the identity $\hat{\omega}^{2}=-I$. That is, we have chosen a coordinate system in which $\hat{\xi}^{\prime}$ corresponds to a pure rotation. Thus,

$$
e^{\phi \hat{\xi}^{\prime}}=\left[\begin{array}{cc}
e^{\phi \hat{\omega}} & 0 \\
0 & 1
\end{array}\right]
$$

Using Eq. (2.35) on page 42 of the MLS text:

$$
e^{\phi \hat{\xi}}=g e^{\phi \hat{\xi}^{\prime}} g^{-1}=\left[\begin{array}{cc}
e^{\phi \hat{\omega}} & \left(I-e^{\phi \hat{\omega}}\right) \hat{\omega} \vec{v} \phi \\
0 & 1
\end{array}\right]
$$

which is clearly an element of $S E(2)$.
$\operatorname{Part}(\mathbf{b}):$ It is easy to see from part (a) that the twist $\xi=\left(v_{x}, v_{y}, 0\right)^{T}$ maps directly to the planar translation $\left(v_{x}, v_{y}\right)$.

The twist corresponding to pure rotation about a point $\vec{q}=\left(q_{x}, q_{y}\right)$ can be thought of as the Ad-transformation of a twist, $\xi^{\prime}=(0,0, \omega)$, which is pure rotation, by a transformation, g, which is pure translation by \vec{q} :

$$
\begin{equation*}
\xi=\operatorname{Ad}_{h} \xi^{\prime}=\left(h \hat{\xi}^{\prime} h^{-1}\right)^{\vee} \tag{1}
\end{equation*}
$$

where

$$
h=\left[\begin{array}{ll}
I & \vec{q} \\
0 & 1
\end{array}\right] \quad \text { and } \quad \hat{x i}^{\prime}=\left[\begin{array}{cc}
\hat{\omega} & 0 \\
\overrightarrow{0}^{T} & 0
\end{array}\right] .
$$

Expanding Eq. (1) gives:

$$
\xi=\left(h \hat{\xi}^{\prime} h^{-1}\right)^{\vee}=\left[\begin{array}{cc}
\hat{\omega} & -\hat{\omega} \vec{q} \\
\overrightarrow{0}^{T} & 0
\end{array}\right]^{\vee}=\left[\begin{array}{c}
q_{y} \\
-q_{x} \\
1
\end{array}\right]
$$

assuming $\omega=1$.
Part (e): Let \hat{V}^{b} denote the planar body velocity:

$$
\hat{V}^{b}=\left[\begin{array}{cc}
\hat{\omega}^{b} & \vec{v}^{b} \\
\overrightarrow{0}^{T} & 0
\end{array}\right]
$$

where $\hat{\omega}^{b} \in s o(2), \vec{v}^{b} \in \mathbb{R}^{2}$. Then the planar spatial velocity is:

$$
\begin{aligned}
\hat{V}^{s} & =A d_{g} \hat{V}^{b}=g \hat{V}^{b} g^{-1} \\
& =\left[\begin{array}{cc}
R & \vec{p} \\
\overrightarrow{0}^{T} & 1
\end{array}\right]\left[\begin{array}{cc}
\hat{\omega}^{b} & \vec{v}^{b} \\
\overrightarrow{0}^{T} & 0
\end{array}\right]\left[\begin{array}{cc}
R^{T} & -R^{T} \vec{p} \\
\overrightarrow{0}^{T} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
R \hat{\omega}^{b} R^{T} & -R \hat{\omega}^{b} R^{T} \vec{p}+R \vec{v}^{b} \\
\overrightarrow{0}^{T} & 0
\end{array}\right]
\end{aligned}
$$

Therefore:

$$
\hat{\omega}^{s}=R \hat{\omega}^{b} R^{T} \quad \vec{v}^{s}=R \vec{v}^{b}-R \hat{\omega}^{b} R^{T} \vec{p}=R \vec{v}^{b}-\hat{\omega}^{s} \vec{p}
$$

The spatial angular velocity can be simplified as follows:

$$
\hat{\omega}^{s}=R \hat{\omega}^{b} R^{T}=\left[\begin{array}{ll}
r_{11} & r_{12} \\
r_{21} & r_{22}
\end{array}\right]\left[\begin{array}{cc}
0 & -\omega \\
\omega & 0
\end{array}\right]\left[\begin{array}{ll}
r_{11} & r_{21} \\
r_{12} & r_{22}
\end{array}\right]=\omega\left[\begin{array}{cc}
0 & -\operatorname{det}(R) \\
\operatorname{det}(R) & 0
\end{array}\right]=\omega\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]=\hat{\omega}^{b}
$$

Using this result:

$$
\vec{v}^{s}=R \vec{v}^{b}-\hat{\omega}^{s} \vec{p}=R \vec{v}^{b}+\omega^{b}\left[\begin{array}{c}
p_{y} \\
-p_{x}
\end{array}\right]=\left[R\left[\begin{array}{c}
p_{y} \\
-p_{x}
\end{array}\right]\right]\left[\begin{array}{c}
\vec{v}^{b} \\
\omega^{b}
\end{array}\right]
$$

Therefore:

$$
V^{s}=\left[\begin{array}{c}
\vec{v}^{s} \\
\omega^{s}
\end{array}\right]=\left[\begin{array}{cc}
R & {\left[\begin{array}{c}
p_{y} \\
-p_{x}
\end{array}\right]} \\
\overrightarrow{0}^{T} & 1
\end{array}\right] V^{b}
$$

Solution Problem 6: (10 points) Problem $\# 14(a, b)$ in Chapter 2 (page 77) of the MLS text. It is not necessary to answer the question about surjectivity.

Part (a): Let $g \in S E(3)$ denote a homogeneous transformation matrix:

$$
g=\left[\begin{array}{cc}
R & \vec{p} \\
\overrightarrow{0}^{T} & 1
\end{array}\right] \quad A d_{g}=\left[\begin{array}{cc}
R & \hat{p} R \\
0 & R
\end{array}\right]
$$

Then:

$$
g^{-1}=\left[\begin{array}{cc}
R^{T} & -R^{T} \vec{p} \\
\overrightarrow{0}^{T} & 1
\end{array}\right] \quad A d_{g^{-1}}=\left[\begin{array}{cc}
R^{T} & -\widehat{\left(R^{T} \vec{p}\right)} R^{T} \\
\overrightarrow{0}^{T} & R^{T}
\end{array}\right]=\left[\begin{array}{cc}
R^{T} & -R^{T} \hat{p} \\
0 & R^{T}
\end{array}\right]
$$

where we have made use of the identity $\widehat{\left(R^{T} \vec{p}\right)}=R^{T} \hat{p} R$. Let's now compute $A d_{g} A d_{g^{-1}}$:

$$
A d_{g} A d_{g^{-1}}=\left[\begin{array}{cc}
R & \hat{p} R \\
0 & R
\end{array}\right]\left[\begin{array}{cc}
R^{T} & -R^{T} \hat{p} \\
0 & R^{T}
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right]
$$

Hence, $A d_{g^{-1}}$ must equal $\left(A d_{g}\right)^{-1}$ since $A d_{g} A d_{g^{-1}}=I$.
Part (b): If

$$
g_{1}=\left[\begin{array}{cc}
R_{1} & \vec{p}_{1} \\
\overrightarrow{0}^{T} & 1
\end{array}\right] \quad g_{2}=\left[\begin{array}{cc}
R_{2} & \vec{p}_{2} \\
\overrightarrow{0}^{T} & 1
\end{array}\right]
$$

Then

$$
g_{1} g_{2}=\left[\begin{array}{cc}
R_{1} R_{2} & \vec{p}_{1}+R_{1} \vec{p}_{2} \\
\overrightarrow{0}^{T} & 1
\end{array}\right]
$$

Hence:

$$
\begin{aligned}
A d_{g_{1} g_{2}} & =\left[\begin{array}{cc}
R_{1} R_{2} & \left(\vec{p}_{1}+R_{1} \vec{p}_{2}\right) R_{1} R_{2} \\
0 & R_{1} R_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
R_{1} R_{2} & \hat{p}_{1} R_{1} R_{2}+R_{1} \hat{p}_{2} R_{1}^{T} R_{1} R_{2} \\
0 & R_{1} R_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
R_{1} R_{2} & \hat{p}_{1} R_{1} R_{2}+R_{1} \hat{p}_{2} R_{2} \\
0 & R_{1} R_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
R_{1} & \hat{p}_{1} R_{1} \\
0 & R_{1}
\end{array}\right]\left[\begin{array}{cc}
R_{2} & \hat{p}_{2} R_{2} \\
0 & R_{2}
\end{array}\right]=A d_{g_{1}} A d_{g_{2}}
\end{aligned}
$$

