
Chapter 7

First-Order Immobilizing Grasps

Immobilizing grasps maintain grasp security by preventing any movement of the grasped ob-
ject with respect to the finger bodies. Immobilizing grasps are universally used in industrial
fixturing applications, and they provide the simplest approach for maintaining grasp secu-
rity during robotic grasping and manipulation tasks. Immobilization theory begins with the
observation made in the previous chapter, that object immobilization can only be achieved
with frictionless equilibrium grasps. Thus consider a rigid object, B, held in a frictionless
equilibrium grasp by stationary rigid finger bodies, O1, . . . ,Ok. While friction is allowed
at the contacts, grasp immobilization seeks to secure the object based on the rigid-body
constraints imposed on the object’s free motions by the finger bodies.

This chapter focuses on the first-order geometry of grasp immobilization. Section 7.1 de-
scribes the first-order free motions available to B with respect to the finger bodies. These
free motions are defined in B’s c-space and represent the object’s instantaneous motions that
break or maintain contact with the finger bodies. Section 7.2 considers the object’s first-order
free motions at a frictionless equilibrium grasp. In this case the first-order free motions span
a subspace of tangent vectors in B’s c-space, and the dimension of this subspace defines the
grasp 1st-order mobility index. When the 1st-order mobility index is zero, the object is fully
immobilized and hence secured by the grasping fingers. Section 7.3 describes a graphical
technique for determining the 1st-order mobility index of a given grasp arrangement. The
graphical technique will help us recognize important limitations of the 1st-order mobility
index.

The notion of first-order immobilization is based on the bodies’ first-order geometric prop-
erties. However, grasp immobilization can also be achieved by a combination of first and
second-order geometric effects. When the bodies’ curvature is taken into account, a grasp
which has a positive 1st-order mobility index (and is thus mobile according to the first-order
theory) can be perfectly immobilizing. This part of grasp mobility theory is considered in
Chapter 8. Techniques for synthesizing immobilizing grasps are considered in Chapter 9.
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2 CHAPTER 7. FIRST-ORDER IMMOBILIZING GRASPS

7.1 The First-Order Free Motions

Grasp mobility analysis is based on the free motions available to B at a given grasp arrange-
ment. When B is contacted by stationary finger bodies O1, . . . ,Ok, the finger c-obstacles,
CO1, . . . , COk, constraint the object’s possible motions. The object is free to move within
the free c-space, F , which is given by

F = IRm −∪k
i=1

int(COi) m=3 in 2D and m=6 in 3D,

where int(COi) denotes the interior of COi. When B is held at a configuration q, its free
motions are those c-space paths which emanate from q and locally lie in F . To analyze the
object’s free motions in the c-space framework, we will model the finger c-obstacles with the
following c-space distance function.

Definition 1. Let COi be the c-obstacle associated with a finger body Oi, and let S i be the
boundary of COi. The c-space distance function, di(q) : IRm → IR, is the signed distance
from S i,

di(q) =







−dst(q,Si) if q ∈ int(COi)
0 if q ∈ Si

dst(q,Si) if q ∈ IRm−COi,
(7.1)

where dst(q,Si)=min
p∈Si

{‖q−p‖} is the minimal Euclidean distance of q from S i.

The ith finger c-obstacle boundary, S i, is the zero level set of di. We shall assume that S i is
a smooth (m−1)-dimensional manifold. This assumption is met when B and Oi have smooth
surfaces. In more general cases, for instance when B is a polygon, S i is a piecewise smooth
manifold. Such cases can be worked out with the non-smooth analysis tools described in
Appendix I (see exercise 1). When S i is smooth, ∇di is well defined in a neighborhood of
S i. By construction di is negative inside COi, zero on S i, and positive outside COi. Hence
∇di(q) is collinear with the c-obstacle outward normal, ηi(q), at all points q ∈ S i. Moreover,
di is defined in terms of the Euclidean distance, and consequently ‖∇di(q)‖=1 (exercise 2).
It follows that ∇di(q) = η̂i(q) at all points q ∈ Si, where η̂i = ηi/‖ηi‖.

We now formulate the first-order properties of the free motion curves, which will lead to
a first-order mobility theory. Let α(t) be a smooth c-space curve such that α(0)=q ∈ S i and
α̇(0)= q̇. The first-order Taylor expansion of di along α is given by

di(α(t)) = di(q) + (∇di(q) · q̇)t + o(t2) t ∈ (−ǫ, ǫ),

where ǫ > 0 is a small parameter. When this expression is evaluated at q ∈ S i, the first-order
approximation of di becomes

di(α(t)) = (η̂i(q) · q̇)t + o(t2) t ∈ (−ǫ, ǫ), (7.2)

where we substituted di(q)=0 and ∇di(q) = η̂i(q). The first-order free motions are charac-
terized in terms of this first-order approximation as follows.
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Figure 7.1: (a) An ellipse B contacted by a disc finger Oi, and (b) the halfspace Mi(q)
approximating the exterior of COi at q. While α and β are roll-slide motions to first order,
α locally lies in F while β locally lies in COi.

Definition 2 (Single Finger 1’st Order Free Motions). Let the object B be contacted
by a finger body Oi at a configuration q ∈S i. The first order free motions of B at q is
the halfspace of TqIR

m,
Mi(q) = {q̇ ∈ TqIR

m : η̂i(q) · q̇ ≥ 0}.

The halfspace’s boundary, TqS i = {q̇ ∈ TqIR
m : η̂i(q) · q̇ = 0}, 1 is the set of first order

roll-slide motions, while its interior, {q̇ ∈ TqIR
m : η̂i(q) · q̇ > 0}, is the set of first order

escape motions.

Example: Figure 7.1(a) shows an ellipse B contacted by a disc finger Oi. Figure 7.1(b) shows
the c-space geometry of this grasp, with q∈S i being the ellipse’s contact configuration. The
halfspace Mi(q) forms the first-order approximation to the exterior of the finger c-obstacle,
COi, at q. In particular, the halfspace’s boundary coincides with the c-obstacle tangent
plane, TqS i. Tangent vectors pointing into the interior of Mi(q) represent first-order escape
motions, while tangent vectors in TqS i represent first order roll-slide motions. ·

The first-order free motions admit the following geometric interpretation. When q̇ ∈ Mi(q)
is a first-order escape motion, q̇ points into the interior of Mi(q). In this case any path α(t)
with α(0) = q and α̇(0) = q̇ locally lies in the free c-space for all t ∈ [0, ǫ]. Motion of B
along this path would cause it to separate from Oi, no matter what the value of the higher
derivatives of α. On the other hand, when q̇ ∈ Mi(q) is a first order roll-slide motion, q̇ is
tangent to the finger c-obstacle boundary. In this case it is not possible to determine based
on first-order considerations wether α locally lies in F or penetrates the finger c-obstacle
COi. This indeterminacy is illustrated in the following example.

Example: Consider the curves α and β depicted in Figure 7.1(b). Both curves start at
q ∈ S i, and have the same initial tangent vector, α̇(0)= β̇(0) ∈ TqS i. Both curves are thus

1TqSi
∼= IRm−1 is the tangent space of Si at q.
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equivalent to first order, and represent the same first order roll-slide motion. Yet α locally
lies in the free c-space, while β locally penetrates the finger c-obstacle. As we shall see in
Section 7.2, all the free motions available to B at a frictionless equilibrium grasp are roll-slide
to first order, much like the two curves depicted in the figure.·

The definition of the first-order free motions is next extended to multi-finger grasps. When
B is contacted by k finger bodies, its first-order free motions must respect the k halfspace
constraints imposed by these fingers, as stated in the following definition.

Definition 3 (Multi-Finger 1’st Order Free Motions). Let the object B be contacted by
k finger bodies O1, . . . ,Ok at a configuration q∈∩k

i=1
S i. The set of first-order free motions

of B at q, denoted M1...k(q), is given by

M1...k(q) = ∩k
i=1

Mi(q) = {q̇ ∈ TqIR
m : ηi(q) · q̇ ≥ 0 for i = 1 . . . k} .

The set M1...k(q) forms a convex cone based at B’s tangent space origin. This property
follows from the observation that each halfspace Mi(q) is a convex cone based at B’s tangent
space origin, and the general fact that the intersection of convex cones based at the origin
is a convex cone based at this point.

The set M1...k(q) is defined in terms of the Euclidean inner product, which is usually not
preserved by coordinate transformations. Hence we must verify that M1...k(q) is coordinate
invariant. Any reasonable coordinate transformation is expected to form a diffeomorphism—
a differentiable one-to-one and surjective map, whose Jacobian is non-singular at all points
of the domain. The proof of the following proposition appears in the appendix.

Proposition 7.1.1 (Coordinate Invariance). Let q and q̄ be two parametrizations of B’s
c-space, related by a coordinate transformation q=h(q̄). If h is a diffeomorphism, the set of
first-order free motions is coordinate invariant

q̇ ∈ M1...k(q) iff ˙̄q ∈ M 1...k(q̄),

where M1...k and M1...k are the first-order free motion cones in the q and q̄ spaces.

In grasp mechanics, different choices of the world and object frames, FW and FB, give differ-
ent parametrizations of B’s c-space. As verified in exercise 4, the coordinate transformation
induced by different frame choices are related by a standard diffeomorphism. The object’s
first-order free motions can thus be analyzed under any choice of world and object frames.

Physical interpretation of the first-order free motions coordinate invariance: The
coordinate invariance of M1...k(q) can be physically justified as follows. The c-obstacle out-
ward normal, η̂i(q), is collinear with the wrench generated by a normal finger force acting
on B at the ith contact. The inner product η̂i(q) · q̇ represents the work done by the wrench
η̂i(q)∈T ∗

q IRm on tangent vectors q̇∈TqIR
m. From this perspective, η̂i(q)·q̇ = 0 and η̂i(q)·q̇ ≥ 0

represent conditions on the sign of the work done by η̂i(q) on tangent vectors. This physical
notion does not depend on the specific choice of FW and FB.
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7.2 The 1
st-Order Mobility Index

A grasp mobility index is a coordinate invariant integer that measures the object’s mobility,
or effective number of degrees of freedom, at a frictionless equilibrium grasp. A grasp 1st-
order mobility index is based on the object’s first-order free motions at the equilibrium
grasp. The index is well defined when the fingers form an essential equilibrium grasp, which
is a generic property of the equilibrium grasps. Let us therefore begin with the notion of
essential grasps (which already appeared in Chapter 5).

Definition 4 (Essential Finger). Let the object B be held in a k-finger equilibrium grasp.
A finger Oi is essential if its wrench is necessary for maintaining the equilibrium grasp.

Essential fingers can be identified as follows. A k-finger arrangement forms a feasible equi-
librium grasp iff the fingers’ net wrench cone contains a full subspace passing through B’s
wrench space origin (Proposition ??). A particular finger is thus essential when the net
wrench cone spanned by the remaining k−1 fingers is a pointed cone2 in the object’s wrench
space. The notion of essential fingers is next extended to k-finger grasps.

Definition 5 (Essential Equilibrium Grasp). The object B is held in an essential equi-
librium grasp by k frictionless fingers under one of the following conditions:

(i) There are k ≤ m + 1 fingers, and all k fingers are essential for the equilibrium grasp;

(ii) There are k>m+1 fingers, and m+1 of the k fingers are essential for the equilibrium grasp;

where m = 3 in the 2D case and m = 6 in the 3D case.

The essential equilibrium grasps are generic in the following sense. Recall that contact c-
space parametrizes the position of the k contacts, while the k-finger frictionless equilibrium
grasps form a subset, E , in this space. When a k-finger equilibrium grasp is essential,
any local perturbations of the contacts within the equilibrium set E would give an essential
equilibrium grasp (exercise 8). On the other hand, non-essential equilibrium grasps represent
special finger arrangements that can be locally perturbed into essential grasps. This property
is illustrated in the following example.
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Figure 7.2: (a) A non-essential equilibrium grasp can be perturbed into (b) an essential
equilibrium grasp.

2I.e., a cone based at the origin which does not contain a full subspace passing through the origin.
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Example: Consider the four-finger grasp of a rectangular object shown in Figure 7.2(a).
It is a non-essential equilibrium grasp, since the equilibrium can be maintained with one of
the antipodal pairs (O1,O3) or (O2,O4). However, this grasp can be locally perturbed into
an essential equilibrium grasp. As shown in Figure 7.2(b), the grasp resulting from coun-
terclockwise perturbation of (O1,O3) accompanied by clockwise perturbation of (O2,O4) is
an essential equilibrium grasp. Moreover, the grasp depicted in Figure 7.2(b) remains an
essential equilibrium grasp under all sufficiently small perturbations of its contacts.·

When B is held in an essential equilibrium grasp, its first-order free motions span a subspace
tangent to the finger c-obstacles. This fundamental property of the first-order free motions
is stated in the following proposition (see appendix for a proof).

Proposition 7.2.1 (Subspace Property). Let B be held in an essential k-finger equi-
librium grasp at a configuration q0. The object’s first-order free motions, M1...k(q0), span
a subspace tangent to the finger c-obstacles, whose dimension is given by

dim
(

M1...k(q0)
)

= max{m−k+1, 0},

where m=3 in 2D and m=6 in 3D.

Since M1...k(q0) is tangent to the finger c-obstacles, the only first-order free motions available
to B at a frictionless equilibrium grasp are roll-slide motions with respect to each of the finger
bodies. The dimension of the subspace M1...k(q0) defines the object’s 1st-order mobility index.

Definition 6 (1st-Order Mobility Index). Let B be held in an essential k-finger equilib-
rium grasp at a configuration q0. The 1st-order mobility index of B, denoted m1

q0
, is the

dimension of the subspace spanned by the object’s first-order free motions,

m1

q0
= dim

(

M1...k(q0)
)

= max {m−k+1, 0} , (7.3)

where m=3 in 2D and m=6 in 3D.

The 1st-order mobility index is coordinate invariant, since the set M1...k(q0) is coordinate
invariant according to Proposition 7.1.1. The index can attain values in the range 0 ≤
m1

q0
≤ m, as illustrated in the following examples.

Example: Figure 7.3(a) shows an ellipse held in a frictionless equilibrium grasp by two
disc fingers. Figure 7.3(b) shows the c-space geometry of this grasp, with q0 ∈ S1 ∩ S2

being the equilibrium grasp configuration. Substituting m = 3 and k = 2 into (7.3) gives:
m1

q0
= max{2, 0} = 2. The subspace M1,2(q0) is thus two-dimensional, and it forms the

tangent plane common to S1 and S2 at q0. Every tangent vector q̇∈M1,2(q0) represents an
instantaneous rotation of B about the midpoint of the segment connecting the two contacts,
combined with an instantaneous translation of B along the direction perpendicular to this
segment. We shall see in the next section that the tangent vectors of M1,2(q0) can be
graphically depicted as a one-parameter family of instantaneous rotations. ·
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Figure 7.3: (a) An ellipse held in a 2-finger equilibrium grasp. (b) The two-dimensional
subspace M1,2(q0) at the equilibrium grasp.
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Figure 7.4: (a) A triangular object held in a 3-finger equilibrium grasp. (b) The one-
dimensional subspace M1,2,3(q0) at the equilibrium grasp.

Example: Figure 7.4(a) shows a triangular object held in a frictionless equilibrium grasp by
three disc fingers. Figure 7.4(b) shows the c-space geometry of this grasp, with q0 ∈∩3

i=1
S i

being the equilibrium grasp configuration. Substituting m = 3 and k = 3 into (7.3) gives:
m1

q0
= max{1, 0} = 1. The subspace M1,2,3(q0) is the one-dimensional intersection of the

tangent planes to S1, S2, and S3 at q0. Based on a graphical technique discussed in the
next section, every tangent vector q̇ ∈ M1,2,3(q0) represents an instantaneous rotation of B
about the intersection point of the finger contact normals. When the world and object frame
origins are located at this point, M1,2,3(q0) forms the vertical line parallel to the c-space θ
axis depicted Figure 7.4(b). ·

Since m attains one of two fixed values, the 1st-order mobility index depends solely on the
number of fingers k. As the number of fingers increases, the value of m1

q0
(and hence the

amount of first-order free motions available to B) decreases. When m1

q0
= 0, the object has

no first-order free motions and should therefore be fully immobilized by the finger bodies.
This important means of achieving object immobilization is stated in the following theorem.

Theorem 1 (1’st-Order Immobilization). Let B be held in an essential k-finger equilib-
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rium grasp at a configuration q0. If the 1st-order mobility index satisfies

m1

q0
= 0,

the object is fully immobilized by the grasping finger bodies.

Proof: We have to show that the object’s equilibrium grasp configuration, q0, is com-
pletely surrounded by the finger c-obstacles. We will prove this fact using the minimum
distance function:

dmin(q) = min {d1(q), . . . , dk(q)} q ∈ IRm,

where di(q) is the signed distance of q from COi as specified in (7.1) (i=1 . . . k). While dmin

is non-differentiable, it is Lipschitz continuous and therefore can be analyzed with the tools
described in Appendix A. In particular, dmin possesses a generalized gradient at q0, denoted
∂dmin(q0), which is the convex combination of the gradients ∇di(q0) for i = 1 . . . k. Each
∇di(q0) is collinear with the outward unit normal to COi, ∇di(q0) = η̂i(q0) for i=1 . . . k. The
generalized gradient can thus be expressed as the convex combination:

∂dmin(q0) =
k

∑

i=1

λiη̂i(q0) 0 ≤ λi ≤ 1 for i = 1 . . . k and
∑k

i=1
λi =1. (7.4)

According to Theorem A.??, dmin has a strict local maximum at q0 when ∂dmin(q0) contains
an m-dimensional ball centered at the origin of T ∗

q0
IRm. By definition, M1...k(q0) = {0} when

m1

q0
= 0. Hence for any q̇ ∈ Tq0

IRm there exists η̂i(q0) such that η̂i(q0) · q̇ < 0. The latter
inequality can be interpreted as the condition that η̂i(q0) lies in the interior of the halfspace
H = {w ∈ T ∗

q0
IRm : w · q̇ < 0}, which is bounded by an (m−1)-dimensional plane passing

through the origin of T ∗

q0
IRm ∼= IRm. Since η̂i(q0) ∈ ∂dmin(q0) and q̇ freely varies in Tq0

IRm,
∂dmin(q0) intersects the interior of every halfspace H whose boundary passes through the
origin. Since ∂dmin(q0) is a convex set in T ∗

q0
IRm, the latter condition can only occur when

∂dmin(q0) contains the origin in its interior (exercise 9). The function dmin thus has a strict
local maximum at q0.

Next observe that dmin(q0) = 0 (since q0 ∈ ∩k
i=1

S i). Therefore dmin is strictly negative in
a small m-dimensional neighborhood centered at q0. Since dmin(q)=min{d1(q), . . . , dk(q)},
at each point q in this neighborhood some di(q) < 0, which implies that q lies in the interior
of COi for some 1 ≤ i ≤ k. The point q0 is thus completely surrounded by the finger
c-obstacles, which proves that B is fully immobilized by the finger bodies. �

The theorem provides the following object immobilization technique. Construct a frictionless
equilibrium grasp involving at least four fingers in 2D and seven fingers in 3D. If the fingers
are all essential for the equilibrium grasp, the object is fully immobilized by the finger bod-
ies. Moreover, essential equilibrium grasps are invariant under small contact perturbations
(exercise 7). The first-order immobilizing grasps are thus robust with respect to small finger
placement errors. This key property of first-order immobilizing grasps is summarized in the
following corollary.
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Corollary 7.2.2 (Robust Immobilization). Let the object B be held in an essential equi-
librium grasp by k ≥ 4 fingers in 2D and k ≥ 7 fingers in 3D. The object is fully immobi-
lized, and the immobilization is robust with respect to small contact placement errors.

A robust immobilization of a rectangular object is depicted in Figure 7.2(b). One may argue
that under the frictionless point contact model, perfectly secure and robust grasps can always
be achieved with no more than four fingers in 2D, and no more than seven fingers in 3D.
These upper bounds are universally applied in critical applications such as high-accuracy
fixturing systems, as discussed in the following example.

Missing Example: Discuss the industrial seven-fixel fixturing method.

However, Theorem 1 and its corollary do not preclude the possibility that the object be
fully immobilized by a smaller number of fingers due to second-order geometric effects. This
possibility is captured by the 2nd order mobility index introduced in the next chapter.

7.3 Graphical Interpretation of the 1
st-Order Mobility

Index

Let us describe a graphical technique for depicting the object’s first-order free motions in
planar equilibrium grasps. According to Chasles’ Theorem (Theorem 2.3), every instanta-
neous motion of B can be described as an instantaneous twist. In the case of planar grasps,
the object’s instantaneous twists are rotations about an axis perpendicular to the plane
(exercise 10). It follows that every tangent vector q̇ ∈ Tq0

IR3 can be represented as an in-
stantaneous rotation of B about a point p ∈ IR2, called the instantaneous rotation center.
The instantaneous rotation center representing q̇ is given by (see exercise 11)

p = − 1

ωJv q̇=(v, ω) ∈ Tq0
IR3 and J =

»

0 1

−1 0

–

,

where v and ω are B’s linear and angular velocities. Using the identity J2 =−I, the linear
velocity v can be written as v = ωJp for p∈ IR2. It follows that the object’s tangent space
can be parametrized in terms of instantaneous rotation centers by

Tq0
IR3 =

{

q̇ = ω

(

Jp
1

)

: p∈IR2 and ω∈IR

}

. (7.5)

The parametrization (7.5) contains three free parameters, p ∈ IR2 and ω ∈ IR, which is
consistent with the fact that Tq0

IR3 is a three-dimensional space. In particular, instantaneous
rotations about points at infinity represent instantaneous translations of B.

Let us next parametrize the halfspace of first-order free motions associated with a single
finger body, Mi(q0) = {q̇ ∈ Tq0

IR3 : ηi(q0) · q̇ ≥ 0}, in terms of instantaneous rotation
centers. According to Lemma ??, ηi(q0) = (ni, xi × ni) where xi is the ith contact point and
ni is B’s inward unit normal at xi. Using the parametrization (7.5), the halfspace Mi(q0) is
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Figure 7.5: The halfspace Mi(q0) consists of CCW rotations in the left halfplane, CW rota-
tions in the right halfplane, and bi-directional rotations along the contact normal line.

represented by the inequality

ηi(q0) · q̇ = ω

(

ni

xi × ni

)

·

(

Jp
1

)

= ω (ni × (p−xi)) ≥ 0 p∈IR2 and ω∈IR, (7.6)

where u × v ∈ IR is computed with the formula u × v = uT Jv. The graphical depiction of
the first-order free motions is based on (7.6) as summarized in the following procedure.

Graphical technique for depicting the first-order free motions: First consider the
halfspace Mi(q0). Denote by li the directed line passing through xi along ni. As shown
in Figure 7.5, the object’s first-order escape motions are instantaneous counterclockwise
rotations on the left side of li, and instantaneous clockwise rotations on the right side of li.
The object’s first order roll-slide motions are instantaneous bi-directional rotations about
points along li. When B is contacted by finger bodies O1, . . . ,Ok, the contact normal lines
partition the plane into polygons. When the k contacts agree on the direction of rotation in
a particular polygon, the object can escape the fingers along instantaneous motions indicated
by this polygon. When B is held in a frictionless equilibrium grasp, M1,...,k(q0) forms a
subspace according to Proposition 7.2.1. In this case every point in the intersection of the
contact normal lines l1, . . . , lk is roll-slide to first order with respect to the k fingers. Since
this instantaneous rotation can be freely multiplied by ω∈IR, each of these points represents
a one-dimensional subspace of M1,...,k(q0).

The following examples apply the graphical technique to several grasp arrangements.

Example: Figure 7.6 shows several two-finger equilibrium grasps of planar objects. In each
of these grasps, the contact normal lines lie on common line, say l. According to the graphical
technique, the object’s first order roll-slide motions with respect to both fingers consist
of instantaneous rotations about all points p ∈ l. Moreover, each of these instantaneous
rotations is first order roll-slide for any angular velocity ω ∈ IR. As p scans the entire line l
and ω varies in IR, we obtain a two-parameter family of instantaneous rotations. This family
represents the two-dimensional subspace of first order roll-slide motions, which is consistent
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Figure 7.6: All 2-finger equilibrium grasps have the same 1st-order mobility index of m1

q0
= 2.

with our earlier observation that m1

q0
= 2 for these grasps. The depicted objects are all

first-order mobile, since m1

q0
> 0 in each of these grasps. However, intuition suggests that

the grasp in Figure 7.6(a) is the most mobile, while the grasp in Figure 7.6(d) is the least
mobile, and is in fact a fully immobilizing grasp. This intuitive observation is made precise
using the 2nd order mobility index introduced in the next chapter.·
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Figure 7.7: All 3-finger equilibrium grasps have the same 1st-order mobility index of m1

q0
= 1.

Example: Figure 7.7 shows a triangular object held by three disc fingers in two alternative
grasp arrangements. These are frictionless equilibrium grasps, since the finger force lines
intersect at a common point and positively span the origin of IR2. The contact normal lines
intersect at a single point, say p. Based on the graphical technique, every first order roll-
slide motion available to B is an instantaneous rotation about p with some ω ∈ IR. This
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one-parameter family represents a one-dimensional subspace of first order roll-slide motions,
which is consistent with the fact that m1

q0
= 1 for these grasps. Here, too, the triangular

object is first-order mobile in both grasps. However, intuition suggests that the triangular
object is fully immobilized in Figure 7.7(b). This observation is justified when the finger
and object curvatures are taken into account, as discused in the next chapter.·

The examples highlight serious limitations of the first-order immobilization approach. First,
the number of fingers required to achieve full object immobilization based on first-order
geometric effects seems to be excessively high for many grasping applications. While this type
of immobilization is justified in high load fixturing applications, it may be too conservative
for multi-fingered robot hands that typically operate under medium-to-low load conditions.
Second, the 1st-order mobility index is rather crude in its ability to assess object immobility.
In particular, it cannot differentiate between equilibrium grasps involving the same number
of fingers. The second-order mobility theory described in the next chapter will help us
differentiate between different equilibrium grasp choices which are first-order equivalent.

7.4 Bibliographical Notes

In classical screw theory, first order roll-slide motions are represented by reciprocal screws,
while the first-order escape motions are represented by repelling screws [4]. This terminology
is associated with the parametrization of B’s c-space in terms of exponential coordinates [3].
The notion of first-order free motions is valid under any parametrization of B’s c-space,
including exponential coordinates. The need to verify the coordinate invariance of struc-
ture containing inner products of tangent vectors (representing instantaneous motions) and
cotangent vectors (representing wrenches or generalized forces) is discussed with examples
in Ref. [2]. Finally, the theory of first-order immobilization extends to kinematic chains
of interconnected rigid bodies. An extension of this theory to hinged polygonal chains is
discussed in Ref. [1].

Appendix A: Proof Details

This appendix contains proofs of two key properties of the first-order free motions. The
following proposition establishes the coordinate invariance of the first-order free motions.

Proposition 7.1.1. Let q and q̄ be two parametrizations of B’s c-space, related by a coor-
dinate transformation q =h(q̄). If h is a diffeomorphism, the set of first-order free motions
is coordinate invariant

q̇ ∈ M1...k(q) iff ˙̄q ∈ M 1...k(q̄),

where M1...k and M1...k are the first-order free motion cones in the q and q̄ spaces.

Proof: First consider the coordinate invariance of the halfspaces Mi(q) for i = 1 . . . k.
Since q̄ and q parametrize the same c-space, h must map COi to COi and S̄ i to S i for
i = 1 . . . k. Let d̃i(q̄) be the composition of di with h, d̃i(q̄) = di(h(q̄)) (note that d̃i is not
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the Euclidean distance in the q̄ coordinates). Since d̃i is negative in the interior of COi, zero
on S̄ i, and positive outside COi, ∇d̃i(q̄) is the outward normal to COi at points q̄ ∈ S̄ i. Let
ᾱ(t) be a path in q̄-space such that ᾱ(0) = q̄ and ˙̄α(0) = ˙̄q. This path is mapped by h to
a path α in q-space, α(t) = h(ᾱ(t)) such that α(0)= q and α̇(0)=Dh(q̄) ˙̄q = q̇. Application
of the chain rule to the identity

(di ◦ α)(t) = (di ◦ (h ◦ ᾱ))(t) = ((di ◦ h) ◦ ᾱ)(t) = (d̃i ◦ ᾱ)(t),

where ’◦’ denotes function composition, gives

∇di(q) · q̇ = ∇d̃i(q̄) · ˙̄q for all q=h(q̄) and q̇=Dh(q̄) ˙̄q.

Therefore q̇ ∈ Mi(q) iff ˙̄q ∈ M i(q̄). Next consider the coordinate invariance of the cone
M1...k(q) = ∩k

i=1
Mi(q). Each Mi(q) is a halfspace of TqIR

m, and Mi(q) = Dh(q̄)(M i(q̄)) for
i = 1 . . . k. This implies that

M1...k(q) = ∩k
i=1

Mi(q) = ∩k
i=1

Dh(q̄)
(

M i

)

= Dh(q̄)(M 1...k(q̄)),

since, in general, g(U1

⋂

U2) = g(U1)
⋂

g(U2) when g is an invertible function. In our case
g = Dh(q̄), and Dh(q̄) is invertible since h is a diffeomorphism. �

The next proposition establishes that when B is held in a frictionless equilibrium grasp, its
first-order free motions set forms a subspace tangent to the finger c-obstacles.

Proposition 7.2.1. Let B be held in an essential k-finger equilibrium grasp at a configu-
ration q0. The object’s first-order free motions, M1...k(q0), span a subspace tangent to the
finger c-obstacles, whose dimension is given by

dim
(

M1...k(q0)
)

= max{m−k+1, 0},

where m=3 in 2D and m=6 in 3D.

Proof: The net wrench cone generated by k frictionless finger wrenches is given by

W =
{

w ∈ T ∗

q0
IRm : w = λ1η1(q0) + · · · + λkηk(q0) for λ1 . . . λk ≥ 0

}

,

where ηi(q0) is the ith finger c-obstacle outward normal for i = 1 . . . k. Let us first show
that when when B is held in a frictionless equilibrium grasp, W forms a subspace in T ∗

q0
IRm.

By definition of essential grasps, either k ≤ m + 1 and then all fingers are essential, or
k > m + 1 and then m + 1 of the k fingers are essential. Let us therefore focus on k-finger
grasp involving k ≤ m + 1 essential fingers. The k finger wrenches are positively linearly
dependent at the equilibrium grasp,

λ1η1(q0) + · · ·+ λkηk(q0) = ~0 λ1, . . . , λk ≥ 0, k ≤ m + 1. (7.7)

Since all k fingers are essential, λ1, . . . , λk must be strictly positive in (7.7), otherwise the
equilibrium can be maintained with a sub-collection of k−1 fingers. Since λ1, . . . , λk > 0, it
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follows from (7.7) that every negated finger wrench, −ηi(q0), can be expressed as a positive
linear combination of the remaining k−1 finger wrenches. Therefore, any linear combination
of η1(q0), . . . , ηk(q0) can be written with positive semi-definite coefficients, which is an element
of W . The net wrench cone is thus equal to the subspace spanned by η1(q0), . . . , ηk(q0).

To show that M1...k(q0) spans a subspace, express W in terms of the negated finger wrenches,
W = {w = λ1(−η1(q0)) + · · · + λk(−ηk(q0)) : λ1, . . . , λk ≥ 0} (this expression is justified
since W is a subspace). The cone dual to W is given by

W∗ = {q̇∈TqIR
m : w · q̇ ≤ 0 for all w ∈ W}.

Since W is a positive linear combination of {−ηi(q0), . . . ,−ηk(q0)}, its dual cone can be
written as

W∗ = {q̇∈TqIR
m : ηi(q0) · q̇ ≥ 0 for i = 1 . . . k} = M1...k(q0).

In general, the cone dual to a subspace is the subspace’s orthogonal complement. Hence
M1...k(q0) forms a subspace in Tq0

IRm, which is the orthogonal complement to W .3 The
subspace M1...k(q0) is tangent to the finger c-obstacles at q0, since every q̇∈M1...k(q0) satisfies
ηi(q0) · q̇ = 0 for i = 1 . . . k.

Finally consider the dimension of M1...k(q0). Since M1...k(q0) is the orthogonal complement
of W , dim

(

M1...k(q0)
)

= m−dim(W). To determine the dimension of W , consider the m× k
matrix W = [η1(q0) · · · ηk(q0)]. The rank of W is at most k−1, since λ1η1(q0)+· · ·+λkηk(q0) =
~0 at the equilibrium grasp. Suppose the rank of W is k−2, so that W has a two-dimensional
kernel. In this case ker(W ) contains the strictly positive vector (λ1, . . . , λk), as well as
a positive semi-definite vector (λ′

1
, . . . , λ′

k) such that λ′

i = 0 for some 1 ≤ i ≤ k. But this
contradicts our assumption that all k fingers are essential for the equilibrium grasp. Therefore
ker(W ) is one-dimensional, the rank of W is k−1, and dim

(

M1...k(q0)
)

= m − (k − 1) =
m − k + 1. �

Exercises

Exercise 7.1: Describe with Using the non-smooth analysis tools described in Appendix I,
describe how ∇di is generalized to a generalized gradient, ∂di, at the non-smooth points of
S i.·

Exercise 7.2: Prove that di, which is defined in terms of the Euclidean distance, satisfies
‖∇di(q)‖=1.·

Exercise 7.3: Sketch the set M1...k(q) for planar grasps involving two and three fingers, in
the case where the fingers do not form a frictionless equilibrium grasp.·

Exercise 7.4: Let (FW ,FB) and (FW ,FB) be two choices of world and object frames. Let
q and q̄ be the parametrization of B’s c-space in terms of these two frame choices. Derive
the formula for the coordinate transformation q = h(q̄).·

3Orthogonality has to be interpreted here as the zero action of covectors w∈W on tangent vectors q̇ ∈
TqIR

m.
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Exercise 7.5: Prove that the coordinate transformation of the previous exercise is a
diffeomorphism.·

Exercise 7.6: Give an example where the inner product between two tangent vectors,
q̇
1
, q̇

2
∈ TqIR

m, is not preserved by the coordinate transformation associated with different
choices of the world and object frames.·

Exercise 7.7: All two-finger equilibrium grasps are essential grasps—true or false? ·

Exercise 7.8: Consider an essential equilibrium grasp involving k ≥ 3 fingers. Prove that
all local perturbations of the contacts within the equilibrium set E remain essential grasps.·

Exercise 7.9: Let a convex set in IRm intersect the interior of every halfspace whose bound-
ary passes through the origin of IRm. Prove that this set contains a small m-dimensional
ball centered at the origin (this fact is a key component in the proof of Theorem 1). ·

Exercise 7.10: Verify that the instantaneous twists of a planar body B are pure rotations
about points p ∈ IR2.·

Exercise 7.11: Let a planar object B be located at a configuration q. Prove that every
instantaneous motion of B, q̇ = (v, ω) ∈ TqIR

m, can be represented as an instantaneous
rotation about a point p − 1

ωJv∈IR2, which is the instantaneous rotation center of q̇.·
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