
1 The Differential Geometry of Surfaces

Three-dimensional objects are bounded by surfaces. This section reviews some of the basic
definitions and concepts relating to the geometry of smooth surfaces.

1.1 Manifolds

Before considering the surfaces that bound 3-dimensional solid objects, we first pause to
consider the concept of a manifold.

Definition 1 Let X and Y be subsets of two Euclidean spaces and let f : X → Y be bijective
(i.e., surjective and one-to-one). If f and f−1 are continuous, then f is a homeomorphism.
If f and f−1 are smooth, then f is a diffeomorphism.

Definition 2 A k-dimensional manifold, M , is locally diffeomorphic to Rk. That is, for
each point x ∈ M , there exists a neighborhood V ⊂ M which is diffeomorphic to an open
set1 U ⊂ Rk. An atlas, (Vα, fα) may be required to completely parametrize the manifold:
M = ∪α Vα. In such cases, given Vα and Vβ, with Vα ∩ Vβ 6= Ø, the map

fβ ◦ f−1
α

from the subset fα(Vα ∩Vβ) of Rk to the subset fβ(Vα ∩Vβ) of Rk is infinitely differentiable.

1.2 Surfaces

The concept of a manifold provides us with a general notion of a surface. For dealing with
surfaces that bound 3-dimensional bodies, we will want to add some additional structure.

Definition 3 A coordinatizable surface, S, is the image of a map f : U → R3 where

i) U is an open connected2 subset of R2.

ii) The vectors ∂f

∂u
(u, v) and ∂f

∂v
(u, v) are linearly independent for all (u, v) ∈ U .

iii) f is a homeomorphism.

We say that (f, U) is a coordinate system for S with coordinates u, v. The function f−1 is
termed a local parametrization of points on the surface S. The coordinate system is said to
be orthogonal if ∂f

∂u
· ∂f

∂v
= 0.

1The definition of an open set depends upon the setting. Here we will use the simplest definition: A point

set P in R
n is an open set if every point in P is an interior point

2A connected space cannot be represented as the union of two or more disjoint non-empty sets
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Figure 1: Coordinatizable Surface

Example 1 (Sphere). One coordinate systems for the unit radius sphere consists of:

U = {(u, v) | −
π

2
< u <

π

2
;−π < v < π} f(u, v) =





cos(u) cos(v)
− cos(u) sin(v)

sin(v)



 .

This coordinate system corresponds to latitude and longitude on the earth’s sphere. It can
be verified that ∂f

∂u
· ∂f

∂v
= 0 for all (u, v) in this coordinate system, thereby implying that the

chosen coordinate system is an orthogonal one.

The following definition applies to both coordinatizable surfaces, and more generally, to man-
ifolds. Let M be a manifold and let (f,U) be a coordinate system for M in the neighborhood
of a point x ∈ M . Without loss of generality, assume that f(0) = x.

Definition 4 (Tangent Space). The tangent space to M at x ∈ M , denoted TxM , is the
image of df(0):

TxM = df(0)(R
k) = {df(0)v | ∀ v ∈ Rk} (1)

The tangent space TxM is a vector space (vector spaces are reviewed in the appendix).

Example 2 (Unit Sphere continued). Let p = f(0, 0) = [1 0 0]T . This point is located
where the x-axis intersects the surface of the unit sphere. Then

df(0,0) =
[

∂f

∂u

∂f

∂v

]

(0,0)
=





0 0
0 −1
1 0





This plane is spanned by vectors parallel to the y and z-axes. Hence, TpS can be viewed as
the plane passing through p and parallel to the y-z plane, and is thus tangent to the sphere
at p.

Remarks:
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1. The tangent space, TpS, is the closest linear approximation to S at p. That is, df is
the linear term in the Taylor Series expansion of f at f(0, 0).

2. In general, if p1 6= p2, then Tp1
S 6= Tp2

S, even though these linear vector spaces have
the same dimension.

3. The dimension of a manifold, M , is equivalently defined as the dimension of its tangent
space: dim(M) = dim(TpS).

4. The definition of the tangent space is intrinsic–it does not depend upon the choice of
coordinate system.

A tangent vector at p ∈ S is a vector in TpS. Tangent vectors can also be viewed in the
following way. Let α(t) be a parametrized curve lying in S (i.e., α(t) ∈ S for all t in a
relevant interval) such that α(0) = p. Hence,

α(t) =





x(t)
y(t)
z(t)



 =





x((u(t), v(t))
y(u(t), v(t))
z(u(t), v(t))



 = f(u(t), v(t)).

A tangent vector at p ∈ S can also be thought of as the tangent to the curve α(t) at α(0):

dα

dt
(t) =

∂α

∂u

du

dt
+

∂α

∂v

dv

dt
= fuu

′

+ fvv
′

where fu = ∂f

∂u
and fv = ∂f

∂v
.

1.3 The First Fundamental Form and the Metric Tensor

It is desirable to be able to determine properties such as distance, angle, and area on a
surface, S, without referring back to the ambient space in which S is embedded.

Since TpS is an n-dimensional a vector space, it is possible to define an inner product on
TpS, denoted by < , >p, such that if v1, v2 ∈ TpS, then < v1, v2 >p is equal to the inner
product of v1 and v2 as vectors in Rn.

Definition 5 The quadratic form Ip(v) =< v,v >p defined on TpS is called the 1st Funda-
mental Form of S at p.

An expression for Ip(v) in terms of coordinates on a 2-dimensional S can be derived as
follows. Let α(t) be a curve lying in S and passing through p ∈ S at t = 0. Then:

Ip(α
′

(0)) = < α
′

(0), α
′

(0) >p=< fuu
′

+ fvv
′

, fuu
′

+ fvv
′

>p

= < fu, fu >p (u
′

)2 + 2 < fu, fv >p u
′

v
′

+ < fv, fv >p (v
′

)2

=

[

u
′

v
′

]T [

fu · fu fu · fv

fv · fu fv · fv

] [

u
′

v
′

]
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Example 3 (sphere continued).

fu =





− sin(u) cos(v)
sin(u) sin(v)

cos(u)



 fv =





− cos(u) sin(v)
− cos(u) cos(v)

0





Consequently, fu · fu = 1, fu · fv = 0, and fv · fv = cos2(u). Hence,

Ip = (u
′

)2 + (v
′

)2 cos2(u) =
[

u
′

v
′
]

[

1 0
0 cos2(u)

] [

u
′

v
′

]

Definition 6 The Metric Tensor at a point p in a 2-dimensional surface S is the 2 × 2
matrix that satisfies the relationship:

Ip = MpMp

If (f,U) is an orthogonal coordinate system for S at p, then

Mp =

[

||fu|| 0
0 ||fv||

]

f−1(p)

.

Example 4 (sphere continued). The metric tensor for the unit sphere, coordinatized as
above, is:

Mp =

[

1 0
0 | cos(u)|

]

.

1.4 The Gauss Map

Let a 2-dimensional surface, S, be parametrized in a neighborhood of p ∈ S by (f,U). Let’s
choose a surface normal vector at each p according to the rule:

N(p) =
fu × fv

|fu × fv|
(p)

where fu and fv are evaluated at the point (u, v) such that f(u, v) = p. If V ⊂ S is an open
neighborhood in S and if N : V → R3 is differentiable, then we say that N is a differentiable
field of unit normal vectors on V. Some surfaces (such as a Mobius strip) do not admit a
globally defined unit normal vector field. If a surface S does admit such a vector field, then
we say that S is orientable. The choice of the normal field is termed an orientation.

Definition 7 Let S ⊂ R3 be a 2-dimensional surface with orientation N . The map N : S →
R3 taking values in the unit sphere S2 is called the Gauss map of S.
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In general fu need not be orthogonal to fv. However, as shown in the following proposition,
it is always possible to find an orthgonal coordinate system in the neighborhood of a given
point p ∈ S.

Proposition 1.1 Given a 2-dimensional coordinatizable surface, S, a point p ∈ S, and any
two independent vectors, v1,v2 ∈ TpS which are both in TpS, there exists a coordinate
system (f, U) for S such that fu = v1 and fv = v2 at p ∈ S. In particular, if v1 and v2

are orthogonal, then (f, U) is an orthogonal coordinate system at p.

Proof: Let (g, V ) be any chosen coordinate system (not necessarily orthogonal), such
that gu and gv are linearly independent. Since gu and gv are linearly independent, they span
TpS. Thus, there exists constants a, b, c, d such that:

v1 = agu + bgv; v2 = cgu + dgv.

Define a new coordinate chart, U , such that:

U = {(u, v)|(au + cv, bu + dv) ∈ V }.

Define a new coordinate function, f , such that:

f : U → R3 (u, v) → g(au + cv, bu + dv)

By simple application of the chain rule, it can be seen that fu = v1 and fv = v2. �

Example 5 Consider an ellipse that is coordinatized in the following nonorthogonal way:

g(u, v) =





A cos(u) cos(v)
B sin(u) cos(v)

C sin(v)





Let v1 = gu and N = gu × gv. We can choose a vector v2 as follows:

v2 = N × gu = (gu × gv) × gu = gu × (gv × gu) = (gu · gu)gv − (gu · gv)gu.

Thus, in the proof of the above proposition, we choose the constants a = 1, b = 0, c =
−(gu · gv), and d = (gu · gu).

More generally, it is always possible to find an orthogonal coordinate system for a neighbor-
hood of a given point p ∈ S. Hence, it is always possible to assign a reference frame at
each surface point in this neighborhood.

Definition 8 Let S be a 2-dimensional coordinatizable surface and assume that (f,U) is an
orthogonal coordinate system for S in the neighborhood of p ∈ S. The normalized Gauss
frame at p ∈ S is the frame with origin at p and whose orthonormal basis vectors are:

x =
fu

|fu|
y =

fv

|fv|
z = N(p).

The Gauss frame map is the function g : U → R3 × SO(3) such that

(u, v) → (f(u, v), [x,y, z]).
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1.5 The Second Fundamental Form and the Curvature Tensor

We next consider the differential of the Gauss map at a point p ∈ S. The differential, dNp

is a linear map from TpS to TN(p)S
2, where S2 is the 2-dimensional sphere. In general, TpS

and TN(p)S
2 are not the same vector spaces, even though they have the same dimension

. However, they are both two dimensional vector spaces, and when interpreted as tangent
planes, they are both oriented in a parallel way. Hence we may reasonably identify these
two spaces, TpS ≃ TN(p)S

2, and consider dNp as a linear map from TpS to TpS (i.e., it maps
tangent vectors to tangent vectors).

To interpret, and ultimately compute, the differential of the Gauss map, consider a param-
terized curve α(t) lying in S such that α(0) = p ∈ S. The function N(α(t)) can be inter-
preted as a curve of normal vectors. The tangent vector N

′

(α(0)) = dNpα
′

(0) is a vector
in TN(p) ≃ TP S. It measures the rate of change of the normal vector at p = α(0) when N
is restricted to the curve α(t). Hence, dNp measures how the normal vector varies at p for
movement along the surface S in the direction of α

′

(0).

Example 6 Cylinder. A cylinder of radius R (whose central axis is colinear with the
z-axis) can be given the following coordinate system:

U = {(u, v)| − π < u < π; v ∈ R} f(u, v) =





R cos(u)
R sin(u)

v



 .

The normal to the cylinder surface is:

N =
1

|fu × fv|
fu × fv =





cos(u)
sin(u)

0





Let’s compute dN , and evaluate the curvature along two different curves.

dN =
[

∂N
∂u

∂N
∂v

]

=





− sin(u) 0
cos(u) 0

0 0





First consider the curve α(t) = [R cos u(t), R sin u(t), 0]T , which is “horizontal” curve (a cir-
cle which generates the cylinder). The tangent to α is given by α

′

(t) = [−R sin(u(t)), R cos(u(t)), 0]Tu
′

.
For this curve

dN

dt
=

∂N

∂u
u

′

+
∂N

∂v
v

′

=





− sin(u)
cos(u)

0



u
′

Thus, as would be expected, the normal vector varies as the tangent to this horizontal curve.
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Next, consider the curve α2(t) = [R cos β, R sin β, v]T , where β is some fixed angle, and
v ∈ R. I.e., this curve is a verticle line on the cylinder’s surface. α

′

2(t) = [0, 0, 1]T . In this
case,

dN

dt
=

∂N

∂u
u

′

+
∂N

∂v
v

′

= 0

That is, the normal to the cylinder surface does not change while moving in the verticle
direction.

Since dNp defines how the surface normal vector varies in the neighborhood of p, we can use
it to define the following important characterization of a surface.

Definition 9 The quadratic form IIp(v) defined by

II(v) = − < dNpv,v >p; v ∈ TpS

is called the 2nd fundamental form of S at p.

The 2nd fundamental form can be interpreted as follows. Let α(s) be an arc-length parametrized
curve lying in S, and let α(0) = p. Let N(s) denote the restriction of the Gauss map to
α(s). Note that the surface normal vector is always orthogonal to a surface tangent vector:
< N(s), α(s) >p= 0. Thus, taking the derivative of both sides of this relationship implies
that:

II(α
′

(0)) = − < N
′

(0), α
′

(0) >p= − < dNpα
′

(0), α
′

(0) >p

= < N(0), α
′′

(0) >p=< N(0), κ(0)n(0) >p

= κn(p)

where n(s) is the normal vector to the curve α(s) and we have used the relationship α
′′

(s) =
κ(s)n(s) for the curve α(s). We term the quantity κn(p) the normal curvature at p. We can
interpret the normal curvature as follows. At point p, let N(p) be the normal to the surface
at p, and let α(s) be a curve passing through p, whose normal vector is n(s). The normal
curvature is equal to κ cos(θ), where θ is the angle between N and n. The normal curvature
also has another interpretation. Let a normal section be the intersection of the surface S
with a plane containing N , α

′

(0), and p. In a neighborhood of p, the normal section formed
by this intersection is a regular plane curve. The curvature of this curve at p is equal to the
absolute value of κn. Note that all curves passing through x with the same tangent, α

′

(0),
have the same normal curvature.

Let’s now derive a coordinate expression for the second fundamental form. Let (f,U) be
a coordinate system for S, and let α(t) = f(u(t), v(t)) be a not necessarily arc-length
parametrized curve lying in S. Then

IIp(α
′

) = − < dNp(α
′

), α
′

>p= − < Nuu
′

+ Nvv
′

, Nuu
′

+ Nvv
′

>p

= −
[

u
′

v
′
]T

[

(fu · Nu) (fu · Nv)
(fv · Nu) (fv · Nv)

]

p

[

u
′

v
′

]

= −
[

u
′

v
′
]T

IIp

[

u
′

v
′

]
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where u
′

= du/dt, fu = ∂f/∂t, Nu = ∂N/∂u, etc.

Thus, II(v) indicates how the surface normal varies when moving on the surface in the
tangent direction v.

We now consider a geometrical quantity, the Curvature Tensor, that is closed related to the
second fundamental form. Let’s assume that a surface S can be locally parametrized in the
vicinity of a point p by an orthogonal coordinate system.

Definition 10 Let S be a coordinatizable surface with orthogonal coordinate system. The
Curvature Tensor, K, at point p ∈ S is the matrix

K = M−1
p IIpM

−1
p =







fu·Nu

|fu|2
fu·Nv

|fu||fv|

fv·Nu

|fu||fv|
fv·Nv

|fv|2







where Mp is the metric tensor of S at p.

The use of the metric tensor in the above definition makes the curvature tensor independent
of the choice of coordinate system.

The eigenvalues of K are called the principal curvatures, while the associated eigenvectors
are termed the principal axes of curvature.

1.6 Torsion

Curvature alone is insufficient to uniquely define the local geometry of a surface. This
insufficiency can be seen as follows. Assume that (f,U) is an orthogonal coordinate system
in the neighborhood of a point p ∈ S. The Gauss frame at p will be defined as the
coordinate frame whose orthonormal basis vectors are fu

|fu|
, fv

|fv|
, and N . The Gauss frame is

defined at each point on an orientable surface. Hence, the local properties of the surface can
be deduced from the variations of the Gauss frame in the vicinity of a point. The curvature
tensor determines the rotation of the Gauss from about the axes that lie in the surfaces’s
tangent plane. However, we need an additional concept, which we shall call torsion, that
describes how the Gauss frame “twists” about the surface normal as the frame is moved
around the surface.

Let (f,U) be a coordinate system for a surface S, which we will assume to be orthogonal.
By definition, the vector x = fu

|fu|
will be a unit vector tangent to S. Let y = fv

|fv|
. By

construction, this vector will be a unit vector that is tangent to S, orthogonal to x, and
satisfy x× y = N , where N is the normal to S. Since x is a unit vector, its derivative must
be orthogonal to x. Thus, it will have a component along y and a component along N . The
projection of this derivative on y will yield a measure of Gauss frame twist about N .
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Let α(t) be a not necessarily arc-length parametrized curve lying in S. Assume that α(0) =
p ∈ S and that α

′

(0) = x. Then:

yT dx(t)

dt
=

(

fv

|fv|

)T [

∂x

∂u

du

dt
+

∂x

∂v

dv

dt

]

=

(

fv

|fv|

)T [

∂

∂u

(

fu

|fu|

)

u
′

+
∂

∂v

(

fu

|fu|

)

v
′

]

=

(

fv

|fv|

)T [

fuu

|fu|
u

′

+
fuv

|fu|
v

′

]

=
[

fv·fuu

|fu||fv|
fv·fuv

|fu||fv|

]

[

u
′

v
′

]

We will define the torsion tensor at p ∈ S as the matrix

T p =
[

fv·fuu

|fu|2|fv|
fv·fuv

|fu||fv|2

]

[

u
′

v
′

]

.

Hence, the torsion tensor satisfies the relationship:

yTx
′

= T pMp

[

u
′

v
′

]

Recall that a vector space is defined as follows.

Definition 11 (Vector Space). A vector space, V , over a field, F, consists of a set of
vectors (whose elements are members of F), along with two binary operations that must
satisfy the axioms listed below. Elements of F are called scalars. The two binary operations
are interpreted as vector addition and scalar multiplication. In the following description of
the governing axioms, let u, v, and w be vectors in V , while a and b denote scalars in F.

• Closure: If u,v ∈ V , then u + u ∈ V .

• Associativity of vector addition: u + (v + w) = (u + v) + w

• Commutativity of vector addition: u + v = v + u

• Identity element of vector addition: There must exist an identity zero vector 0

such that u + 0 = u for all u ∈ V .

• Inverse elements of vector addition: For very v ∈ V , there must exist an additive
inverse vector, denoted −v, such that v + (−v) = 0.

• Closure under scalar multiplication: au ∈ V
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• Distributivity of scalar multiplication with respect to vector addition: a(u +
v) = au + av

• Distributivty of scalar multiplication with respect to field addition: (a +
b)u = au + bu.

• Associativity of scalar multiplication: a(bu) = (ab)u

• Identity element of scalar multiplication: There exists an element in F, denoted
e, such that ev = v. The element e is termed the multiplicative identity.

set of elements (vectors).
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