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Abstract— We provide a method for planning under un-
certainty for robotic manipulation by partitioning the con-
figuration space into a set of regions that are closed under
compliant motions. These regions can be treated as states
in a partially observable Markov decision process (POMDP),
which can be solved to yield optimal control policies under
uncertainty. We demonstrate the approach on simple grasping
problems, showing that it can construct highly robust, efficiently
executable solutions.

I. INTRODUCTION

A great deal of progress has been made on the problem of
planning motions for robots with many degrees of freedom
through free space [10], [9], [13]. These methods enable
robots to move through complex environments, as long
as they are not in contact with the objects in the world.
However, as soon as the robot needs to contact the world,
in order to manipulate objects, for example, these strategies
do not apply. The fundamental problem with planning for
motion in contact is that the configuration of the robot and
the objects in the world is not exactly known at the outset
of execution, and, given the resolution of sensors, it cannot
be exactly known. In such cases, traditional open-loop plans
(even extended with simple feedback) are not reliable.

It is useful to distinguish between modes of uncertainty
that can be effectively modeled, and those that cannot. In
situations with unmodelable uncertainty, such as insertion
of keys into locks, very fine-grained details of the surfaces
can have large effects on the necessary directions of ap-
plied forces, and the available sensors can gain little or
no information about those surfaces. When the uncertainty
is unmodelable, we must fall back to strategies such as
“wiggling” the key, which are highly successful without ever
building a model of the underlying situation.

Modelable uncertainty, on the other hand, typically occurs
at a coarser scale. In attempting to pick up a mug, for
example, a robot with vision or range sensing might have
a good high-level model of the situation, but significant
remaining uncertainty about the pose or shape of the mug.
Based on sensor feedback, it can reason about whether the
hand is currently in contact with the handle or the cup body,
and choose actions that will both gather more information
about the situation and make progress toward a desired grasp
with a multi-fingered hand.
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An early approach to planning in the presence of mode-
lable uncertainty was developed in [15]. They used a worst-
case model of sensor and motion error, and developed a
framework for computing conservative plans under these
assumptions. This method was computationally complex, and
prone to failure due to overconservatism: if there was no plan
that would work for all possible configurations consistent
with the initial knowledge state, then the entire system would
fail.

In this paper, we build on those ideas, addressing the
weaknesses in the approach via abstraction and probabilistic
representation. By modeling the initial uncertainty using a
probability distribution, rather than a set, and doing the
same for uncertainties in dynamics and sensing, we are in
a position to make trade-offs when it is not possible to
succeed in every possible situation. We can choose plans that
optimize a variety of different objective functions involving
those probabilities, including, most simply, the plan most
likely to achieve the goal. The probabilistic representation
also affords an opportunity for enormous computational
savings through a focus on the parts of the space that are
most likely to be encountered.

By building an abstraction of the underlying continuous
configuration and action spaces, we lose the possibility of
acting optimally, but gain an enormous amount in computa-
tional simplification, making it feasible to compute solutions
to real problems. Concretely, we will use methods of model
minimization to create an abstract model of the underlying
configuration space, and then model the problem of choosing
actions under uncertainty as a partially observable Markov
decision process [25].

II. BACKGROUND AND APPROACH

The approach we outline here applies to any domain in
which a robot is moving or interacting with other objects
and there is non-trivial uncertainty in the configuration. In
this paper, we concentrate on the illustrative problem of a
robot arm and hand performing pick-and-place operations.
We assume that the robot’s position in the global frame is
reasonably well known, but that there is some uncertainty
about the relative pose and/or shape of the object to be
manipulated. Additionally, we assume that there are tactile
and/or force sensors on the robot that will enable it to
perform compliant motions and to reasonably reliably detect
when it makes or loses contacts. We frame this problem
primarily as a planning problem. That is, we assume that
a reasonably accurate model of the task dynamics and
sensors is known, and that the principal uncertainty is in
the configuration of the robot and the state of the objects in
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the world. In future work, we will address the problem of
learning underlying models from experience.

Excellent summaries of the robot planning literature are
available [10], [13]. An early formulation of the problem
of automatically planning robot motions under uncertainty
was the preimage backchaining framework [15]. It was ex-
tended in [5], [6], [11]. More recently, [12] formulated both
probabilistic and nondeterministic versions of the planning
problem through information space. [2] describes a direct
probabilistic extension of the preimage backchaining frame-
work that shares much with our approach, including the idea
of constructing an abstract state space by grouping underly-
ing states with similar transition behavior. They describe how
one might compute the necessary probabilistic pre-images,
but do not have effective algorithms for doing so, nor do they
provide a method for conditioning actions on observations. A
recent extension of these ideas to dynamic tasks by sequential
composition of feedback primitives is described in [3]. In
addition, [8] describes a system that learns optimal control
policies in an information space that is derived from the
changes in the observable modes of interaction between the
robot and the object it is manipulating.

There is a substantial body of previous work (for example
[1], [14], [24], [16]) that specifies assembly strategies as a
path through a sequence of contact states, typically a contact
between particular surfaces of the assembled objects. The
relevant sequences of states to achieve the goal are variously
obtained from a human designer or from analysis of a human
performing the assembly. The control strategy is then to
identify the current state of the assembly from the history of
perceived positions and forces [18], [20], [16], [24], [14], [1]
and to choose the appropriate next action; this is a problem
that can be quite challenging and which has been the subject
of a great deal of work.

The work we describe here advances on this approach in
several ways: (a) it provides an automated way of finding
the states and the plans through the state space, (b) it
does not require unambiguous identifications of the current
state of the manipulation but only a characterization of a
probability distribution over the states (the belief state) and
(c) it provides an integrated way to choose actions that
will provide information relevant to disambiguating the state
while also achieving the goal.

There is a long history of applying POMDPs to mobile-
robot navigation, beginning with simple heuristic solution
methods [4], [23], then applying more sophisticated approx-
imations [27], [21], [22], [26], [29].

A. POMDPs

Partially observed Markov decision processes
(POMDPs) [25] are the primary model for formalizing
decision problems under uncertainty. A POMDP model
consists of finite sets of states S, actions A, and observations
O; a reward function R(s, a) that maps each underlying
state-action pair into an immediate reward; a state-transition
model P (s′|s, a) that specifies a probability distribution
over the resulting state s′, given an initial state s and

action a; and an observation model P (o|s) that specifies
the probability of making an observation o in a state s.
Problems that are naturally described as having a goal state
can be encoded in this framework by assigning the goal
states a high reward and all the rest zero; but an advantage
of a more general reward function is that it can easily also
penalize other conditions along the way, or assert two goal
regions, one of which is more desirable than the other, and
so on.

Given the model of a POMDP, the problem of optimal
control can be broken into two parts: state estimation, in
which a probability distribution over the underlying state
of the world, or belief state, is recursively estimated based
on the actions and observations of the agent; and policy
execution, in which the current belief state is mapped to the
optimal control action.

Belief-state update is a straightforward instance
of a Bayesian filter. The robot’s current state
estimate is an n-dimensional vector, bt, representing
Pr(st|o1 . . . ot, a1 . . . at−1), a probability distribution over
current states given the history of actions and observations
up until time t. Given a new action at and an observation
ot+1, the new belief state bt+1 is given by

Pr(st+1 = i|o1 . . . ot+1, a1 . . . at)

∝
∑
j

Pr(st|o1 . . . ot, a1 . . . at−1)

· Pr(st+1 = i|st = j, at = a) Pr(ot+1 = o|st+1 = i)

=
∑
j

bj Pr(st+1 = i|st = j, at = a)

· Pr(ot+1 = o|st+1 = i)

Note that the first factor is an element of the state transition
model and the second is an element of the observation
model. The constant of proportionality is determined by the
constraint that the elements of bt+1 must sum to 1.

The problem of deriving an optimal policy is much more
difficult. The policy for a POMDP with n states is a mapping
from the n-dimensional simplex (the space of all possible
belief states) into the action set. Although a policy specifies
only the next action to be taken, the actions are selected in
virtue of their long-term effects on the agent’s total reward.
Generally, we seek policies that choose actions to optimize
either the expected total reward over the next k steps (finite-
horizon) or the expected infinite discounted sum of reward,
in which each successive reward after the first is devalued
by a discount factor of γ.

These policies are quite complex because, unlike in a
completely observable MDP, in which an action has to be
specified for each state, in a POMDP, an action has to be
specified for every probability distribution over states in the
space. Thus, the policy will know what to do when the robot
is completely uncertain about its state, or when it has two
competing possibilities, or when it knows exactly what is
happening.

Computing the exact optimal finite or infinite-horizon
solution of a POMDP is generally extremely computationally
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intractable. However, it is often possible to derive good
approximate solutions by taking advantage of the fact that
the set of states that are reachable under a reasonable control
policy is typically dramatically smaller than the original
space [21], [27], [26].

B. State and action abstraction

Robot manipulation problems are typically framed as hav-
ing high-dimensional continuous configuration spaces, multi-
dimensional continuous action spaces (positions or torques),
possibly continuous time, and deterministic dynamics. Our
approach will be to construct discrete abstractions of the
robot’s state and action spaces, and to “make up” for the
precision lost in so doing by modeling the effects of actions
as stochastic.

It is possible to use a grid discretization of the continuous
belief space, but the high dimensionality of that space makes
it infeasible for most problems of interest. Instead, we pursue
a discretization strategy that is more directly motivated by
the uncertainty in the problem. When there is uncertainty
with respect to the configuration of the robot or obstacles, we
will generally want to execute actions that reduce uncertainty,
while making progress toward a goal. There are two ways
to reduce uncertainty through action: one is to act to obtain
observations that contain information about the underlying
state; the other is to take actions that are “funnels,” mapping
large sets of possible initial states to a smaller set of resulting
states.

We start by considering the MDP, defined over complete
configurations of the robot and object, that underlies our
problem, and construct abstract state and action spaces and
an abstract state transition model on those spaces. We will
use the abstract MDP as the basis for an abstract POMDP.
We construct the abstract space for the MDP by choosing
a set of abstract actions [28] and using them to induce the
state space. We will work with a set of “guarded” compliant
motions as our action space. A guarded motion causes the
robot to move along some vector until it makes or breaks
a contact or reaches the limit of the workspace. Our action
set includes guarded motions through free space, as well
as compliant motions, in which the robot is constrained to
maintain an existing contact while moving to acquire another
one. Note that these actions serve as “funnels,” producing
configurations with multiple contacts between the robot and
an object, and generating information about the underlying
state. In the current work, we allow the robot to move only
one degree of freedom at a time: there are motions in two
directions for each DOF, which attempt to move in the
commanded direction while maintaining the existing set of
contacts, if possible.

Abstraction methods for MDPs [7], derived from abstrac-
tion methods for finite-state automata, take an underlying set
of states, a set of actions and a reward function, and try to
construct the minimal abstract state space. This new state
space is a partition of the original state space, the regions of
which correspond to the abstract states. The abstract space
must have the properties that, for any sequence of actions,

the distribution of sequences of rewards in the abstract model
is the same as it would have been in the original model,
and, furthermore, that any two underlying states that are in
the same abstract state have the same expected future value
under the optimal policy.

So, given a commitment to guarded motions as our action
set, the known deterministic continuous dynamics of the
robot, and a specification of a goal (or, more generally, a
reward function), we can apply model-minimization methods
to determine an abstract model that is effectively equivalent
to the original. We obtain a large reduction through not
having to represent the free space in detail, because after the
first action, the robot will always be in contact, or in a very
limited subspace of the whole free space. In addition, large
regions of the state space will behave equivalently under
funneling actions that move until contact.

We begin by assuming an idealized deterministic dynam-
ics, derived from the geometry, both in free space and in
contact, and construct an abstract state space using those
dynamics. Given that abstract state space, we will go back
and compute more realistic transition probabilities among the
abstract states. Finally, we will feed this resulting model into
an approximate POMDP solver to derive a policy.

C. Example

To give an intuition for the approach, we present a very
simple example. Consider a two-dimensional Cartesian robot
with a single rectangular finger, and a rectangular block on a
table. The robot has contact sensors on the tip and each side
of the finger, and so it can make eight possible observations
(though combinations involving contact on both sides of the
finger are impossible in this scenario).

The action space is the set of compliant guarded moves
up, down, left, and right. If the robot has a contact in one
direction, say down, and tries to move to the left, it does so
while attempting compliantly to maintain contact with the
surface beneath. The robot moves until its observed contacts
change. A motion can also be terminated when the robot
reaches its limits (we’ll assume a rectangular workspace).

The robot’s “goal” is to have the tip of its finger on top
of the block. It has an additional action, called “lift” which
is intended to mean that it could engage a vacuum actuator,
or simply declare success. If the robot lifts when it has its
finger on top of the block, then it gets a reward of +10
and the trial is terminated. If it lifts when it is in any other
configuration, then it gets a reward of -10, and the trial is
terminated. Additionally, it gets a reward of -1 on each step
to encourage shorter trajectories.

The configuration space for this robot is two dimensional,
with reachable configurations everywhere except for a box
that is “grown” by the dimensions of the finger. Figure 1A
shows how the configuration space is initially segmented
based on tactile observations (various one-dimensional loci
of contact configurations are shown as thin rectangular
boxes). The goal configurations are further differentiated into
their own region in figure 1B. Finally, we can propagate those
regions so that we arrive at a segmentation that is closed, in
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A. Observation only

B. Observation and reward

C. Observation, reward, and transition

1

1
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3 4
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1A
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3 4
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1C
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3 4

5 6

5 6
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2F
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2I
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2B 2D

2G 2H
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GO-RIGHT

TIP

GO-LEFT

TIP

GO-LEFT

NONE

GO-UP

TIP-RIGHT

GO-UP

TIP-LEFT

GO-UP

LEFT

NONE

***

TIP

GO-UP

RIGHT

GO-RIGHT

NONE

TIP

D. 

Fig. 1. A. Observation partition; B. Observation and reward partition; C.
Closed partition; D. Partial policy graph for robot starting in an unknown
state above the table, with a deterministic transition and observation model.

the sense that all of the states in a single region, given a
particular action, transition to a particular other region, as
shown in figure 1C.

Even with completely deterministic transition and obser-
vation models, the POMDP is a useful tool. If, for instance,
we examine the optimal policy for the initial belief state in
which the robot could be in state 2A, 2C, or 2E, with equal
probability, then we get the partial policy graph shown in
figure 1.D. In a policy graph, the nodes are labeled with
actions and the arcs with observations. This policy has the
robot begin by moving down until contact. At this point, it
could be in regions 1B, 1A, or 1C. The policy specifies that
it move to the right, putting it in one of regions 5, 2H , or 1C.
Each of these regions has a different observation (tip-right,
none, or tip), and so the rest of the strategy is determined in
each case.

If we add a significant amount of noise to the actions
and observations, so that they have their “nominal” outcome
about 0.8 of the time, and generate erroneous readings or
results with the remaining probability, this problem becomes
much more complicated, and much too difficult to solve by
hand. We can solve this model for the optimal policy, which
embodies a fairly different strategy. Even the initial move is
different: it asks the robot to move all the way over to the
left at the very beginning, which moderately reliably funnels
all the initial states into one, removing some of the initial
uncertainty at the cost of performing an additional action.
If the actions were even noisier, the policy might ask that
the robot move to the left multiple times, to further reduce
uncertainty.

III. MODEL CONSTRUCTION

We construct the initial model by using a simple, nearly
deterministic “simulation” of the compliant guarded moves,
based on geometry. It is appropriate to think of this simu-
lation somewhat analogously to the simulation that happens
in a planner: it is a computational process, in the “head” of
the robot, that will eventually lead to a plan. Note that the
derived model can be re-used with different reward functions,
to plan for different goals in the same environment.

In our implementation, the robot and the objects in the
world are all modeled as polygons, and the simulator oper-
ates in a state space that includes the joint-space configu-
ration of the robot and the contact state. The contact state
specifies, for each vertex and surface of the robot, which, if
any vertex or surface of the world it is in contact with. Both
of the examples in this paper are done in a two-dimensional
world space, with robots of 2 or 3 degrees of freedom.
The approach extends naturally to three-dimensional world
spaces, although the number of possible contacts grows
quickly. The robot is assumed to have a set of contact sensors
that can give some of the information in the contact state.
Our typical model will be that the robot can tell what vertices
or surfaces of the robot are in contact, but not with what
vertices or surfaces in the world.

Constructing the abstract action space: The abstract ac-
tions consist of two guarded, compliant move commands for
each degree of freedom, one in each direction, including the
gripper. When there are no contacts in the starting state,
the robot simply moves along the commanded degree of
freedom, holding the others constant, until the observed
contacts change.

When the robot is already in contact, it is controlled
by a sliding model, which is related to a damper model
used by [15], and there are three cases of interest: (1) The
current contact is in the opposite direction of the commanded
motion. In this case, the robot simply breaks the contact and
moves away through free space until it makes a new contact
or reaches the limits of its workspace. (2) The current contact
is in the same direction as the commanded motion. In this
case, the robot cannot, and does not, move. The action is
terminated if there is no motion over a short period of time.
(3) The current contact has a component that is orthogonal
to the commanded motion. In this case, the robot seeks to
move the degree of freedom in the commanded direction,
while maintaining the existing contact. It does this by making
small motions in the commanded direction, then moving
back to regain the contact. This can result in sliding along
a surface, closing a parallel-jaw gripper while maintaining
contact of one finger with the object, or pivoting down to
complete a grasp while maintaining contact of one finger
on the object. The action is terminated when the observed
contacts change or when the current contact no longer has a
component orthogonal to the commanded motion. This set of
abstract actions can now be used to induce a discrete abstract
state space that can serve as a basis for our POMDP model.

Creating an abstract model: Following [7], we begin by
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considering how to create an abstract model of a discrete
system with deterministic transitions and observations. Let
T (s, a) be the deterministic state transition function, speci-
fying the state resulting from taking action a in state s; let
O(s) be the deterministic observation function specifying the
observation resulting from being in state s; and let R(s) be
the deterministic reward function.

Given a low-level state space S, our goal will be to find
a partition Φ, which consists of a set of non-overlapping
regions Ri, such that

⋃
iRi = S. We will write Φ(s) for the

region to which primitive state s is assigned. The partition
Φ should also be the minimal partition that satisfies two
requirements. First, that it is uniform with respect to rewards
and observations, so that, for every Ri in Φ, there exists
a reward r and observation o, such that for all s in Ri,
R(s) = r and O(s) = o. Second, that it is uniform with
respect to action sequences, so that for every sequence of
actions a1 . . . an and every region Ri, there exists a resulting
region Rj , such that for all s in Ri, the result of taking that
action sequence in that state is in the same partition:

Φ(T (T (. . . T (T (s, a1), a2), . . .), an) = Rj .

The algorithm for finding such a minimal partition is a
relatively simple process of region-splitting. We’ll say that a
region Ri is deterministically uniform with respect to action
a and partition Φ if there exists a region Rj , such that for
all s in Ri, Φ(T (s, a)) = Rj .
• Let Φ be the partitioning of S such that each region

in the partition is uniform with respect to reward and
observation.

• While there exists a region R in Φ and an action a such
that R is not deterministically uniform with respect to
a and P , split R into a set of sub-regions Ri that are
deterministically uniform with respect to a and Φ, and
replace R with the Ri in Φ.

• Return Φ.
The resulting abstract state space is the set of regions in Φ.
From this, it is straightforward to construct a POMDP with
deterministic transitions and observations.

Unfortunately, even though our simple model of the
robot’s dynamics is deterministic, our situation is more com-
plex. The state space we are working in, at the lowest level, is
continuous, so we cannot enumerate the states. It is possible,
in principle, to construct a version of the splitting algorithm
that operates on analytically represented subregions of the
configuration space; in fact, the “preimage backchaining”
method [15] is related to this algorithm. However, using
compliant motions in a complex configuration space makes
it very challenging to compute these regions analytically.

Instead, we will take advantage of our ability to simulate
the results of the abstract actions, to build a “model” of the
transition dynamics of these actions via sampling. We are
given a set of possible starting configurations (in the case
of the examples in this paper, they were a discrete set of
positions of the robot up at the top of the workspace). Based
on these initial configurations, we gather a large sample

of state-action-next-state (〈s, a, s′〉) triples, by trying each
possible action at each initial state, then at each of the states
s′ reachable from an initial state, etc.

Because of the nature of the action set, if the simulation
were truly deterministic, we would expect this process to
“close” in the sense that eventually no new states would
be found to be reachable. In practice, due to numerical
sensitivities in the simulation of the compliant motions,
exact closure doesn’t happen. We handle this problem by
clustering reachable states together whenever they have equal
contact conditions and geometric distance between robot
configurations less than a fixed threshold. We draw samples
until we have experience of taking each action from each
cluster.

Now, each of these clusters is treated as a primitive state,
and the most frequent outcome under each action is defined
to be its successor. This data is now used as input to the
region-splitting algorithm described above.

Adding stochasticity: Once we have this partition of the
state space, we need to determine the observation and tran-
sition models. We take a very simple approach to adding
stochasticity. For observations, we assume that the contact
sensors have some probability of failing to detect a contact
(independent failures for each sensor), but no chance of
mistakenly sensing a contact when there shouldn’t be one.

For transitions, we add two forms of stochasticity. First,
we reason that, in executing a particular action a from a
particular abstract state Ri, it might be possible to reach,
in error, any of the other states that can be reached from
Ri using other actions. So we add some probability of
making a transition from Ri to Rj under action a, when
there exists any a′ such that T (Ri, a′) = Rj . Second, we
note that there are some states that are very “unstable”, such
as those involving single-point contacts, in the sense that the
robot is very likely to overshoot them by not noticing the
relevant contact changes. So, for any state Rj that is unstable,
and such that T (Ri, a) = Rj there exists an action a′ for
which T (Rj , a′) = Rk, we add a non-zero probability of a
transition from Ri to Rk under action a. In addition, if one
of these resulting states Rk is unstable, we add transitions
to its successors as well.

This is a very simple model of the stochasticity in the
system, which is certainly inaccurate. One advantage of using
POMDPs for control is that they are generally quite robust
with respect to variations in the transition and observation
probabilities. It would also be possible to further tune the
error model using a high-fidelity dynamics simulation or
even data from a physical robot.

IV. SOLVING THE POMDP

Even for the simplest problems, as soon as we add noise, it
is infeasible to solve the resulting POMDPs exactly. We have
used HSVI [26], a form of point-based value iteration, which
samples belief states that have a relatively high probability
of being encountered, and concentrates its representational
and computational power in those parts of the belief space.
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HSVI returns policies in the form of a set of α vectors and
associated actions. The expected discounted sum of values
when executing this policy from some belief state b is

V (b) = max
αi

b · αi

and the best action is the action associated with the maxi-
mizing alpha vector. The α vectors define hyperplanes in the
belief space, and the maximization over them yields a value
function that is piecewise-linear and convex. By construction,
each of the α-vectors is maximal over some part of the belief
space; and the space is partitioned according to which α-
vector is maximizing over that region.

So, to execute a policy, we apply a state estimator as de-
scribed earlier. The state estimator starts in some initial belief
state, and then consumes successive actions and observations,
maintaining the Bayes optimal belief state. To generate an
action, the current belief state is dotted with each of the α-
vectors, and the action associated with the winning α-vector
is executed. This process is quite efficient, even if the policies
were slow1 to derive off-line.

V. RESULTS

As a proof of concept, we have tested the approach de-
scribed above in two planar problems: one involving placing
one finger on a stepped block and one for two-finger grasping
of a block. We derive stochastic policies from simulations
on a simple planar model. We then run the policy for the
stochastic model in a high-fidelity dynamics simulation and
measure average total reward per episode. Note that the
stochastic model and the high-fidelity model differ in some
substantial details: the dimensions of the block and the
geometry of the fingers are different and the actual sensor
and detailed control behavior are different. Therefore, some
of the trajectories that are most common in the high-fidelity
simulation have relatively low probability in the stochastic
model. These simulations gives us a measure of how much
the mis-estimation of the probabilities in the stochastic model
decreases performance. As a comparison, we report the
results for a simple but reasonable fixed strategy, as well.

Single finger/Stepped block: This domain is similar to the
one described in the example in section II-C except that the
block is “stepped”. The goal is to place the finger in the
corner at the left step. Note that, since the robot is lacking
position information, the goal is locally indistinguishable to
the sensors from the corner where the block rests on the
table. The rewards are similar to the earlier example (+15
for reaching the goal, -50 for lifting in the wrong state, -1
for each motion) except that we also penalize (-5) being in
the states at the limits of the designated problem workspace.
This discourages long motions that leave the vicinity of the
block. The abstract state space for this problem has 40 states.

A trajectory derived by following the stochastic policy
for this problem is shown in Figure 2. This policy, found

1For large problems, the POMDP approximation methods may become
slow, but for all the results reported here, the POMDP solutions ran in under
10 minutes.

by solving the POMDP formulated as described above,
succeeded in 466 out 506 trials (92%) in the high-fidelity
simulation. Its average reward is −1.59. We can compare
this to a fixed policy that simply moves the hand in a fixed
pattern of left, down, right, right, up, right, right, right
(LDRRURRR). This fixed policy succeeded in 154 out of
190 trials (81%), with an average reward of −10.632. The
POMDP policy is considerably more robust than the fixed
strategy.

To help gain intuition about the kinds of strategies being
developed, we can examine the solutions for deterministic
versions of these problems (solutions for the noisy versions
are very difficult to understand intuitively; see figure 4 if
you can). Figure 3 shows the deterministic policy for placing
the finger at the left step of the stepped block. It first asks
the robot to move down; then, depending on the observation
that is made, it selects a strategy. If it feels a tip contact,
then it moves to the left, and now there are three possible
observations: none, which means it was on top of the left
part or the top of the block, and has now lost contact, tip(-x),
which means that it is at the negative-x limit of the table, and
left&tip, which means that it’s feeling contact on the outer
(left) part of the finger and the tip, so it is either on top of
the right step of the block, or the right part of the table. The
simplest situation is when it feels none: now it goes right
and regains the tip contact, and moves right again. If this
move results in none as an observation, then we know we’re
on top of the block (just off the left corner), and have to
move down to the left-hand step. On the other hand, if we
get right&tip as the observation, we know the robot is in the
right place, and we can command a “lift” action, which in
this case simply is a signal for success.

We stress that this policy is only illustrative, since it is
derived from a deterministic model; the stochastic policy is
qualitatively different. Because the actions and observations
are much less reliable, it has to handle many more cases,
including rational responses to observation sequences that
would have been impossible in the deterministic model.

Two-dimensional Grasping: A more interesting domain
is two-fingered grasping in two dimensions. In this case,
the robot has three degrees of freedom: motion in the x
and z planes, as well as opening and closing the parallel
fingers. The abstract state space for this problem has 408
states. Figure 5 shows a policy we automatically derived for
grasping an object with two fingers, in the absence of noise.
In this figure, the contacts for the left finger and right finger
are shown on the arcs connected by a hyphen, e.g. TIP-NO
indicates tip contact detected on the left finger and no contact
detected on the right finger. The -G notation indicates that
the fingers are at their wide open “limit stop”. Each finger
has tip, inside and outside sensors.

Once again we see that the policy first asks the robot
to move down; then, depending on the observation that is
made, it selects a strategy. If it feels two tip contacts, tip-
tip(-g), then there are three possible situations: the fingers
straddling the block, completely to the left of the block or
completely to the right. It moves to the right, and now there
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Fig. 2. Sample run of one-finger policy on stochastic stepped block model.
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Fig. 3. One-finger policy for deterministic stepped block model.

3 16

1 658

OUT

3 436

IN

3 400

NIL-L2H3

2 63

TIP-L2

2 121

NIL-L2

1 635

NIL-H2H3

3 636

NIL-H3

1 42

TIP

3 638

NIL

1 4

TIP-H2 1 662

NIL-H2

OUT

4 309

OT

1 659

NIL

1 6

TIP

1 642

NIL-H2

OT

1 5

NIL

1 308

OUT

1 643

NIL

TIP-H2

1 410

NIL

3 657

NIL-H3

OUT

NIL

OUT

NIL

TIP

OUT

NIL TIP

NIL-H2

3 806

NIL-H3

2 916

NIL-L2

OT

TIPNIL

2 9

NILNIL-L2

IN

NIL-H3

NIL-L2

TIP

IN

3 10

NIL

3 189

NIL3 1122

IN

NIL-L2

0 44

IT TIP 3 437

IN NIL

OUT

OUT

NIL

TIP

IN

1 97

NIL

OT

NIL-H2

NILTIP

OUT

NIL

IT

3 438

NIL

IN

NIL

NIL-L2

NIL-L2H3

TIP-L2 TIP

NIL-L2

NIL-H2H3

2 1223

NIL

NIL-L2H3

TIP-L2

4 508

ITIN

2 64

TIP

TIP-L2

IT

2 510

IN 3 884

NIL-H3

2 509

NIL

NIL-H3

NIL-L2H3

TIP-L2

NIL-H2H3

4 524

IT

2 123

IN

2 401

NIL-L2

2 259

NIL

2 135

NIL-L2

2 1289

TIP

2 318

NIL

2 122

IN

NIL-H3

NIL-L2H3NIL-L2

NIL-H2H3

TIP-H2

3 1256

NIL

2 105

NIL

2 74

TIP

2 315

TIP

2 1014

NIL

TIPIN

2 67

NIL

IT

TIP2 70

NIL

IT

2 65

TIP

2 525

NIL

2 29

NIL

2 124

TIP

TIP

2 141

NIL

IT

1 285

NIL

2 28

IN

2 199

NIL

2 140

NIL

2 467

TIP

IN

OUT

IN

NIL-L2H3

TIP-L2

NIL-L2

NIL-H2H3

NIL-H3

TIP

NIL

TIP-H2

NIL-H2

OUTOT

TIP-L2

NIL-L2

1 236

TIP

2 90

NIL

TIP-H2

3 550

NIL-H3

1 279

IT

OT

NIL-H2

TIPNIL

NIL-H3

OUT

NIL

TIP

OTOUT

TIP-L2

NIL-L2

TIP

NIL

3 0

NIL-H3

NIL-H2

IT

OUT

NIL-H2H3

NIL-L2

TIP2 239

NIL

2 552

IN

3 91

NIL-H3

NIL-H2

IT IN

1 326

NIL

3 766

NIL-H3

2 694

TIP

OT

NIL-H2

OUT

TIP-L2

1 45

TIP

1 593

NIL

TIP-H2

IN

3 87

NIL-H3

1 62

IT

2 906

NIL-L2

OT

TIP-L2

TIP

2 248

NIL

NIL-H3

2 720

NIL-L2

OT

NIL-H2

OUT

2 19

NIL-L2

1 13

TIP

3 158

IN

2 594

NIL

3 185

NIL-H3

NIL-L2H3

TIP-L2

IN

3 20

NIL

NIL-L2

2 363

TIP

OUT OT

TIP

NIL-H2H3

TIP-H2TIP

TIP

TIP

NIL-H3

3 1347

NIL

TIP

3 175

NIL-H3

2 198

NIL-L2

1 275

NIL

OT

NIL-L2

1 26

NILTIP

3 821

NIL-H3

2 1121

NIL-L2

NIL-H2

IT

TIP

3 667

NIL-H3

1 350

NIL

NIL-H3

OT

TIP

OUT

NIL-L2H3

NIL-H2H3

NIL

TIP-H2

NIL-H2

NIL

TIP1 46

IT

TIP

NIL-H3

1 1095

NIL

2 3

TIP

2 146

NIL

IT TIP

NIL

3 1213

IN

2 34

NIL-L2

IT

IN

2 21

NIL

NIL-L2 NIL

TIP

2 188

NIL-L2

NIL-H2

IN

2 193

TIP

3 210

NIL

TIP

IN

NILTIP

IN

OUT NIL-H2

TIP

NIL-H3

OUT

NIL

OUT

NIL

TIP

TIP-L2

1 104

TIP

2 281

NIL

2 75

TIP

IT

TIP

TIP

NIL

NIL

2 107

TIP

2 92

NIL

2 22

TIP

NIL

TIP

IT

3 695

NIL

NIL

IN

IT

NIL-L2

NIL

TIP

2 351

NIL

2 311

NIL

TIP

NIL-L2

NIL

IN

IN

NIL

3 295

IN

3 207

NIL

IT

IT

NIL

IT

TIP

1 187

NIL

NIL-L2

TIP

3 374

NIL

NIL

1 33

NIL

TIP

Fig. 4. One-finger policy for noisy stepped block model.

are three possible observations: it-tip(-g), which means that
the left finger contacted the block and so the fingers started
straddling the block, tip-tip(-g,+x), which means the robot
got to the positive-x limit of the workspace and so must
have started completely to the right of the block, and tip-
ot(-g), that is, the right finger touched the block on its outer
sensor and so must have started completely to the left of the
block. The rest of the policy proceeds in a similar fashion.
This whole policy is represented internally by 100 α-vectors.

An example trajectory derived by following the stochastic
policy for this problem is shown in Figure 6. This policy,
found by solving the POMDP formulated as described above
(and encoded in approximately 1000 α-vectors), succeeded
in 115 out of 115 trials (100%) in the high-fidelity simu-
lation. Its average reward is 4.0. We can compare this to a
fixed policy that simply moves the hand in a fixed pattern of
LDRRURRDDDG. The fixed policy succeeded in 86 out of
113 trials (76%), with an average reward of −17.24, which is
significantly worse than the behavior of the POMDP policy.

This work is an initial attempt to apply POMDPs to
the problem of robot manipulation. It demonstrates that
considerable advantages in robustness can be gained through
the POMDP formulation. Important next steps will be to
address problems with shape uncertainty, to allow objects
to slide or tip, and to handle interactions with other objects.
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