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Intrinsically Passive Grasping and Manipulation
S.Stramigioli, Member IEEE, C.Melchiorri, Member IEEE , S.Andreotti.

Abstract— This article presents and discusses the applica-
tion of an Intrinsically Passive Control (IPC) strategy to
robotic grasping and manipulation tasks. Major advantages
of the presented control strategy are the physical intuition
on which it is based, its passive nature, and the ensured sta-
bility for the overall system in all the situations, including
in particular the transition from no-contact to contact and
vice-versa. One of the main features of the proposed control
is that only joint position measurements are needed. This
means that no velocity or force measurements are required
in the control loop, simplifying the sensorial complexity and
enlarging the possibilities of application of the scheme. Ex-
perimental results are reported, showing the effectiveness of
the proposed control strategy.

Keywords— Passivity, Interaction, Physical Control,
Robotic Manipulation.

I. Introduction

IN general, the environment a robot interacts with must
be characterized from a geometrical point of view, i.e.

the dimensions and location of the object to be handled
must be known in advance. This knowledge is used for
planning the grasp or manipulation phases, e.g. approach,
contact, force application and so on. On the other hand,
from a mechanical point of view the information on the
object/environment, if available, are often poor or not pre-
cise, e.g. mass and friction properties are in general not ex-
actly known a priori and therefore cannot be used for the
task planning. For this reason, additional sensors (force,
tactile, ...) must be introduced and used in real time,
and the planned grasp should be robust enough to en-
sure a proper behavior, i.e. the safe achievement of the
grasp/manipulation, for different materials and grasping
configurations.
From the control point of view, several control and task

planning strategies have been proposed in the literature in
order to execute grasps and manipulations with a robotic
system, see e.g. [1] among many others. Concerning these
control schemes, it may be noticed that very few among
them consider explicitly the problem of controlling, or even
defining, the dynamics of interaction. In addition, one of
the most problematic phenomena in force control strate-
gies is that stability cannot be ensured if not assuming as
known important features of the object to be grasped, like
its stiffness and friction. Furthermore, a force control strat-
egy alone is not suitable to properly control the transition
between no-contact and contact. This is due to the obvi-
ous fact that force control is meaningful only in contact,
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since no force can be exerted in free space. For these rea-
sons, a control strategy for grasp and manipulation based
on physically-based observations and on passivity concepts
seems worth to be pursued.
This paper presents a control scheme that can be framed

in the general and well known context of impedance con-
trol, [2], [3], [4], although it presents some further devel-
opments in the Hamiltonian setting, as discussed in [5].
This impedance strategy does not have the shortcomings
of other grasping control techniques. In particular, it is
strictly passive in steady-state while during manipulation
the supplied energy is directly controllable. Moreover, the
related compliance control of each finger allows for rolling,
slipping, and whole-hand grasps in a natural way.
In other terms, the technique illustrated in this paper al-

lows to shape the potential energy of the robot/object sys-
tem in order to achieve a desired compliance, and injects
damping to ensure both asymptotic stability and proper
transient behavior. The main point here is to study the
interaction between the robot and an object (the environ-
ment) in such a way that the overall system is stable inde-
pendently on partially unknown geometrical or mechanical
properties, and also achieves desired performances during
task executions.
The underlying design method is based on physical intu-

ition, and on the connection of ‘physical’ elements in order
to obtain a desired dynamic behavior. With this respect,
from a mathematical point of view the interaction among
physical ‘bodies’ can be easily and rigorously described us-
ing the concept of power port, [6]. Furthermore, as shown in
[5], to ensure a stable behavior during interaction, the un-
derling control strategy should be such that the controlled
system, as seen from the interaction energetic port, can
be characterized by passive properties. A way to obtain
this feature is to develop a controller which is passive by
itself, and whose action on the robot can be described as a
physical interconnection with the system to be controlled.
In this manner, suitable passive properties for the overall
system can be defined and imposed. On the other hand,
a problem with this approach is that, in order to perform
some useful tasks, the robot should supply energy to the
environment, e.g. to move an object in space or to apply
forces/torques to it. A possibility for combining these two
apparently conflicting goals can be found in the so-called
Physical Control and in the IPC-Supervisor architecture,
as discussed also in [5], [7].
This paper is organized as follows. In Sect. II the con-

trol architecture will be illustrated in general terms, in
Sect. III and Sect. IV some basic definitions and concept of
the Hamiltonian formulation in terms of Poisson structures
are recalled and the basic elements of the control presented,
while in Sect. V the proposed control scheme is illustrated.
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Fig. 1. The general form of an intrinsically passive control scheme.

Sect. VI presents some experimental results and Sect. VII
concludes with comments and final remarks.

II. The IPC-Supervisor architecture

The control architecture proposed in this paper is com-
posed of two energetically coupled parts: the Intrinsically
Passive Controller (IPC) and the Supervisor, as shown in
Fig. 1.
The Supervisor, that can be considered hierarchically as

a higher control level, takes care in general of all the de-
liberative and planning actions, and can also use a priori
knowledge about the shape of the object to implement ei-
ther tips of full hand grasps. The Supervisor can directly
control the energy injected to the pre-compensated robot
(i.e. the robot with the IPC), as shown in Fig. 1: tasks like
‘open the hand’, ‘close the hand’ or ‘move the object’ are
achieved by the Supervisor by effectively suppling energy
to the IPC.
Real-time control of interactive behaviors and the

achievement of suitable features like damping, compliance
and so on, are implemented by the IPC, independently
of the Supervisor. In particular, the IPC has a physical
Hamiltonian structure, as described in the following Sec-
tions, can only exchange energy with the robot or with the
Supervisor, and is the responsible for the real time inter-
active behavior. In some sense, it may be compared to the
local muscle control performed by the muscle spindles in
biological systems.

This paper is concerned with the design of the IPC part
of the controller. Since the IPC has been conceived in
order to have a physically interpretable behavior, it will
be described here in terms of spatial interconnection of
physical elements like springs, dampers and inertias. As
a matter of fact, the basic idea of the IPC is shown in
Fig. 2, where bodiesm1,m2 . . . ,mn represent the last links
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Fig. 2. Basic idea of the proposed IPC.

of some kinematic chains, e.g. the fingertips of a robotic
hand or the distal links of robot arms. Both the body with
mass mb (assumed to be rigid) and the springs (with stiff-
nesses k1, k2, . . . , kn and kv) are implemented directly by
means of control and are exploited, along with the damp-
ing b, in order to define the dynamic behavior of the IPC
and consequently of the overall system.
In the control algorithm, the dynamics of massmb (called

here the virtual object) is simulated in real-time. In partic-
ular, since it is subject to the forces generated by springs
k1, k2, . . . , kn and by the damper b, its motion in 3D is com-
puted in real time. Although this mass does not physically
exist, it is of major importance for the control, since its “ki-
netic energy” can be dissipated by the damper b, achieving
in this manner a passive behavior for the control. Note that
the computation of the damping force due to b needs only
the knowledge of the velocity of the virtual mass mb, that
is known since it is computed in the controller. If dampers
had been attached to masses m1, . . . ,mn, their velocities
would have been necessary to simulate their behavior, with
the necessity of joint velocity measurements for the robot.
The stiffnesses k1, . . . , kn and kv of the springs, their rest

lengths, the mass mb of the virtual object and the position
xv are parameters to be used in real-time to achieve the
desired behavior from the system. Obviously, it should be
taken into account that careless changes of these parame-
ters can result in a non passive behavior due to an apparent
energy change of the system.
In the following Section, a formal model of these physi-

cal entities and of their interconnection is discussed. This
model is the basis of the proposed control strategy.

III. Background on the Generalized Hamiltonian

Theory

In this paper, the generalized Hamiltonian theory plays
a fundamental role since it can nicely express the intercon-
nection of physical parts. Basic features of this framework
used in the following are the concepts of interconnection
and ports, and of a Generalized Port Controlled Hamilto-
nian System (GPCHS) [8].
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A. Interconnection and Ports

A basic concept used in this paper is the power port [6].
A power port is the entity which describes the media by
means of which subsystems can mutually exchange physical
energy. Analytically, a power port can be defined by the
Cartesian product of a vector space V and its dual space
V ∗:

P := V × V ∗

Therefore, power ports are pairs (e, f) ∈ P . The values of
both e and f (effort and flow variables) change in time and
these values are shared by the two subsystems which are
exchanging power through the considered port. The power
exchanged at a certain time is equal to the intrinsic dual
product:

Power = 〈e, f〉

This dual product is intrinsic in the sense that elements
of V ∗ are linear operators from V to R, and therefore,
to express the operation, we do not need any additional
structure than the vector space structure of V .
In this work, the space V will be the space of twists

(flows) se(3) or a Cartesian multiple: se(3)× . . .× se(3).

B. Generalized Poisson Hamiltonian Systems

In the standard symplectic Hamiltonian theory, the
starting point is the existence of a generalized configura-
tion manifold Q. Based on Q, its co-tangent bundle T ∗Q
is introduced which represents the state space to which the
configuration-momenta pair (q, p) belongs. It is possible to
show that T ∗Q can be naturally given a symplectic struc-
ture on the base of which the Hamiltonian dynamics can
be expressed [9].

A limitation of this approach is that, by construction,
the dimension of the state space T ∗Q is always even. More-
over, it can be shown that in general the interconnection
of Hamiltonian systems in this form does not originate a
system of the same form.
These problems can be easily solved with the more gen-

eral approach in the Poisson framework, [10]. In general
a GPCHS in the Poisson formulation is characterized by 4
elements: (a) a state manifold X which can be of any di-
mension, even or odd; (b) an interaction vector space V on
which a power port is described as presented in Sect. III-A;
(c) a Poisson structure on X ; (4) a local vector bundle iso-
morphism [11] between X×V and TX . For the purposes of
this paper, it is sufficient to consider that a Poisson struc-
ture is characterized by a contravariant skew-symmetric
tensor-field J(x) defined on X .
If we consider a chart ψ and the corresponding set of

coordinates x for X , and a base B := {b1, . . . , bn} for V ,
we can express a GPCHS with a set of equations of the

following form:

ẋ = J(x)
∂H(x)
∂x

+ g(x)u (1)

y = gT (x)
∂H(x)
∂x

(2)

where u is a representation of an element of V in the base
B, J(x) = −JT (x) is the skew-symmetric Poisson tensor,
g(x) is the representation of the fiber bundle isomorphism
and y is the representation of an element belonging to the
dual vector space V ∗ in the dual base of B.
Any explicit physical conservative element can be given

the previous representation. To account for dissipating el-
ements, we can generalize the previous form considering
a symmetric, semi-positive definite, two covariant tensor
R(x) which can be subtracted from J(x):

ẋ = (J(x)−R(x))∂H(x)
∂x

+ g(x)u

y = gT (x)
∂H(x)
∂x

(3)

With this new term, it can be seen that the change in
internal energy is:

Ḣ = yTu︸︷︷︸
supplied power

−
(
∂H

∂x

)T

R(x)
∂H

∂x︸ ︷︷ ︸
dissipated power

Since R(x) is positive semi-definite, this implies that the in-
ternal energy can only increase if power is supplied through
the ports.

IV. Dynamic model of the ‘physical’ parts

The basic elements of the IPC control scheme, shown in
Fig. 2, are now modeled as GPCHS. Obviously, only those
physical parts that can store energy will have a state. Ele-
ments like dampers, if considered as isolated, do not have
any physical state. Using their port structures, it is then
possible to connect these elements in a power consistent
way.

A. The Springs - Spatial Compliance

A spatial (3D) compliance is a geometric spring connect-
ing two rigid bodies Bi and Bj . Lončarić [12], [13] studied
geometric springs represented by potential energy functions
of the relative position of the rigid bodies to which they are
attached. Successively, Fasse and Breedveld [14], [15], [16]
extended this work giving some useful geometrical parame-
terizations. More recently, Stramigioli [5] extended the for-
mulation to a completely coordinate-free setting and also
in order to consider elastic elements with more than two
ports and variable lengths.
A spring between two rigid bodies Bi and Bj is char-

acterized by a positive definite function representing the
stored potential energy1 with the following form:

Vi,j : SE(3) → R;Hj
i �→ Vi,j(H

j
i )

1This function defines implicitly the unit of energy.
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where Hj
i ∈ SE(3) is the matrix representing the isometry

which brings a chosen reference frame Ψj (fixed to body
Bj) to another reference frame Ψi (fixed to body Bi)2.
Once a potential energy has been defined, the correspond-
ing “force” generated by the elastic potential can be com-
puted by considering the differential of Vi,j :

dVi,j : SE(3) → T ∗SE(3)

which is the local force that body Bi applies on the spring
Vi,j in the relative position Hj

i : dVi,j(H
j
i ) ∈ T ∗

Hj
i

SE(3).
This local force can be seen as the generalized force corre-
sponding to a parameterization of SE(3) like Euler angles
and translation positions.
The wrench applied on the spring connecting Bi to Bj by

body Bi and expressed in frame Ψj , with a relative position
Hj

i is (see Notation):

W̃ j
i,j(H

j
i ) =

(
f̃ j

i,j nj
i,j

0 0

)
= R∗

Hj
i

dVi,j(H
j
i )

where f̃ j
i,j ∈ R

3×3 is a skew-symmetric matrix correspond-
ing to the force f j

i,j ∈ R
3 and such that:

x =


x1x2
x3


 ⇒ x̃ =


 0 −x3 x2
x3 0 −x1
−x2 x1 0


 (4)

We can also associate to the wrench matrix W̃ j
i,j ∈ R

4×4

the corresponding vector representation which we indicate
withW j

i,j := ((nj
i,j)

T (f j
i,j)

T )T ∈ R
6. It can be seen that3

W i
i = −W i

i,j = −Ad∗
Hj

i

W j
i,j is the wrench that the spring

applies to body Bi expressed in the frame Ψi and that
W j

j = −W j
j,i = −Ad∗

Hi
j
W i

j,i is nothing else than the wrench
that the spring applies to body Bj expressed in frame Ψj

and furthermore Wi,j = −Wj,i due to the nodicity of a
spring.
A desired energy function can be defined (and imple-

mented using control) such that the relative configuration
Hj

i = I4 corresponds to a minimum of the potential en-
ergy Vi,j(·) [14]. In this configuration, the frames Ψj and
Ψi will coincide. The energy function can be chosen such
that the common origins of Ψi and Ψj in the equilibrium
position represent the center of stiffness [5]. Expressed
in the equilibrium frame (Ψi = Ψj), we can then choose
three 3 × 3 desired stiffness matrices Ko, Kt and Kc, cor-
responding respectively to the orientational, translational
and coupling stiffnesses. From these stiffness matrices, we

2Note that Hj
i is also the matrix expressing the change of coordi-

nates from Ψi to Ψj , but the corresponding motion is given by its

inverse (Hj
i )

−1.
3Note that Ad

H
j
i
is the Lie group adjoint map and Ad∗

H
j
i

its dual

adjoint. They are linear operators that represent a change of coordi-

nates and are of the form Ad
H

j
i
=

(
Rj

i 0

p̃j
i Rj

i Rj
i

)
for Hj

i =

(
Rj

i pj
i

0 1

)
and Ad∗

H
j
i

is represented by the transpose of Ad
H

j
i
.

ib j

Fig. 3. Schematic drawing of a power consistent variable spring.

can calculate the so-called co-stiffness matrices [14] Go, Gt

and Gc related to the stiffnesses matrices by:

Gα =
1
2
tr(Kα)I −Kα

where α = o, t, c and where tr() is the tensor trace operator.
It is then possible to give an expression of the wrench W i

i

as a function of the relative configuration Hj
i =

(
Rj

i pji
0 1

)
(see [14]):

W i
i (H

j
i ) =

(
f̃ i

i ni
i

0 0

)
where

ni
i = −2 as(GoR

j
i )− as(GtR

i
j p̃

j
i p̃

j
iR

j
i )− 2 as(Gcp̃

j
iR

j
i )

f̃ i
i = −Ri

j as(Gtp̃
j
i )R

j
i − as(GtR

i
j p̃

j
iR

j
i )− 2 as(GcR

j
i ) (5)

and where as(·) is an operator which takes the skew-
symmetric part of a square matrix and the ‘tilde operator’
is defined in Eq. (4).
Eq. (5) is an expression that can be directly used for the

implementation, but as previously remarked, it is possible
to give a GPCHS form of a spring [17]:

hj
i = Rhj

i
T j,j

i (6)

W j
i,j = R

T
hj

i

∂Vi,j

∂hj
i

. (7)

where hj
i is a six dimensional local coordinate of SE(3),

J(hj
i ) = 0, and Rh(·) represents the Lie group right trans-

lation in the chosen coordinates h. It is also possible to
consider an additional power port which can be used to
vary the effective rest length of a spring as shown schemat-
ically in Fig. 3. By using an additional port, the relative
position of b and i can be modified. The obtained effect
is to change the rest length of the spring between b and j.
Applying in the general 3D case the concept of Fig. 3, the
twist relation becomes:

T j,j
i = T j,j

b +AdHj
b
T b,b

i (8)

In this case, its GPCHS representation is:

hj
i =

(
Rhj

i
Rhj

i
Adhj

b

) (
T j,j

b

T b,b
i

)
(9)

(
W j

b,j

W b
i,b

)
=

(
RT

hj
i

AdT
hj

b

RT
hj

i

)
∂Vi,j

∂hj
i

.
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where the port (T b,b
i ,W b

i,b) can be effectively used to change
the rest length of the spring. More details on the above
concepts and mathematical derivations can be found in [5]
and [14].

B. Masses

The dynamic properties of a rigid body are uniquely de-
scribed by its inertia tensor Ib. Let us consider a uniform
sphere Bb, and a reference system Ψb fixed to it with origin
coincident to the center of the sphere. The dynamics of a
general rigid body is expressed by:

P b
b = P b

b ∧ T b,0
b +W b

b tot (10)

where P b
b = Ib

bT
b,0
b ∈ R

6 is the generalized momentum4,
T b,0

b = ((ωb,0
b )T (vb,0

b )T )T is the twist of the sphere respect
to an inertial frame Ψ0, W b

b tot is the total wrench applied
to the sphere and P b

b ∧ comes from the Lie-Poisson bracket
and in the body coordinates Ψb is represented by a 6 × 6
matrix of the following form:

(P b
b ∧) :=

(
P̃ b

ω P̃ b
v

P̃ b
v 0

)

where P b
b = (PT

ω PT
v )T . For the specific case of the

sphere, Ib
b =

(
jI3 0
0 mI3

)
where I3 is the 3 × 3 identity

matrix, j is the rotational inertia of the sphere and m its
mass.
Also in this case, it is possible to give a GPCHS repre-

sentation of the inertia’s dynamics:

P b
b = (P b

b ∧)
∂Ek(P b

b )
∂P b

b

+ I W b
b (11)

T b,0
b = I

∂Ek(P b
b )

∂P b
b

where Ek(P b
b ) = 1

2 (P
b
b )

T (Ib
b )

−1P b
b is the kinetic energy

which is a function of P b
b instead that a function of T b,0

b

as usually thought. The corresponding function E∗
k(T

b,o
b )

is called co-energy.

C. Dampers - Energy Dissipation

The easiest manner to model a linear spatial damping
effect is to use an element which generates a wrench directly
proportional to the twist of the body whose free-energy has
to be dissipated. In this paper we use:

W b
b diss = RT

b,0
b (12)

where R ∈ R
6×6 is a positive definite matrix representing

a dissipation tensor in the frame Ψb.
Note that this element does not have a state and it will

appear in the complete GPCHS of the interconnected part,
as a part of the tensor R(x) of Eq. (3).

4The notation Xj,k
i represents the motion of frame Hi respect to

Hk expressed in the frame Hj .

V. The IPC Control Scheme

Following the steps presented in [5], [18], it is possible to
give a GPCHS description of the controller in the following
form: (

ẋB

ẋS

)
=

(
JB −RB −φBφ

∗
v

φvφ
∗
B 0

) (
∂HC

∂xB
∂HC

∂xS

)
+ (13)

(
0 0 0
φr φv(b) φvar

)
 t0r
t0v(b)
tbvar





 w0r
w0v(b)
wb
var


 =


0 φ∗r
0 φ∗v(b)
0 φ∗var


 (

∂HC

∂xB
∂HC

∂xS

)
.

where xB , xS are respectively the states of the virtual ob-
ject and the springs as presented in Eq. (11) and Eq. (9),
HC(xB , xS) is the the sum of the kinetic energy of the
virtual object plus the potential energies of the springs,
and φi, JB and RB are properly defined matrices [5]. The
interaction ports are the pairs (t0r , w

0
r ),(t

0
v(b), w

0
v(b)) and

(tbvar, w
b
var) where

t0r =


T

0,0
1
...
T 0,0n




is the vector of twists of the fingertips with respect to the
inertial frame, t0v(b) is the twist corresponding to the mo-
tion of the configuration xv in Fig. 2 and it is used by the
supervisor to change the virtual position of the hand and

tbvar =


T

b1,b1
1
...

T bn,bn
n




is the vector of twists that can be set by the supervisor to
change the minimum potential configuration of the springs
as shown schematically in Fig. 3 when changing the relative
configuration of i and b. This last subsystem represents
the IPC of Fig. 4. In the figure, bond graphs notation is
used: each power port of Eq. (13) corresponds to a power
bond in the figure.
In order to use the IPC for the real control of a robotic

system, we need a way to map w0r to the actuation of the
robot. This is done by using the robot differential kine-
matics, expressed by the Jacobian matrix Jr(q), that maps
a configuration velocity q̇ to the twists t0r of the tips of the
hand:

t0r = Jr(q)q̇

which implies

τ = JT
r (q)


−W 0

1
...

−W 0
n


 = −JT

r (q)w
0
r (14)
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Fig. 4. The interconnection between the robot and the intrinsically passive controller.

where W 0
i is the total wrench applied to tip i by the con-

troller’s spring i. From the above equations, it could be
deduced at first that, for the given GPCHS representation
of the controller, the velocities of the joints are needed for
the proposed scheme. This is not the case, since the con-
troller’s actions (i.e. the torques) applied to the robot are
a consequence of the springs attached to the fingertips, as
shown in Fig. 2. These elastic forces are function only of
the relative configuration of the tips with respect to the
virtual object. In particular, this implies that only the
pose of the tips are necessary to calculate these wrenches,
and not their velocities. The configurations can be directly
computed by using joints measurements and the forward
kinematics.
Clearly, this has the advantage that only position mea-

surements are necessary to implement the scheme: no ve-
locity and not even force measurements are in fact required.
On the other hand, note that this scheme can therefore be
used if the robot is back-drivable, which means in particu-
lar that any external force applied to the robot will result in
a motion of the robot itself, that can be therefore detected
with position measurements alone.
This scheme does not change the driving point mass of

the robot, but only its interactive compliance, differently
than the well known impedance scheme presented in [3].
It should be noticed though that even if different from [2],
[3], [4], the adopted philosophy is exactly the same as it
has been commented in [19].

A. Energy dissipation

Even if only positions measurements are needed, over-
all dissipation is achieved because of the presence of the
viscous term connected to the virtual object. The viscous

force is applied to the virtual object as shown in Fig. 2.
Any energy entering the control system which causes a mo-
tion of the virtual object is dissipated, and this has a nice
physical interpretation. Again, note that this is achieved
without the necessity to measure velocities of the robotic
system.

A control design philosophy very similar to this one has
been developed by Ortega and others, see for example [20].
However, it has to be pointed out that in this case the
formulation is based on a Lagrangian framework. Here,
the problem is considered in the more general Hamiltonian
setting as the power consistent interconnection of GPCHSs.

VI. Experimental Results

A laboratory setup has been used for the evaluation of
the control technique described in the previous Sections.
The setup, schematically shown in Fig. 5, consists of two
one-dof “fingers” equipped with position, force/torque and
tactile sensors, [21], [22], [23].
The kinematics of the set-up is trivial, and the theory

illustrated in the previous sections simplifies to the one-
dimensional case. Anyhow, the goal is to demonstrate with
a simple setup the idea of the virtual object concept during
manipulation. Obviously, generalizations to more complex
3D systems can be made using the above theory.
The block-diagram of the control scheme used in the

experiment is shown in Fig. 6. As discussed above, note
that only position measurement is used in the control loop
(x1, x2): force/torque and tactile information are acquired
only in order to show the features and the performances of
the overall control scheme.
In the following, two types of results are presented. The
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Fig. 5. Experimental setup.

first one refers to the damping injection and its stabilization
features for the control loop, the second one illustrates the
performances of the scheme in simple manipulation tasks.

A. The Damping Injection

Fig. 7, Fig. 8 and Fig. 9 show some experiments concern-
ing the damping injection. In particular, Fig. 7 reports an
experiment in which an external disturbance is applied to
one of the two fingers. The time-history of the joint posi-
tion without (plot a) and with (plot b) the damping action
is shown when it is switched on. Note that in the first case
there is practically no damping (some energy is anyhow
dissipated by the friction present in the motor and in the
joint), while in the second one, when damping is injected
(at t ≈ 4.5 s), oscillations are quickly stopped.
Fig. 8 reports an experiment still involving only one fin-

ger. In this case, the desired motion θv(t) of the virtual
object follows a sinusoidal trajectory (dashed curve), caus-
ing an unplanned contact with an obstacle present in the
workspace. From the plot of the real position (solid curve)
it may be seen that the free-space/contact transition does
not cause any problem. The forces applied to the obstacle
are reported in Fig. 9, considering two different values for
the stiffness coefficient kc.

B. Grasp and Manipulation

The second type of experiment concerns the use of both
the fingers for simple grasp and manipulation tasks of a
spherical object.
Fig. 10 reports data concerning a grasp of an object. The

joint positions of the two fingers are shown in Fig. 10.a,
along with the equilibrium length and the deformations of
the virtual spring, which allows the motion and the object’s
grasp. Fig. 10.b shows the time-history of the stored elastic
energy and the force applied to the object, as measured by
the force sensor.
An experiment concerning the manipulation of the

grasped object is reported in Fig. 11, that shows the desired
trajectory for the virtual object and the relative computed
motion (plot a), along with the motion on the tactile pad
(x-y directions) of the contact point (plot b).

A result concerning the robustness of the control scheme
is shown in Fig. 12. An external disturbance is applied
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Fig. 6. The implemented control schema

to the object, plot (a), and the energy dissipated by the
control is shown in plot (b). Note that, as already men-
tioned, the force sensor is not used in the control, but only
to measure and report the forces applied during the grasp.
Fig. 13 reports a similar experiment, showing the time-

history of the energies (kinetic, elastic and dissipated) of
the system when an external disturbance force is applied
during a grasp. It can be seen that the energy is decreasing
in the springs and the dissipated energy is increasing. This
shows experimentally what illustrated in Sect. V-A: the
energy supplied by a disturbing force flows from the springs
to the virtual object where it is dissipated.

VII. Conclusions

This paper has illustrated a control strategy based on
passivity concepts and on the damping injection principle.
Basic features of the proposed control scheme are on one
hand the physical intuition, that allows the designer to
define suitable properties for the overall system, and on
the other the implicit passivity, which is obtained without
any need to measure velocities of the system. The control
scheme, which may be adopted in principle for controlling
any mechanical systems, has been applied here to robotic
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grasping and manipulation tasks.
Experimental results obtained with a simple laboratory

setup have been presented and discussed, showing that
the scheme can be successfully adopted in this context,
achieving robust properties for handling also partially un-
known objects. With this respect, an aspect which de-
serves further research is the influence on the achievable
performances of the contact model and of slip situations
between the fingers and the grasped object. Part of future
work will also address the implementation of this scheme
on more general devices, such as advanced robotic hands.
Moreover, it is planned to extend this control technique in
order to take into account tele-manipulation systems with
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Appendix

Notation
Ψi Right handed orthonormal coordinate frame i.
Hj

i Homogeneous coordinate transformation from Ψi

to Ψj .
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Fig. 12. External disturbance applied during the grasp (a) and rel-
ative dissipated energy for achieving stability (b).

Hj
i Homogeneous coordinate transformation from Ψi

to Ψj .
T j

i Twist of Ψi with respect to Ψj .
T k,j

i Twist of Ψi with respect to Ψj as a numerical
vector expressed in Ψk.

Wi Wrench applied to a mass attached to Ψi.
W k

i Wrench applied to a mass attached to Ψi ex-
pressed as a numerical vector expressed in Ψk.

Wi,j Wrench applied to a spring element connecting
Ψi to Ψj on the side of Ψi.

W k
i,j Wrench applied to a spring element connecting

Ψi to Ψj on the side of Ψi expressed as a numer-
ical vector expressed in Ψk.

Pi Momenta of body Bi.
P k

i Momenta of body Bi expressed as a numerical
vector in Ψk.

Ii Inertia tensor of body Bi.
Ij

i Inertia tensor of body Bi expressed as a numeri-
cal vector in Ψj .
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