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Abstract: In the context of a parallel manipulator, inverse and direct Jacobian matrices are
known to contain information which helps us identify some of the singular configurations. In
this article, we employ kinematic analysis for the Delta robot to derive the velocity of the
end-effector in terms of the angular joint velocities, thus yielding the Jacobian matrices. Setting
their determinants to zero, several undesirable postures of themanipulator have been extracted.
The analysis of the inverse Jacobian matrix reveals that singularities are encountered when the
limbs belonging to the same kinematic chain lie in a plane. Two of the possible configurations
which correspond to this condition are when the robot is completely extended or contracted,
indicating the boundaries of the workspace. Singularities associated with the direct Jacobian
matrix, which correspond to relatively more complicated configurations of the manipulator,
have also been derived and commented on. Moreover, the idea of intermediate Jacobian
matrices have been introduced that are simpler to evaluate but still contain the information
of the singularities mentioned earlier in addition to architectural singularities not contemplated
in conventional Jacobians.
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1 INTRODUCTION

Theoretical and practical progress in the field of par-
allel manipulators has speeded up enormously over
the last 20 years. The underlying reasons are that
these mechanisms are stronger, faster, and more
accurate. They are capable of accelerating up to
50 g, lifting several tonnes in seconds, and moving
with a precision of nano meters. As a result, their
impact on various industries with objectives ranging
from food packaging to flight simulations is enor-
mous. However, parallel robots can have their own
problems and not all of these have been solved.
New topologies are being continuously proposed to
improve their working. Earlier studies were focused
on parallel mechanisms with six degrees of freedom
(DOF) that carry the advantage of high stiffness,
low inertia, and large payload capacity. However,

they suffer from the problems of relatively small
useful workspace and design difficulties. Moreover,
overwhelming problems exist for finding closed-
form expressions for direct kinematics. In order to
avoid these problems, there has been recently a
growing tendency to focus on parallel manipulators
with three translational DOF, which are better-
suited for high speed and high stiffness manipu-
lation. Moreover, the availability of closed-form
solutions enables accurate design and efficient
control. A widely known example is the one designed
by Clavel [1], generally referred to as the Delta robot.
It is a perfect candidate for pick and place operations
of light objects. Since the advent of the company
Demaurex, Delta robots of varying dimensions have
been introduced into a large variety of industrial
markets, e.g. food, pharmaceutical, and electronics
industries. For a detailed review of its industrial
applications, see reference [2]. Since then, several
other proposals have been put forward in the litera-
ture [3–8]. In this article, the focus of study is the
Jacobian analysis of the Delta robot.
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The traditional Jacobian matrix provides a trans-
formation from the velocity of the end-effector in
Cartesian space to the actuated joint velocities [9].
When a manipulator is at a singular position, the
Jacobian matrix is singular too [10, 11]. In the case
of the parallel manipulators, it is convenient to
work with a two-part Jacobian [10], the inverse and
the forward one. The advantage is that a two-part
Jacobian allows, in a natural way, the identification
as well as classification of various types of singular-
ities. Following closely the technique presented by
Stamper [12], the inverse and forward Jacobian
matrices for the Delta robot are evaluated. [13, 14]
The classification scheme outlined by Gosselin and
Angeles [10], then allows us to categorize the singu-
larities of the Delta robot into three types. The first
type corresponds to the situation where different
branches of the inverse kinematics problem con-
verge. This type of singularity results in a loss of
mobility and occurs at the boundary of the
manipulator workspace. The second type is realized
when different branches of the forward kinematics
problem converge, resulting in additional DOF at
the end-effector. Simultaneous occurrence of these
two kinds can be classified as the third type of singu-
larity [15]. Additionally, there also exist architectural
singularities, e.g. when the dimensions of the moving
and fixed platforms are comparable. Therefore,
special care should be taken in the design of these
manipulators to avoid the said singularities. It is
found that these singularities by reducing a certain
number of legs from the full kinematic chain and
carrying out a Jacobian analysis for the reduced
loop. The corresponding Jacobians are termed as
the intermediate Jacobians.

This paper is organized as follows: section 2 is
devoted to a brief review of the kinematic analysis
to establish the notation. Based upon the equations
presented in section 2, the derivation of the two
Jacobians are carried out in section 3. In section 4,
the singularity analysis is presented. Section 5
introduces a simpler technique of identifying
singularities based upon intermediate Jacobians.
Section 6 concludes the article.

2 KINEMATICS

The Delta robot consists of a moving platform
connected to a fixed base through three parallel
kinematic chains. Each chain contains a rotational
joint activated by actuators in the base platform.
The movements are transmitted to the mobile
platform through parallelograms formed by bars
and spherical joints, Fig. 1.

The kinematics of the Delta robot can be studied
by analysing Fig. 2, where O represents the centre

of the fixed platform and Ai three points on the
middle of the three sides of the fixed platform.

These are the points where the limbs hold onto the
platform and correspond to the position of the actua-
tors. P is the centre of the moving platform. Two
convenient sets of Cartesian co-ordinate frames, xyz
and xiyi zi, are defined in such a way that the
xy-plane and the xiyi-plane are the same and coincide
with the plane of the fixed platform. Axes z and zi
are perpendicular to the above planes and, therefore,
are identical. The angle between x-axis, i.e. Ox, and
the xi-axis, i.e. Oxi, OAi, or Ai xi, isfi. OAi is always par-
allel to PCi. Owing to the presence of the rotational
joint at Ai, AiBi moves just in the xi zi-plane. At Bi

are passive spherical joints. So BiCi can have com-
ponents along all the three axes, namely Ai xi, Ai yi,

Fig. 2 The left half shows the projection of the Delta
robot onto the xizi-plane and helps in defining
some kinematic variables. The right half shows
the end-on view

Fig. 1 The Delta robot 580
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and Ai zi. u1i is the angle between AiBi and Ai xi. u 2i is
the angle between AiBi and the line that results from
the intersection of the planes xizi and that of the
parallelogram shown on the right half of Fig. 1. There-
fore, this line lies in the xizi-plane. u3i is the angle
between BiCi and Ai yi. As a result, b cosu3i is the com-
ponent of BiCi parallel to Ai yi and b sin u3i is the com-
ponent of Bi Ci in the xizi-plane.

The most relevant loop should be picked up for the
intended Jacobian analysis. Let ~u be the vector made
up of actuated joint variables and ~p be the position
vector of the moving platform. Then

~u ; u1i ¼
u11
u12
u13

2

4

3

5, ~p ¼
px

py

pz

2

4

3

5 (1)

The Jacobian matrix will be derived by differentiat-
ing the appropriate loop closure equation and
rearranging the result in the following form

Ju

_u11
_u12
_u13

2

4

3

5 ¼ Jp

_px ¼ vx
_py ¼ vy
_pz ¼ vz

2

4

3

5 (2)

where vx, vy, and vz are the x, y, and z components of
the velocity of the point P on the moving platform
in the xyz frame. In order to arrive at the above
form of the equation, we look at the loop OAiBiCiP.
The corresponding closure equation in the xiyizi
frame is

OP
##!

þ PCi

###!
¼ OAi

###!
þAiBi

###!
þBiCi

###!
(3)

In the matrix form we can write it as

px cosfi # py sinfi

px sinfi þ py cosfi

pz

2

64

3

75 ¼
R

0

0

2

64

3

75#
r

0

0

2

64

3

75þ a

cosu1i

0

sinu1i

2

64

3

75

þ b

sinu3i cos (u2i þ u1i)

cosu3i

sinu3i sin (u2i þ u1i)

2

64

3

75

(4)

Time differentiation of this equation leads to the
desired Jacobian equation as shown in the next
section.

3 THE JACOBIAN MATRICES

The loop closure equation (3) can be re-written as

( ~pþ ~r) ¼ ~Rþ ~ai þ ~bi (5)

Differentiating this equation with respect to time
and using the fact that ~R is a vector characterizing
the fixed platform

(~pþ ~r)
†

|fflfflffl{zfflfflffl}
~p
†

¼ ~a1
†
þ ~bi

†

In this expression, every point on the moving plat-
form has exactly the same velocity. Therefore

~p
†
¼ ~v ¼ ~ai

†
þ ~bi

†
(6)

The linear velocities on the right hand side of
equation (6) can be readily converted into the angu-
lar velocities by using the well-known identities.
Thus

~v ¼ vai
##! % ai

#!þvbi

##! % bi
!

(7)

The presence of ~vbi introduces an awkward depen-
dence upon the variables u

†
2i and u

†
3i. However, there

is a way out. It can be got rid of by taking a scalar
product of expression (7) with the unit vector bi

b̂i & ½~v ¼ vai
##! % ai

#!þvbi

#! % bi
!
(

As the triple product with two identical vectors is
zero, what is left is merely

b̂i & ~v ¼ b̂i &vai
##! % ai

!
(8)

In the component form, the left-hand side of this
equation can be written as

b̂i & ~v ¼ ½sin u3i cos (u2i þ u1i)(½vx cosfi # vy sinfi(
þ cos u3i½vx sinfi þ vy cosfi(
þ ½sin u3i sin (u2i þ u1i)(vz ¼ Jixvx

þ Jiyvy þ Jizvz

(9)

where

Jix ¼ sin u3i cos (u2i þ u1i) cosfi þ cos u3i sinfi

Jiy ¼ # sin u3i cos(u2i þ u1i) sinfi þ cos u3i cosfi

Jiz ¼ sin u3i sin (u2i þ u1i)

(10)

On the right-hand side of equation (8), the move-
ment of the joint a is in the xizi-plane. Thus it only
has a component of velocity in this plane. This is
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the angular velocity about the y axis. Thus

vai
##! ¼

0
# u1i

†

0

2

4

3

5 (11)

The negative sign is just a matter of convention.
Therefore

vai
##! % ai

! ¼
î ĵ k̂

0 # u1i
†

0
a1i a2i a3i

"""""""

"""""""
¼ #a3i u1i

†
îþ a1i u1i

†
k̂

The right-hand side of equation (8) can now be
written in its simplified form as

b̂i & (vai
##! % ai

!
) ¼ #a sin u2i sin u3i u1i

†
(12)

The equations (9) and (12) can be equated for
every value of i

J1xvx þ J1yvy þ J1zvz ¼ #a sin u21 sin u31 u11
†

J2xvx þ J2yvy þ J2zvz ¼ #a sin u22 sin u32 u12
†

J3xvx þ J3yvy þ J3zvz ¼ #a sin u23 sin u33 u13
†

which readily implies

Jp~v ¼ Ju ~u
†

(13)

where

Jp ¼
J1x J1y J1z
J2x J2y J2z
J3x J3y J3z

2

4

3

5 (14)

and

Ju ¼ a

%
sin u21 sin u31 0 0

0 sin u22 sin u32 0
0 0 sin u23 sin u33

2

4

3

5

(15)

4 THE SINGULARITIES

The singularities of the manipulator are obtained by
encountering the conditions that yield singular Jaco-
bian matrices. The two-part Jacobian helps in the
classification of these singularities.

4.1 Inverse kinematic singularities

The inverse kinematic singularities are associated
with the inverse Jacobian and they arise when

det ( Ju) ¼ 0 (16)

As is well known, the physical significance of this
condition becomes obvious if the equation (13) is
written as follows

~u
†
¼ J#1

u Jp~v ¼
Adj( Ju)

det ( Ju)
Jp~v

Since the velocities cannot be infinitely large, the
condition det ( Ju) ¼ 0 must imply ~v ¼ 0 in some

direction. Thus there exist some non-zero ~u
†
vectors

that produce ~v vectors that are zero in some direc-
tion, i.e. there are moving platform velocities that
cannot be achieved. This happens at the boundary
of the workspace. Equation (16) implies

u2i ¼ 0 or p for any of the i (17)

or

u3i ¼ 0 or p for any of the i (18)

1. Condition (17) corresponds to the configuration
when the limb ai is in the plane of the parallelo-
gram formed by limb bi for any of the i.

2. Condition (18) corresponds to the posture when
any of the limbs bi is parallel (or anti-parallel) to
y-axis. As ai is in the xz-plane, it means that in
this configuration, ai?bi:

For example, the completely stretched out posture
of the robot tends to make all ai parallel to bi. On the
other hand, a completely contracted position tries to
force ai and bi anti-parallel to each other. These pos-
itions of the manipulator correspond to the lower
and upper boundaries of the workspace and have
been depicted in Figs 3 and 4. Note that in practice,
ai and bi cannot become completely anti-parallel
because of the mechanical restrictions imposed by
the rotational joints possessing a finite size.

4.2 Direct kinematic singularities

The direct kinematic singularities are related to the
singularities of the direct Jacobian given in equation
(14), which is much more complicated than the
inverse Jacobian. Recalling that the determinant of
a Jacobian vanishes when any row or any column is
identically zero, a representative example of a
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couple of singular configurations is provided next

u3i ¼ 0 or p 8 i (19)

or

u2i þ u1i ¼ 0 or p 8 i (20)

1. Condition (19) implies that the third column of Jp
is zero. Physically, the posture of the robot corre-
sponds to when all the limbs bi are in the plane of

the moving platform and in fact lie entirely along
yi-axes.

2. Condition (20) also implies that the third column
of Jp is zero. Physically, the posture of the robot
again corresponds to when all the limbs bi are in
the plane of the moving platform. However, they
can have both xi and yi components non-zero.
An example is shown in Fig. 5, where
u2i þ u1i ¼ p. This situation is depicted by a virtual
horizontal plane as the actual relative lengths of
ai and bi prevent reaching that singular
configuration.

Conditions (18) and (19) are harder to visualize
and we refrain from displaying their figurative
representation.

5 INTERMEDIATE JACOBIANS AND
SINGULARITIES

This section, introduces the idea of intermediate
Jacobians that relate the velocity of the end-
effector to the time rate of change of the length of a
kinematic chain. In order to explain the idea, the
closed loop OAiCiP # OAiBiCiP, which is obtained
by ignoring the limbs ai and bi in the full kinematic
chain OAiBiCiP, is explained and reviewed. The
Jacobian analysis of this smaller loop is now carried
out. This is the reason to call the corresponding
Jacobians as the intermediate Jacobians. The loop
equation is

AiCi

####!
¼ #OAi

###!
þOP

##!
þ ~PCi (21)

The length AiCi is that of the vectorial kinematic

chain AiCi

###!
, Writing the vector components in the

reference frame xiyizi and simplifying the resulting

Fig. 3 Completely stretched out posture of the robot
depicting condition (17)

Fig. 4 Completely contracted configuration of the
robot depicting condition (17)

Fig. 5 The virtual horizontal plane corresponds to
condition (20)
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equation leads to

c2i ¼ c2xi þ c2yi þ c2zi

¼ (px þ (r#R)cosfi)
2 þ (py # (r#R) sinfi)

2 þp2
z

where ci ¼ AiCi. Adopting a more convenient nota-
tion in which px ; p1,py ; p2,pz ; p3, a function

fi(pi,ci)¼ (p1 þ (r#R)cosfi)
2 þ (p2 # (r#R) sinfi)

2

þp2
3 # c2i

can be defined, such that the time differentiation
yields

@fi
@pj

@pj

@t
þ @fi
@cj

@cj
@t

¼ 0

This equation can be readily re-arranged in the
following form

Jpij pj
†
¼ Jcij cj

†
(22)

where the new intermediate Jacobians are defined as

Jpij ¼

@f1
@p1

@f1
@p2

@f1
@p3

@f2
@p1

@f2
@p2

@f2
@p3

@f3
@p1

@f3
@p2

@f3
@p3

2

666664

3

777775
, Jcij ¼#

@f1
@c1

@f1
@c2

@f1
@c3

@f2
@c1

@f2
@c2

@f2
@c3

@f3
@c1

@f3
@c2

@f3
@c3

2

666664

3

777775
(23)

It is preferable to call Jij
p and Jij

c direct and inverse
intermediate Jacobians because they arise by consid-
ering the sub-loop OAiCiP of the full loop OAiBiCiP,
which leads to the conventional definition of the
Jacobian matrices. Explicitly evaluating the partial
derivatives involved, results in up to a multiplicative
factor

Jpij ¼
c1 0 0

0 c2 0

0 0 c3

2

64

3

75 (24)

Jcij ¼
p1 þ cosf1(r # R) p2 # sinf1(r # R) p3

p1 þ cosf2(r # R) p2 # sinf2(r # R) p3

p1 þ cosf3(r # R) p2 # sinf3(r # R) p3

2

64

3

75

(25)

Just as mentioned earlier, the singularities of these
matrices correspond to the singular positions of
the robot. The inverse singularities correspond to

the fact that

ci ¼ 0 for any of the i (26)

This situation arises when one of the kinematic
chains is completely shuffled up (a position corre-
sponding to condition (17)). The direct singularities
correspond to the condition

pz ¼ 0 (27)

or

r ¼ R (28)

If a were equal to b, it is easy to see that condition
(27) includes both the conditions (19) and (20).
Condition (28) does not owe itself to a certain pos-
ition or orientation of the manipulator. It is related
to its structure because it corresponds to when the
dimensions of the moving and the fixed platform
become equal. It is a singularity and is sometimes
referred to as the architectural singularity [6]. It is a
characteristic of the Delta-type robots and has been
mentioned in the above reference in the context
of a new variation of the Delta robot that can be
called RAF-robot. As a confirmation, an analysis of
the intermediate Jacobians for the RAF-robot
confirms that the results are identical. Note that the
conventional Jacobians do not make reference to
such singularities. However, cumbersome direct
kinematic analysis can be used to confirm the exist-
ence of this singularity. Without going into calcu-
lational details, the final results of the direct
kinematic analysis are

px ¼
f1# e1# e3½e2f2# e2e4# e5f1þ e1e5=e2e6# e3e5(

e2
,

px ¼
e2f2# e2e4# e5f1þ e1e5

e2e6# e3e5
,

pz ¼ ½e8#p2
x #p2

y þ2k3px #2s3py(1=2

(29)

where

ki ¼ (R# r)cosfi, si ¼ (R# r) sinfi, i¼ 1, 2, 3

e1 ¼ k2
3 # k2

1 þ s23 # s21, e2 ¼ 2k1#2k3

e3 ¼ 2s3#2s1, e4 ¼ k2
3 #k2

2 þ s23 # s22
e5 ¼ 2k2#2k3, e6 ¼ 2s3#2s2

e7 ¼ k2
3 þ s23, e8 ¼ c23 # e7

f1 ¼ c23 # c21 , f2 ¼ c23 # c22
(30
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Moreover, ci can be written entirely in terms of a, b
and uij as follows

c2i ¼ a2þb2þ2ab sinu3i cosu2i (31)

Equation (29) gives the position of the end-effector
in terms of the actuated joint variables. Therefore, it
is a set of equations corresponding to direct kine-
matic analysis. The singular positions corresponding
to equation (29) are

e2 ¼ 0, e2e6# e3e5 ¼ 0 (32)

One of the ways to satisfy these conditions is to set
r ¼ R, which is nothing but condition (28). However,
the analysis of the intermediate Jacobians is the sim-
plest way to arrive at this singular position.

6 CONCLUSIONS

This article presents a detailed Jacobian analysis for
the Delta robot, based upon its kinematics and the
vector analysis for rotational systems. Employing
the technique of the two-part Jacobian developed
by Gosselin and Angeles [10], the inverse and for-
ward kinematic Jacobians are evaluated. As a natural
advantage, the associated singularities can be classi-
fied into two categories: (i) the ones that arise from
setting the determinant of the inverse kinematics
Jacobian to zero and lie at the boundary of the work-
space and (ii) the others that are connected to the
direct kinematics Jacobian and lie well inside the
workspace region. A new method of identifying
these singularities is then introduced using inter-
mediate Jacobians, which are much less intricate to
evaluate and contain not only the information
found in traditional Jacobian matrices but also
describe structural singularities. For practical pur-
poses, the knowledge of these singularities plays an
essential role in studying the dynamics and

ultimately the physical manufacturing of the manip-
ulator, Fig. 6.
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