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Abstract

This article studies the kinematic design of different types
of spherical three-degree-of-freedom parallel manipulators.
The mechanical architectures presented have been introduced
elsewhere. However designs having at least one isotropic
configuration are suggested here for the first time. Isotropic
configurations are defined, in turn, as those configurations in
which the Jacobian matrix, mapping the angular velocity vec-
tor of the effector into the joint velocities, is proportional to
an orthogonal matrix. First, a review of the direct and inverse
kinematics of spherical three-degree-of-freedom parallel ma-
nipulators is outlined, and a general form for the Jacobian
matrix is given. Parallel manipulators with revolute or pris-
matic actuators are discussed. Then, the concept of kinematic
conditioning is recalled and used as a performance index for
the optimization of the manipulators. It is shown that this leads
to designs having at least one isotropic configuration. Finally,
a few examples of such designs are presented.

1. Introduction

During the past decade, many researchers have been
working on parallel manipulators or parallel architecture
mechanisms (Hunt 1983; Fichter 1986; Merlet 1987; Gos-
selin 1988). These manipulators can be used to replace
conventional serial robots when better stiffness is needed

and a large workspace is not necessary.
One of the designs proposed consists of a spherical

parallel manipulator used to orient a rigid body in space
(Asada and Cro Granito 1985; Gosselin and Angeles
1989; Craver 1989). Other kinds of similar mechanisms
have also been proposed in Kurtz and Hayward ( 1991 ).
Spherical manipulators can be used, for example, for the

orientation of solar panels or parabolic antennas as well
as for the orientation of machine tool beds and work-

pieces. Such a manipulator could also be applied as an
orientation wrist in an industrial robot. Moreover, an ap-
plication in biomechanical engineering (i.e., to replace
existing artificial hips) is currently being studied.
The purpose of this article is to present different kinds

of spherical parallel manipulators and to show how their
kinematic design could be optimized to obtain manipula-
tors with isotropic configurations. To this end, the direct
and inverse kinematics will be reviewed. Then, a general
form for the Jacobian matrix will be given for manipu-
lators with either revolute or prismatic actuators. Finally,
it will be shown that it is possible to obtain spherical
parallel manipulators having isotropic configurations by
properly adjusting the geometric parameters. In these
configurations, the designs then obtained lead to the best
possible kinematic accuracy at the effector for a given
accuracy of the actuators (Salisbury and Craig 1982).
For all the manipulators discussed, symmetric configu-

rations will be assumed for the base and the gripper, not
only to simplify the equations, but also to consider the
most general applications. Indeed, because the tasks to
be performed are not known a priori, it seems natural to

consider a symmetric design.

2. Kinematic Architectures

2.1. Spherical Parallel Manipulators With Revolute
Actuators

The manipulators studied in this section consist of three
identical kinematic subchains connecting the base to a
common end effector. On each chain, there is one fixed
actuated revolute joint whose rotation is associated with
angle ei, and two free revolute joints connecting, respec-
tively, the proximal and distal links and the distal link
with the end effector. The rotation of the two free joints
are represented by angles Øi and 6z, respectively.
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The characteristic feature of all spherical three-degree-
of-freedom manipulators with revolute joints is that the
axes of rotation of all the joints intersect at a common
point called the geometric center of the manipulator.
Hence, the center is the point around which every el-
ement of the robot rotates. The relative orientation of

each of the axes will be used to define different types of

manipulators.

2.1.1. Type 1: Shoulder Module

This type of manipulator is referred to in Craver (1989)
as a robotic shoulder module. In this work, a complete
prototype is discussed and analyzed from a design point
of view. This architecture represents the most general
case of spherical three-degree-of-freedom parallel ma-
nipulators. The base and the end effector can be thought
of as two pyramidal modules having one vertex in com-
mon ; this vertex is the geometric center of the robot. A
manipulator of this type is shown in Figure 1. The axes
of the revolute joints of the base and of the end effector
are located on the edges of the pyramids. For purposes of
symmetry, the triangle at the base of each pyramid will
be an equilateral triangle. Angle II is the angle between
two edges of the base pyramid, and angle q2 is the angle
between two edges of the end effector pyramid (Fig. 2).
Furthermore, 3i is the angle between one edge and a line
passing through the center of the manipulator and perpen-
dicular to the base of the pyramid. It is to be noted that
only one of these two angles-ri or (3i-is necessary to
uniquely define the base or the platform of a manipulator,
as they are related through:

Angle ri. the angle between two edges, may vary from
one pyramid to the other in the same manipulator. An-
gles 0:] and G2 represent the angular length associated
with the intermediate links. Again, by symmetry, these
angles will be the same on each of the subchains of the
manipulator. As mentioned earlier, this geometry has been
studied in detail in Craver (1989), which also includes

equations for the inverse kinematics of the manipulator.
Moreover, its direct kinematics have been solved using
a polynomial approach in Gosselin et al. ( 1992b). In this
reference, it is shown that the direct kinematic problem of
this manipulator can lead to a maximum of eight different
solutions. 1

2.1.2. Type 2: Manipulator With Coplanar Actuators

The kinematic design of this type of manipulator has
been studied in detail in Gosselin and Angeles (1989).

Fig. 1. Three-degree-of-freedom shoulder module.

Moreover, the direct kinematic problem has been solved
using a polynomial approach in Gosselin et al. (1992a).
The particular feature of this design is that the three revo-
lutes on the base and on the platform have coplanar axes.
This architecture is in fact a special case of the shoulder
module in which angles II and q2 are equal to ~.~r/3. A
manipulator of this type is represented in Figure 3.

Fig. 2. Geometric parameters for the shoulder module.
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Fig. 3. Three-degree-of-freedom parallel manipulator with
coplanar actuators.

2.1.3. Type 3: Manipulator With Collinear Actuators

The end effector of this type of spherical manipulator can
take any of the configurations presented earlier. However,
the base consists of three collinear actuators. This design
has been briefly described in Asada and Cro Granito
(1985). Once again, it is a particular case of the shoulder
manipulator in which angle &dquo;n is equal to 0. Figure 4
shows a spherical manipulator with collinear actuators in
which the end effector is such that angle ~’2 equals 2~/3.
The direct kinematic problem for this type of manipulator
has been studied in Gosselin et al. (1992a,b).

2.2. Spherical Parallel Manipulators With Prismatic
Actuators

A spherical three-degree-of-freedom manipulator can also
be constructed using prismatic actuators. In this case, the
end effector is mounted on a fixed spherical joint-the
center of rotation-and is connected to the base via three

legs. Each of these legs is attached to the end effector
via a spherical joint and to the base by a universal joint.
Moreover, the length of the legs can be controlled using
a prismatic actuator (Fig. 5). This architecture, in which
the structure shown by [ABCD] is the base and [abc] is
the end effector, could also be used for a three-degree-of-
freedom joystick. Indeed, the prismatic actuators can be
replaced by displacement transducers, which would record
the length of the legs, from which the orientation of the
platform can easily be computed. Such a device could be
used as a master for a teleoperated spherical robot.
From a topologic point of view, the parallel manip-

ulator with prismatic joints is exactly the same as the
parallel manipulator presented in the previous section.
Furthermore, the Jacobian matrix, which will be obtained
later, has a similar form. One of the differences is that the

Fig. 4. Three-degree-oflreedom parallel manipulator with
collinear actuators.

inverse kinematic problem leads to a unique solution in
this case, whereas it leads to eight solutions in the case
of the manipulator with revolute actuators. On the other
hand, the direct kinematics, which have been studied in
Innocenti and Parenti-Castelli ( 1991 ), leads to eight solu-
tions, just as in the case of the manipulator with revolute
actuators.

Theoretical and practical considerations lead to the
conclusion that both kinematic arrangements offer po-
tential advantages, depending on the design criteria. For
example, the manipulator with prismatic actuators leads
to simpler kinematic equations (a unique solution for the
inverse kinematics), while the manipulator with revolute
actuators leads, in general, to a larger workspace. Hence,
in what follows, both cases will be investigated.

3. Kinematic Analysis
3.1. Inverse Kinematics

3. 1. 1. Manipulator With Revolute Actuators

Because both the direct and the inverse kinematic prob-
lems have already been solved for this kind of archi-
tecture in Gosselin and Angeles (1989), Craver ( 1989),
Innocenti and Parenti-Castelli ( 199 I ), and Gosselin et al.
( 1992a,b), we will now only briefly outline the results
obtained for the inverse kinematics. The notation used
here will be the same as the one used in Gosselin et al.

( 1992b). Let Ui, i = 1, 2, 3 be the three unit vectors

along the axes of the revolute joints of the base and let
vi, i = l, 2, 3 be the three unit vectors along the axes
of the revolute joints of the end effector (see Fig. 2). The

 © 1993 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at SCELC on May 5, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


397

origin of the reference coordinate frame is at the intersec-
tion of the u~s and vis, (i.e., at the center of rotation).

In all cases studied here, the solution of the inverse
kinematic problem is very simple and leads to a max-
imum of eight real solutions. Indeed, for manipulators
with revolute actuators, we can use the following geomet-
ric constraints:

where wi is the unit vector associated to the revolute joint
connecting the two intermediate members of the ith leg of
the manipulator.

Moreover, when the orientation of the end effector
is given (i.e., if the vis are known), it has been shown
in Craver (1989) and Gosselin et al. (1992a,b) that the
solution of the above-mentioned problem will result in
three uncoupled algebraic equations for the actuated joint
angles-noted BZ, i = 1, 2, 3-which are written as:

with

and

where vzi, vyi, and vzi are the components of the known
vector v~,, and &OElig;I, c~2, and Qj depend on the geometry of
the manipulator under study. Angles ~7i, i = 1, 2, 3 repre-
sent the angles between the projections of the axes of the
actuated revolutes on the base plane of the fixed pyramid
and a given reference in that plane. By symmetry, we can
then write:

For a given orientation of the platform, we will then have
two solutions for Oi for each leg.

3.1.2. Manipulator With Prismatic Actuators

As mentioned earlier, the inverse kinematic problem for
the parallel spherical manipulator with prismatic actuators
will be simpler and will lead to only one solution.

Let pi be the length of the ith actuator and let Q be the
rotation matrix representing the orientation of the end ef-
fector in a coordinate frame fixed to the base. Moreover,
let ei be the position vector of the point of attachment
of the ith leg on the platform, expressed in a coordinate
system fixed to the end effector. In addition, let sis be the

position vector of the point of attachment of the ith leg
to the base, given in a coordinate frame fixed to the base.
We then have:

where

As mentioned earlier and as shown in Innocenti and
Parenti-Castelli (1991), it is recalled that the solution

of the direct kinematic problem of the manipulator with
prismatic actuators can lead to up to eight real solutions.

3.2. Derivation of the Jacobian Matrix for
Manipulators With Revolute Actuators

The Jacobian matrix is defined as the matrix mapping
the angular velocity of the end effector into the vector of
actuated joint rates. Indeed, we can write

where 0 is the vector of actuated joint rates and cv is the
vector giving the angular velocity of the end effector.
From Gosselin and Angeles (1990), we have, for closed-
loop kinematic chains, the following equation:

which leads to

Matrices A and B are given in Gosselin and Angeles
(1990) and can be written in invariant form as

and

The Jacobian matrix is then easily obtained using the unit
vectors associated with the revolute joints.
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3.3. Derivation of the Jacobian Matrix for the3.3. 

Manipulator With Prismatic ActuatorsMan~M~~r Wif~ P~~~c Ac~Mator~

The Jacobian matrix for this type of manipulator is now
derived. Differentiating equations (g)-(11) with respect to
time and then rearranging terms leads to

where

and

As expected, this matrix is very similar to the one ob-
tained for the manipulators with revolute actuators.
Hence, the kinematic optimization of this type of ma-
nipulator will be pursued similarly-i.e., by simply
adjusting vectors ei and si to obtain an orthogonal Ja-
cobian matrix. Figure 5 shows an example of a decoupled
parallel manipulator with prismatic actuators, which will
be discussed in more detail in Section 6.

4. Kinematic Accuracy and Isotropy
The kinematic accuracy of a robot is defined as the ac-

curacy of the Cartesian motion of the end effector of the

manipulator for a given resolution of the actuators. In
other words, the kinematic accuracy characterizes the

Fig. 5. Three-degree-of-freedom parallel manipulator with
prismatic actuators.

natural precision of the linear system of equation (13)
and (18). This concept was introduced in Salisbury and
Craig (1982), where the accuracy of the linear transfor-
mation between the joint rates and the Cartesian velocities
is quantified using the condition number of the Jacobian
matrix, a measure used by numerical analysts (Golub and
Van Loan 1983). The condition number of a matrix is
defined as 

-

and the following norm is used here:

in which matrix W is defined as

where n is the dimension -of the square matrix J, and 1
denotes the n x n identity matrix. Therefore, we have

To simplify the numerical computations, the reciprocal of
the condition number is used. Therefore, the conditioning
index ((J) is defined as

and hence

A value of ((J) in the immediate vicinity of zero denotes
a singular configuration, whereas a value in the immedi-
ate vicinity of 1 characterizes an isotropic configuration
(i.e., a perfectly conditioned Jacobian matrix). Moreover,
because only orthogonal matrices and their multiples are
perfectly conditioned, an isotropic configuration will lead
to a decoupling of the motion of the manipulator. Indeed,
in such a configuration, a unit velocity of each of the
three actuators will be associated with angular velocities
of the end effector in three orthogonal directions, respec-
tively, and having the same magnitude.
One of the main objectives of this work is to optimize

the geometric design of parallel spherical manipulators to
obtain an isotropic robot (i.e., a robot that can attain at
least one isotropic configuration). This can be achieved
for the type 1 manipulator (shoulder manipulator) by
mere geometric reasoning. Indeed, it is clear that if each

of the three vectors ui, i = 1, 2, 3 on the base are aligned
with each of the three vectors v j 1 j = 1, 2, 3 on the

platform, with i 7~ j, then the motion is decoupled along
orthogonal axes provided that ~1 = a2 = rr/2. Although
this result is very interesting, it is, nevertheless, far from

being general. Therefore, a more systematic approach
to identify isotropic designs will be pursued in the next
section.
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5. Isotropy of the Spherical Parallel
Manipulator

We will now attempt to obtain a set of spherical manipu-
lators whose Jacobian matrix will be perfectly conditioned
for a certain configuration. This configuration will be re-
ferred to as the nominal configuration. Furthermore, the
nominal configuration will be assumed to be a symmet-
ric configuration (i.e., one for which all joint variables
Bi i = l, 2, 3 are equal). We then have

where

which means that if b is not equal to 0, then only matrix
A will affect the conditioning of the Jacobian. In addition,
from the symmetry, we have:

where

and

with, as mentioned in Section 2,

Hence, an isotropic design will be obtained whenever the
following equation is satisfied:

The locus of the points in the (a,, q. 0) space that satisfy
this equation represents the set of manipulators that are
isotropic in the nominal configuration mentioned earlier.
Notice that the (ai, ’f, 8) space has been considered in-
stead of the more natural (c~ i , -y, ac~ ) design space. In fact,
it can be shown that both approaches are equivalent, since
a unique value of a2 will correspond to given values
of al, q, and 0. The former design space has been used
mainly for purposes of simplicity of the equations. Fig-
ure 6 shows a number of curves obtained from equation
(33) for different values of -y.

Because all these curves verify equation (33), they all
represent loci in the design space associated with geo-
metric parameters that lead to a perfectly conditioned
Jacobian matrix. The particular case derived from ge-
ometric reasoning in the previous section appears very
clearly on the graph as the curve corresponding to -y = zE 2

6. Examples .

6.1. Manipulators ~th Revolute Actuators

We will now use the equation derived earlier in terms
of the three design variables-(a1, Ct2, ’f) or, alterna-
tively, (a 1, B, 7)-to find manipulators having at least one
isotropic configuration. First of all, we will fix angle -y,
thereby imposing the geometry of the base and the plat-
form. Then, different sets of values of a1 and a2 that will
render the Jacobian isotropic will be considered.

Fig. 6. Isotropic loci in the design space (F(a¡, -y, B) = 0).
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6.1.1. Case l: -y = 1f
By imposing that 1’1 = 1’2 = ’7 = x/2, we obtain a
shoulder module whose unit vectors u2 and vi form, re-

spectively, an orthogonal base attached to the fixed link
and the platform. A graph of the conditioning of the Ja-
cobian matrix in the nominal configuration is represented
in Figure 7. From this figure, it is clear that there exist

values of a j and a2 for which a perfect conditioning is
achieved. Moreover, for the case at hand, eq. (33) now
takes on the following simplified form:

Hence, with the following assumption on a I -i.e.,

the manipulator’s Jacobian matrix is perfectly condi-
tioned in the nominal configuration for any value of
a2. Equation (34) is also satisfied when 0 is equal to
~r/4. However, this solution corresponds to a manipulator
whose Jacobian matrix is equal to 0. Indeed, in this case,
we have

and the condition associated with eq. (33) is not verified.
The isotropic manipulator identified using geometric

reasoning in the preceding section is obtained by setting
a2 = 7r/2. The corresponding Jacobian matrix is written
as 

- - -

Fig. 7. Conditioning graph of the manipulator for which
’Y = (-F/2) as a function of a and a2.

Fig. 8. Isotropic shoulder module.

which is orthogonal since

The Jacobian matrix is then decoupled around the axes
corresponding to the unit vectors v 1, v2 and V3. Figure 8
shows a shoulder type manipulator in an isotropic config-
uration with aj and a2 equal to ar/2. Another property of
this manipulator is that the conditioning decreases very
slowly when one moves away from the isotropic configu-
ration. Thus, the average conditioning is very good for a
finite region of the workspace centered on that configura-
tion.

6.1.2. Case 2: -y = 2w
We will now consider the case for which angle -y is equal
to 27r/3 (i.e., the spherical parallel manipulator with
coplanar actuators). Figure 9 shows the conditioning of
the Jacobian matrix in the nominal configuration as a
function of CtB and &OElig;2. It is clear from this figure and
from Figure 6 that there exist points where ~(J) = 1 is

satisfied. Now let

A maximum value of ((J) is then obtained if
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Fig. 9. Conditioning graph of the manipulator for which
-y = (2~r/3) as a function of Oó, and a2.

The corresponding manipulator is isotropic. The Jacobian
matrix is written as

which leads to

Figure 10 shows an isotropic spherical parallel manip-
ulator with coplanar actuators for which a = 2~r/3 and
a2 = ~r/2. To avoid mechanical interference between
each of the legs, the links have been designed in such a
way that each of the links is rotating on the surface of a
different concentric sphere.

Although spherical parallel manipulators have been
studied in the past, isotropic architectures such as the
ones introduced here have never been obtained before. It

Fig. 10. Isotropic manipulator with coplanar axes.

is worth mentioning, however, that the design proposed
in Craver (1989) is close to being isotropic. An isotropic
spherical parallel manipulator is currently being designed
at Laval University. It will be used to orient a camera
with high speed and precision.

6.1.3. Case 3: ~y = iz
Another example is now given. Let us impose an angle
~y of 77r/ 12. Moreover, let angle crl be equal to Tr/2.
From Figure 6 and from the graphic representation of the
conditioning given in Figure 11, it can be inferred that an
angle of a2 equal to

will lead to an isotropic design, because the Jacobian
matrix in the nominal configuration is such that

6.2. Manipulators With Prismatic Actuators

Because the geometry of these manipulators is very sim-
ple, an isotropic design can be identified by inspection of
equations (9)-( 12) and (18)-(20). Indeed, if we define the
nominal configuration as the one for which

and if we impose the following geometry-i.e.,

Fig. 11. Conditioning graph of the manipulator for which
I = (77r/ 12) as a function of 01 1 and a2.
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with

then the Jacobian matrix will become

which is orthogonal and decoupled around the axes of
the reference frame in the nominal configuration. This
manipulator is represented in Figure 5 in its isotropic con-
figuration. In this figure, the members with a rectangular
section are rigidly attached to the base plate and are part
of the fixed link. It is to be noted that the design obtained
here by simple geometric reasoning recalls a six-degree-
of-freedom manipulator presented in Artigue et al. (1989).

7. Conclusion

In this article, different architectures of spherical three-
degree-of-freedom parallel manipulators have been pre-
sented. Most of these architectures have already been
studied in the past. However, isotropic designs (i.e.,
manipulators having at least one perfectly conditioned
configuration) have been proposed for the first time in
this article. It has been shown that the kinematic para-
meters of the manipulator can be adjusted to achieve an
isotropic design with most of the architectures discussed
here. Because the conditioning index is a measure of the
natural precision of the manipulator, it is of great interest
in the design of spherical three-degree-of-freedom paral-
lel manipulator or mechanisms that can be used in many
applications. Isotropic spherical manipulators are currently
being designed, with special attention to minimization of
mechanical interferences. The use of such a mechanism

for a hip prosthesis is also being investigated.
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