A Brief Introduction to Algebraic Systems

1 Groups

Definition 1.1: A *Group* is a non-empty set \mathcal{G} , along with a binary operation, *, such that for $a, b, c \in \mathcal{G}$,

- G-1) $a * b \in \mathcal{G}$ (closure)
- G-2) (a * b) * c = a * (b * c) (associative)
- G-3) There exists a unique element $e \in \mathcal{G}$ such that a * e = e * a = a, for every $a \in \mathcal{G}$. (identity)
- G-4) For every $a \in \mathcal{G}$, there exists a unique element $a^{-1} \in \mathcal{G}$ such that $a * a^{-1} = a^{-1} * a = e$. (inverse)

Definition 1.2: A group \mathcal{G} is said to be *abelian* or (*commutative*) if a * b = b * a, for all $a, b \in \mathcal{G}$.

Remark 1.1: A non-empty set S is called a semi-group if the binary operation "*" satisfies axioms G-1 and G-2 only.

2 Rings

Definition 2.1 A *Ring* is a non-empty set \mathcal{R} with two binary operations: "+" and "*", such that

R-1) \mathcal{R} forms an abelian group under the operation +, i.e., for all $a, b, c \in \mathcal{R}$,

- i) $a + b \in \mathcal{R}$
- ii) a + b = b + a
- iii) (a+b) + c = a + (b+c)
- iv) There is a unique identity element $0 \in \mathcal{R}$ such that a + 0 = a for every $a \in \mathcal{R}$.
- v) There exists a unique $-a \in \mathcal{R}$ such that a + (-a) = 0 for every $a \in \mathcal{R}$.

R-2) \mathcal{R} forms a semi-group under the operation *, i.e.,

- i) $a * b \in \mathcal{R}$
- ii) (a * b) * c = a * (b * c)

R-3) The operation * is distributive with respect to +, i.e., for $a, b, c \in \mathcal{R}$,

$$a * (b + c) = a * b + a * c$$

 $(b + c) * a = b * a + c * a.$

Definition 2.2

- A Commutative Ring is a ring \mathcal{R} that satisfies the commutative law with respect to the operation "*".
- A Ring with Unity is a ring \mathcal{R} that has an identity element e with respect to the operation "*".
- A Division Ring or (Skew Field) is a ring with all its non-zero elements forming a group under "*" operation, i.e., there exists an inverse $a^{-1} \in \mathcal{R}$ for all $a \neq 0, a \in \mathcal{R}$.

3 Fields

Definition 3.1: A *Field* \mathcal{K} is a commutative ring in which set of non-zero elements form a group under "*" operation.

In other words, a field \mathcal{K} is an abelian group with 0 as its identity under "+" operation, and $\mathcal{K} - \{0\}$ forms an abelian group with e as its identity under the "*" operation satisfying the distributive law: a * (b + c) = a * b + a * c and (a + b) * c = a * c + b * c for all $a, b, c \in \mathcal{K}$.

4 Vector Spaces

Definition 4.1: A non-empty set \mathcal{V} is said to be a *Vector Space* over a field \mathcal{K} if it consists of a set of elements termed "vectors" and two binary operations: " \oplus ", a vector addition, and " \cdot ", a scalar multiplication, such that for $\vec{u}, \vec{v}, \vec{w} \in \mathcal{V}$ and $\alpha, \beta \in \mathcal{K}$,

V-1) $\vec{u} \oplus \vec{v} \in \mathcal{V}$ (closure)

V-2) $\vec{u} \oplus \vec{v} = \vec{v} \oplus \vec{u}$ (commutative)

V-3) For all $\vec{u} \in \mathcal{V}$, there exists a unique $\vec{0} \in \mathcal{V}$ such that $\vec{u} \oplus \vec{0} = \vec{u}$.

V-4) $\vec{u} \oplus (-\vec{u}) = \vec{0}$ for every $\vec{u} \in \mathcal{V}$.

V-5) $(\vec{u} \oplus \vec{v}) \oplus \vec{w} = \vec{u} \oplus (\vec{v} \oplus \vec{w})$ (associative)

V-6) $\alpha \cdot \vec{u} \in \mathcal{V}$

V-7) $\alpha \cdot (\beta \cdot \vec{u}) = (\alpha \cdot \beta) \cdot \vec{u}$ ("." is associative).

V-8) $e \cdot \vec{u} = \vec{u}$ for all $\vec{u} \in \mathcal{V}$, where e is the identity element of \mathcal{K} under "*".

V-9) $\alpha \cdot (\vec{u} \oplus \vec{v}) = \alpha \cdot \vec{u} + \alpha \cdot \vec{v}$ V-10) $(\alpha + \beta) \cdot \vec{u} = \alpha \cdot \vec{u} + \beta \cdot \vec{u}$

Remark 4.1: The vector space \mathcal{V} forms an abelian group under the vector addition \oplus .

Remark 4.2 An *n*-dimensional vector spave \mathcal{V} over a field \mathcal{K} consists of *n*-tuples of elements in the field \mathcal{K} , which can be written as

$$\vec{u} = (u_1, u_2, \dots, u_n)^T \vec{v} = (v_1, v_2, \dots, v_n)^T, \quad \forall \ \vec{u}, \vec{v} \in \mathcal{V}$$

where $u_1, \ldots, u_n, v_1, \ldots, v_n \in \mathcal{K}$.

The vector addition, " \oplus ", is defined by

$$\vec{u} \oplus \vec{v} = (u_1, u_2, \dots, u_n) \oplus (v_1, v_2, \dots, v_n)$$

= $(u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$

where the "+" operator is the "+" operator in \mathcal{K} .

And the identity for vector addition \oplus is $\vec{0} = (0, \dots, 0)^T$. The scalar multiplication, "·", is defined by

$$\alpha \cdot \vec{u} = (\alpha * u_1, \alpha * u_2, \dots, \alpha * u_n)^T, \quad \text{for } \alpha \in \mathcal{K}$$

where the "*" operator is the "*" operator in \mathcal{K} . One can verify that the vector addition and scalar mutiplication defined above satisfy axioms V-1) to V-10). We usually write $\mathcal{V} = \mathcal{K}^n$ for this case, where \mathcal{K} is usually **R** or **C**.

5 Algebras

Definition 5.1: An Algebra over a field \mathcal{K} , is a set \mathcal{A} , which is a vector space over \mathcal{K} along with a vector multiplication, \otimes , such that for $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathcal{A}$ and $\lambda \in \mathcal{K}$,

A-1)
$$\mathbf{a} \otimes \mathbf{b} \in \mathcal{A}$$

A-2) $\lambda \cdot (\mathbf{a} \otimes \mathbf{b}) = (\lambda \cdot \mathbf{a}) \otimes \mathbf{b} = \mathbf{a} \otimes (\lambda \cdot \mathbf{b})$

A-3) $\mathbf{a} \otimes (\mathbf{b} \oplus \mathbf{c}) = \mathbf{a} \otimes \mathbf{b} \oplus \mathbf{a} \otimes \mathbf{c}$ and $(\mathbf{a} \oplus \mathbf{b}) \otimes \mathbf{c} = \mathbf{a} \otimes \mathbf{c} \oplus \mathbf{b} \otimes \mathbf{c}$

Remark 5.1: If $(\mathbf{a} \otimes \mathbf{b}) \otimes \mathbf{c} = \mathbf{a} \otimes (\mathbf{b} \otimes \mathbf{c})$ holds for all $\mathbf{a}, \mathbf{b} \in \mathcal{A}$, then \mathcal{A} is called an associative algebra.

6 References:

- 1. Herstein, I.N., Topics in Algebra, 2ed, John Wiley and Sons, 1975.
- 2. Fraleigh, J.B., A First Course in Abstract Algebra, 3ed, Addison-Wesley, 1982.