A Brief Introduction to Algebraic Systems

1 Groups

Definition 1.1: A Group is a non-empty set \mathcal{G}, along with a binary operation, $*$, such that for $a, b, c \in \mathcal{G}$,

G-1) $a * b \in \mathcal{G} \quad$ (closure)
G-2) $(a * b) * c=a *(b * c) \quad$ (associative)
G-3) There exists a unique element $e \in \mathcal{G}$ such that $a * e=e * a=a$, for every $a \in \mathcal{G}$. (identity)

G-4) For every $a \in \mathcal{G}$, there exists a unique element $a^{-1} \in \mathcal{G}$ such that $a * a^{-1}=a^{-1} * a=e$. (inverse)

Definition 1.2: A group \mathcal{G} is said to be abelian or (commutative) if $a * b=b * a$, for all $a, b \in \mathcal{G}$.

Remark 1.1: A non-empty set \mathcal{S} is called a semi-group if the binary operation "*" satisfies axioms G-1 and G-2 only.

2 Rings

Definition 2.1 A Ring is a non-empty set \mathcal{R} with two binary operations: "+" and "*", such that

R-1) \mathcal{R} forms an abelian group under the operation + , i.e., for all $a, b, c \in \mathcal{R}$,
i) $a+b \in \mathcal{R}$
ii) $a+b=b+a$
iii) $(a+b)+c=a+(b+c)$
iv) There is a unique identity element $0 \in \mathcal{R}$ such that $a+0=a$ for every $a \in \mathcal{R}$.
v) There exists a unique $-a \in \mathcal{R}$ such that $a+(-a)=0$ for every $a \in \mathcal{R}$.

R-2) \mathcal{R} forms a semi-group under the operation $*$, i.e.,
i) $a * b \in \mathcal{R}$
ii) $(a * b) * c=a *(b * c)$

R-3) The operation $*$ is distributive with respect to + , i.e., for $a, b, c \in \mathcal{R}$,

$$
\begin{array}{ll}
a *(b+c) & =a * b+a * c \\
(b+c) * a & =b * a+c * a
\end{array}
$$

Definition 2.2

- A Commutative Ring is a ring \mathcal{R} that satisfies the commutative law with respect to the operation "*".
- A Ring with Unity is a ring \mathcal{R} that has an identity element e with respect to the operation "*".
- A Division Ring or (Skew Field) is a ring with all its non-zero elements forming a group under "*" operation, i.e., there exists an inverse $a^{-1} \in \mathcal{R}$ for all $a \neq 0, a \in \mathcal{R}$.

3 Fields

Definition 3.1: A Field \mathcal{K} is a commutative ring in which set of non-zero elements form a group under "*" operation.

In other words, a field \mathcal{K} is an abelian group with 0 as its identity under " + " operation, and $\mathcal{K}-\{0\}$ forms an abelian group with e as its identity under the "*" operation satisfying the distributive law: $a *(b+c)=a * b+a * c$ and $(a+b) * c=a * c+b * c$ for all $a, b, c \in \mathcal{K}$.

4 Vector Spaces

Definition 4.1: A non-empty set \mathcal{V} is said to be a Vector Space over a field \mathcal{K} if it consists of a set of elements termed "vectors" and two binary operations: " \oplus ", a vector addition, and ".", a scalar multiplication, such that for $\vec{u}, \vec{v}, \vec{w} \in \mathcal{V}$ and $\alpha, \beta \in \mathcal{K}$,

V-1) $\vec{u} \oplus \vec{v} \in \mathcal{V} \quad$ (closure)
V-2) $\vec{u} \oplus \vec{v}=\vec{v} \oplus \vec{u} \quad$ (commutative)
V-3) For all $\vec{u} \in \mathcal{V}$, there exists a unique $\overrightarrow{0} \in \mathcal{V}$ such that $\vec{u} \oplus \overrightarrow{0}=\vec{u}$.
V-4) $\vec{u} \oplus(-\vec{u})=\overrightarrow{0}$ for every $\vec{u} \in \mathcal{V}$.
V-5) $(\vec{u} \oplus \vec{v}) \oplus \vec{w}=\vec{u} \oplus(\vec{v} \oplus \vec{w}) \quad$ (associative)
V-6) $\alpha \cdot \vec{u} \in \mathcal{V}$
V-7) $\alpha \cdot(\beta \cdot \vec{u})=(\alpha \cdot \beta) \cdot \vec{u} \quad($ "." is associative $)$.
V-8) $e \cdot \vec{u}=\vec{u}$ for all $\vec{u} \in \mathcal{V}$, where e is the identity element of \mathcal{K} under " $*$ ".

V-9) $\alpha \cdot(\vec{u} \oplus \vec{v})=\alpha \cdot \vec{u}+\alpha \cdot \vec{v}$
V-10) $(\alpha+\beta) \cdot \vec{u}=\alpha \cdot \vec{u}+\beta \cdot \vec{u}$

Remark 4.1: The vector space \mathcal{V} forms an abelian group under the vector addition \oplus.
Remark 4.2 An n-dimensional vector spave \mathcal{V} over a field \mathcal{K} consists of n-tuples of elements in the field \mathcal{K}, which can be written as

$$
\begin{aligned}
\vec{u} & =\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{T} \\
\vec{v} & =\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{T}, \quad \forall \vec{u}, \vec{v} \in \mathcal{V}
\end{aligned}
$$

where $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in \mathcal{K}$.
The vector addition, " \oplus ", is defined by

$$
\begin{aligned}
\vec{u} \oplus \vec{v} & =\left(u_{1}, u_{2}, \ldots, u_{n}\right) \oplus\left(v_{1}, v_{2}, \ldots v_{n}\right) \\
& =\left(u_{1}+v_{1}, u_{2}+v_{2}, \ldots, u_{n}+v_{n}\right)
\end{aligned}
$$

where the " + " operator is the " + " operator in \mathcal{K}.
And the identity for vector addition \oplus is $\overrightarrow{0}=(0, \ldots, 0)^{T}$. The scalar multiplication, ".", is defined by

$$
\alpha \cdot \vec{u}=\left(\alpha * u_{1}, \alpha * u_{2}, \ldots, \alpha * u_{n}\right)^{T}, \quad \text { for } \quad \alpha \in \mathcal{K}
$$

where the "*" operator is the "*" operator in \mathcal{K}. One can verify that the vector addition and scalar mutiplication defined above satisfy axioms V-1) to V-10). We usually write $\mathcal{V}=\mathcal{K}^{n}$ for this case, where \mathcal{K} is usually \mathbf{R} or \mathbf{C}.

5 Algebras

Definition 5.1: An Algebra over a field \mathcal{K}, is a set \mathcal{A}, which is a vector space over \mathcal{K} along with a vector multiplication, \otimes, such that for $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathcal{A}$ and $\lambda \in \mathcal{K}$,

A -1) $\mathbf{a} \otimes \mathbf{b} \in \mathcal{A}$
A-2) $\lambda \cdot(\mathbf{a} \otimes \mathbf{b})=(\lambda \cdot \mathbf{a}) \otimes \mathbf{b}=\mathbf{a} \otimes(\lambda \cdot \mathbf{b})$
A-3) $\mathbf{a} \otimes(\mathbf{b} \oplus \mathbf{c})=\mathbf{a} \otimes \mathbf{b} \oplus \mathbf{a} \otimes \mathbf{c}$ and $(\mathbf{a} \oplus \mathbf{b}) \otimes \mathbf{c}=\mathbf{a} \otimes \mathbf{c} \oplus \mathbf{b} \otimes \mathbf{c}$
Remark 5.1: If $(\mathbf{a} \otimes \mathbf{b}) \otimes \mathbf{c}=\mathbf{a} \otimes(\mathbf{b} \otimes \mathbf{c})$ holds for all $\mathbf{a}, \mathbf{b} \in \mathcal{A}$, then \mathcal{A} is called an associative algebra.

6 References:

1. Herstein, I.N., Topics in Algebra, 2ed, John Wiley and Sons, 1975.
2. Fraleigh, J.B., A First Course in Abstract Algebra, 3ed, Addison-Wesley, 1982.
