Computing the Screw Parameters of a Rigid Body Displacement

Problem Statement:

We wish to determine the screw displacement parameters, for a spatial displacement. These parameters consist of:

$$
\begin{aligned}
\phi & =\text { the angle of rotation about the screw axis } \\
d^{\|} & =\text {the translation along the screw axis } \\
\vec{\omega} & =\mathrm{A} \text { unit vector parallel to the screw axis } \\
\vec{\rho} & =\text { a vector to a point on the screw axis }
\end{aligned}
$$

Assume that we have a rigid body which contains three non-colinear points: P, Q, R. Let P_{0}, Q_{0}, and R_{0} denote the positions of the points in the body before displacement. Let P_{1}, Q_{1}, and R_{1} the position of these points after a screw displacement.

The Solution:

To determine the screw parameters from the displacement of these three points, we will solve the following three simulataneous equations:

$$
\begin{align*}
P_{1}-P_{0} & =\tan \left(\frac{\phi}{2}\right) \vec{\omega} \times\left(P_{1}+P_{0}-2 \vec{\rho}\right)+d^{\|} \vec{\omega} \tag{1}\\
Q_{1}-Q_{0} & =\tan \left(\frac{\phi}{2}\right) \vec{\omega} \times\left(Q_{1}+Q_{0}-2 \vec{\rho}\right)+d^{\|} \vec{\omega} \tag{2}\\
R_{1}-R_{0} & =\tan \left(\frac{\phi}{2}\right) \vec{\omega} \times\left(R_{1}+R_{0}-2 \vec{\rho}\right)+d^{\|} \vec{\omega} \tag{3}
\end{align*}
$$

where each equation is the Rodriguez displacement equation for the respective points P, Q, and R.

Step \#1: Subtract Equation (3) from Equations (1) and (2):

$$
\begin{align*}
& \left(P_{1}-P_{0}\right)-\left(R_{1}-R_{0}\right)=\tan \left(\frac{\phi}{2}\right) \vec{\omega} \times\left[\left(P_{1}+P_{0}\right)-\left(R_{1}+R_{0}\right)\right] \tag{4}\\
& \left(Q_{1}-Q_{0}\right)-\left(R_{1}-R_{0}\right)=\tan \left(\frac{\phi}{2}\right) \vec{\omega} \times\left[\left(Q_{1}+Q_{0}\right)-\left(R_{1}+R_{0}\right)\right] \tag{5}
\end{align*}
$$

Form the cross product of $\left[\left(Q_{1}-Q_{0}\right)-\left(R_{1}-R_{0}\right)\right]$ with Equation (5):

$$
\begin{align*}
{\left[\left(Q_{1}-Q_{0}\right)\right.} & \left.-\left(R_{1}-R_{0}\right)\right] \times\left[\left(P_{1}-P_{0}\right)-\left(R_{1}-R_{0}\right)\right] \\
& =\tan \left(\frac{\phi}{2}\right)\left[\left(Q_{1}-Q_{0}\right)-\left(R_{1}-R_{0}\right)\right] \times\left\{\vec{\omega} \times\left[\left(P_{1}+P_{0}\right)-\left(R_{1}+R_{0}\right)\right]\right\} \tag{6}
\end{align*}
$$

Note: from Equation (5), we know that $\left[\left(Q_{1}-Q_{0}\right)-\left(R_{1}-R_{0}\right)\right]$ is perpendicular to $\vec{\omega}$, since it results from the cross produce of a vector with $\vec{\omega}$. Therefore, the right hand side of Equation (6) will be a vector proportional to $\vec{\omega}$

We can use the vector identity $\vec{a} \times(\vec{b} \times c)=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ to simplify Equation (6):

$$
\begin{align*}
{\left[\left(Q_{1}-Q_{0}\right)-\left(R_{1}-R_{0}\right)\right] } & \times\left[\left(P_{1}-P_{0}\right)-\left(R_{1}-R_{0}\right)\right] \\
& =\tan \left(\frac{\phi}{2}\right)\left[\left(Q_{1}-Q_{0}\right)-\left(R_{1}-R_{0}\right)\right] \cdot\left[\left(P_{1}+P_{0}\right)-\left(R_{1}+R_{0}\right)\right] \vec{\omega} \tag{7}
\end{align*}
$$

We can solve Equation (7) for $\tan \left(\frac{\phi}{2}\right) \vec{\omega}$:

$$
\begin{equation*}
\tan \left(\frac{\phi}{2}\right) \vec{\omega}=\frac{\left[\left(Q_{1}-Q_{0}\right)-\left(R_{1}-R_{0}\right)\right] \times\left[\left(P_{1}-P_{0}\right)-\left(R_{1}-R_{0}\right)\right]}{\left[\left(Q_{1}-Q_{0}\right)-\left(R_{1}-R_{0}\right)\right] \cdot\left[\left(P_{1}+P_{0}\right)-\left(R_{1}+R_{0}\right)\right]} \tag{8}
\end{equation*}
$$

Thus, the rotation angle, $\tan \left(\frac{\phi}{2}\right)$ can be computed as the norm to the vector in Equation (8), while $\vec{\omega}$ is the normalized vector of Equation (8).

Step \#2: Now take the cross product of $\vec{\omega}$ with equation (1) and use the aforementioned vector cross product identity:

$$
\begin{align*}
\vec{\omega} \times\left(P_{1}-P_{0}\right) & =\vec{\omega} \times\left[\tan \left(\frac{\phi}{2}\right) \vec{\omega} \times\left(P_{1}+P_{0}-2 r \vec{h} o\right)+d^{\|} \vec{\omega}\right] \\
& =\tan \left(\frac{\phi}{2}\right)\left[\left[\vec{\omega} \cdot\left(P_{1}+P_{0}\right)\right] \vec{\omega}-\left(P_{0}+P_{1}\right)-2(\vec{\omega} \cdot \vec{\rho}) \vec{\omega}+2 \rho\right] \tag{9}
\end{align*}
$$

Note that $\rho-(\vec{\omega} \cdot \vec{\rho}) \vec{\omega}=\vec{\rho}_{\perp}$, where $\vec{\rho}_{\perp}$ is the component of $\vec{\rho}$ which is perpendicular to $\vec{\omega}$. That is, while $\vec{\rho}$ is a vector from the origin of the reference frame to any point on the screw axis, $\vec{\rho}_{\perp}$ is the shortest vector to the point on the screw axis closest to the origin of the reference frame. Equation (9) can then be solved for $\vec{\rho}_{\perp}$:

$$
\begin{equation*}
\vec{\rho}_{\perp}=\frac{1}{2}\left[\frac{\vec{\omega} \times\left(P_{1}-P_{0}\right)}{\tan \frac{\phi}{2}}-\left(\vec{\omega} \cdot\left(P_{1}+P_{0}\right)\right) \vec{\omega}+P_{0}+P_{1}\right] \tag{10}
\end{equation*}
$$

Step 3: Finally, we can use Equation (1), (2), or (3) to find $d^{\|}$:

$$
\begin{equation*}
d^{\|}=\vec{\omega} \cdot\left(P_{1}-P_{0}\right)=\vec{\omega} \cdot\left(Q_{1}-Q_{0}\right)=\vec{\omega} \cdot\left(R_{1}-R_{0}\right) \tag{11}
\end{equation*}
$$

