ME 115(a): Homework \#2

(Due Wednesday, February 10, 2016)

Problem 1: (5 points) Consider the following rotation matrix:

$$
\left[\begin{array}{ccc}
0.882772 & -0.416266 & 0.217798 \\
0.44976 & 0.882772 & -0.135756 \\
-0.135756 & 0.217798 & 0.966506
\end{array}\right]
$$

Find the axis of rotation and angle of rotation associated with this rotation matrix.
Problem 2: (10 points) Can every orthogonal matrix be represented by the exponential of a real matrix? That is, if $A \in \mathcal{O}(n)$, can A be represented by

$$
A=e^{C}
$$

for some real matrix C ? (Hint: the determinant of e^{C} can be expressed as an exponential of a scalar.)

Problem 3: (15 points) Do Problem 4(a,b,c) in Chapter 2 of MLS. (hint 1: you can assume the solution to one part of the problem in solving the other parts.) (hint 2: for part (c), if you don't remember the definition of a vector space, you can look at Wikipedia, or see the optional handout on the course website entited "A Brief Introduction to Algebraic Systems.")

Problem 4: (5 points) Do Problem 5(c) in Chapter 2 of MLS.

Problem 5: (10 points) Do Problem 8(b,c) in Chapter 2 of MLS.

Problem 6: (5 points) Do Problem 10 (b) in Chapter 2 of MLS. Do not worry about the question of surjectivity.

