ME 115(a): Homework \#3

(Due Friday Feb. 19, 2015)

Problem 1: (20 points) Do Problem 6(a,b,d,e) in Chapter 2 of the MLS text.

Problem 2: (15 points) Do Problem 11(a,b) in Chapter 2 of the MLS text.

Problem 3: (10 points) Do Problem 7 in Chapter 2 of the MLS text.

Problem 4: (15 points) Consider 2×2 complex matrices of the form:

$$
M=\left[\begin{array}{cc}
z & w \\
-w^{*} & z^{*}
\end{array}\right]=\left[\begin{array}{cc}
(a+i b) & (c+i d) \\
-(c-i d) & (a-i b)
\end{array}\right]
$$

where:

$$
\operatorname{det}(M)=z z^{*}+w w^{*}=1
$$

and $z, w \in \mathbb{C}$, and $*$ denotes complex conjugation. Such matrices form a matrix group termed the "special unitary matrices" of dimension $2, S U(2)$.

- Part (a): Show that matrices:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] \quad\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right]
$$

form a basis for $S U(2)$. The element i is $\sqrt{-1}$. I.e., all elements of $S U(2)$ can be expressed as some combination of these elements. Next show that elements of $S U(2)$ are isomorphic to the unit quaternions. That is, there is a one-to-one correspondence between each element of $S U(2)$ and a unit quaternion.

- Part (b): Show that the special unitary representation of a rotation in terms of $z-y-x$ Euler Angles can be computed as :

$$
\left[\begin{array}{cc}
\cos \frac{\psi}{2} & i \sin \frac{\psi}{2} \\
i \sin \frac{\psi}{2} & \cos \frac{\psi}{2}
\end{array}\right]\left[\begin{array}{cc}
\cos \frac{\phi}{2} & \sin \frac{\phi}{2} \\
-\sin \frac{\phi}{2} & \cos \frac{\phi}{2}
\end{array}\right]\left[\begin{array}{cc}
e^{i \frac{\gamma}{2}} & 0 \\
0 & e^{-i \frac{\gamma}{2}}
\end{array}\right]
$$

where ψ, ϕ, and γ are respectively the rotations about the z, y, and x axes.

Problem 4: (10 points)

- Part (a) Derive a formula for the rotation matrix corresponding to z-y-x Euler angles (we derived the $z-y-z$ angles in class).
- Part (b) Given a matrix $R \in S O(3)$, derive formulas to compute the z-y-x Euler angle values from the given matrix R.

