ME 115(b): Homework \#1 Solution

Problem 1: (Singularities of an RPR Manipulator).
Using either the Denavit-Hartenberg or Product of Exponentials approach, you should have derived the forward kinematics function which describes the location of the tool frame origin, \vec{P} as:

$$
\vec{P}=\left[\begin{array}{c}
P_{x} \tag{1}\\
P_{y} \\
P_{z}
\end{array}\right]=\left[\begin{array}{c}
\left(d_{2}+L \cos \theta_{3}\right) \cos \theta_{1} \\
\left(d_{2}+L \cos \theta_{3}\right) \sin \theta_{1} \\
d_{1}-L \sin \theta_{3}
\end{array}\right]
$$

Part (a): As discussed in class, the hybrid Jacobian matrix can be calculated as:

$$
J_{S T}^{h}=\left[\begin{array}{lll}
\frac{\partial \vec{P}}{\partial \theta_{1}} & \frac{\partial \vec{P}}{\partial d_{2}} & \frac{\partial \vec{P}}{\partial \theta_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
-\left(d_{2}+L \cos \theta_{3}\right) \sin \theta_{1} & \cos \theta_{1} & -L \cos \theta_{1} \sin \theta_{3} \tag{2}\\
\left(d_{2}+L \cos \theta_{3}\right) \cos \theta_{1} & \sin \theta_{1} & -L \sin \theta_{1} \sin \theta_{3} \\
0 & 0 & -L \cos \theta_{3}
\end{array}\right]
$$

Part (b): The singularities can be found by taking the determinant of the hybrid Jacobian matrix and setting it to zero:

$$
\begin{equation*}
\operatorname{det}\left(J_{S T}^{h}\right)=-L \cos \theta_{3}\left(d_{2}+L \cos \theta_{3}\right)=0 \tag{3}
\end{equation*}
$$

Hence, one set of singularities will occur when $\cos \theta_{3}=0$, which is equivalent to $\theta_{3}= \pm \frac{\pi}{2}$. In these configurations, the third link is pointing straight up and down, and the manipulator cannot making any verticle motions. Another set of singularities occurs when $d_{2}+L \cos \theta_{3}=$ 0 . In these configurations, the tool frame origin lies along the first joint axis, and the manipulator cannot make any motions in the $x-y$ plane in the direction orthogonal to the plane passing through the first two joint axes.

Problem 2: (Special Configurations of a planar linkages).
Part (a): Let's establish a coordinate system with origin at joint A, with the x-axis colinear with $\overrightarrow{A B}$ and the y-axis normal to the x-axis. The z-axis points out of the plane of the mechanism, forming a right handed coordinate system.

Part(b): While the device is planar, for convenience let's express the twist coordinates for each joint in the full 3-D space. Let joint axis 1 correspond to the revolute joint at A, joint axis 2 be the revolute joint at C, joint axis 3 be the prismatic joint, and joint axis 4 be the revolute joint at B. Let θ_{1} denote the angle between $\overrightarrow{A B}$ and $\overrightarrow{A C}$. Similarly, let θ_{4} denote the angle between the x-direction and the line $\overrightarrow{B C}$.

The twist coordinates for revolute joints $\# 1$ and $\# 2$ are straightforward:

$$
\begin{align*}
& \xi_{1}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]^{T} \tag{4}\\
& \xi_{2}=\left[\begin{array}{lllllll}
\left(l_{1} s_{1}\right) & -\left(l_{1} c_{1}\right) & 0 & 0 & 0 & 1
\end{array}\right]^{T}
\end{align*}
$$

where s_{1} and c_{1} are respectively shorthand for $\sin \theta_{1}$, and l_{1} is the dimension $|A C|$. The third joint is prismatic, and thus an infinite pitch joint. Hence, its twist is:

$$
\xi_{3}=\left[\begin{array}{llllll}
c_{4} & s_{4} & 0 & 0 & 0 & 0 \tag{5}
\end{array}\right]^{T}
$$

The fourth joint is again a revolute joint. Its screw coordinates are simply:

$$
\xi_{4}=\left[\begin{array}{llllll}
-0 & -1 & 0 & 0 & 0 & 1 \tag{6}
\end{array}\right]^{T}
$$

Part (b):
A stationary configuration of joint 4 (the joint at point B) will occur when:

$$
\operatorname{det}\left[\begin{array}{lll}
\xi_{1} \cdot \xi_{1} & \xi_{1} \cdot \xi_{2} & \xi_{1} \cdot \xi_{3} \tag{7}\\
\xi_{2} \cdot \xi_{1} & \xi_{2} \cdot \xi_{2} & \xi_{2} \cdot \xi_{3} \\
\xi_{3} \cdot \xi_{1} & \xi_{3} \cdot \xi_{2} & \xi_{3} \cdot \xi_{3}
\end{array}\right]=0
$$

For this linkage:

$$
\begin{align*}
& \xi_{1} \cdot \xi_{1}=\xi_{1} \cdot \xi_{2}=\xi_{2} \cdot \xi_{1}=1 \\
& \xi_{1} \cdot \xi_{3}=\xi_{3} \cdot \xi_{1}=0 \\
& \xi_{2} \cdot \xi_{2}=l_{1}^{2} \tag{8}\\
& \xi_{2} \cdot \xi_{3}=\xi_{3} \cdot \xi_{2}=l_{1} \sin \left(\theta_{1}+\theta_{4}\right) \\
& \xi_{3} \cdot \xi_{3}=1
\end{align*}
$$

Substituting Equation (8) into Equation (7) and taking the determinant:

$$
\operatorname{det}\left[\begin{array}{ccc}
1 & 1 & 0 \tag{9}\\
1 & 1+l_{1}^{2} & l_{1} \sin \left(\theta_{1}+\theta_{4}\right) \\
0 & l_{1} \sin \left(\theta_{1}+\theta_{4}\right) & 1
\end{array}\right]=l_{1}^{2}\left(1-\sin ^{2}\left(\theta_{1}+\theta_{4}\right)\right)=l_{1}^{2} \cos ^{2}\left(\theta_{1}+\theta_{4}\right)
$$

Discarding the trivial case where $l_{1}=0$, joint B will have a special configuration when $\left(\cos \theta_{1}+\cos \theta_{4}\right)=0$. For this to occur, lne $\overrightarrow{A C}$ must intersect line $\overrightarrow{B C}$ orthogonally. This can only occur if $l_{1} \leq|A B|=1$

Part (c): The prismatic joint will have two special configurations at the extremes of its travel along $\overrightarrow{B D}$.

Problem 2: Problem 21(a,b,c), Chapter 3 of MLS.
Part (a): We can think of this mechanism as consisting of 8 bodies (noticing that each prismatic joint can be thought of as two bodies). The total number of relative degrees of freedom possed by this collection of bodies is $3(8-1)=21$. This collection of bodies is held
together by 6 revolute joints and 3 prismatic joints. Thus, the number of constraints is $9 \cdot 2=18$. Therefore, the mechanism as $21-18=3$ internal degrees of freedom.

Part (b): The structure equations can be derived either using the Product Of Exponentials (POE) method, or the Denavit-Hartenberg (DH) convention. Let's consider the POE approach. In this approach, the structure equations take the form:

$$
e^{\xi_{11} \alpha_{1}} e^{\xi_{12} d_{1}} e^{\xi_{13} \beta_{1}} g_{b t}(0)=e^{\xi_{21} \alpha_{2}} e^{\xi_{22} d_{2}} e^{\xi_{23} \beta_{2}} g_{b t}(0)=e^{\xi_{31} \alpha_{3}} e^{\xi_{32} d_{3}} e^{\xi_{33} \beta_{3}} g_{b t}(0)
$$

Using the obvious "home position," (the one showed in the left hand diagram of the figure which goes along with problem 3.21 in the MLS text) the twists are:

$$
\begin{align*}
& \xi_{11}=\left[\begin{array}{c}
h / 2 \\
0 \\
1
\end{array}\right] ; \quad \xi_{12}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] ; \quad \xi_{13}=\left[\begin{array}{c}
h / 2 \\
-w \\
1
\end{array}\right] \tag{10}\\
& \xi_{21}=\left[\begin{array}{c}
-h / 2 \\
0 \\
1
\end{array}\right] ; \quad \xi_{22}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] ; \quad \xi_{23}=\left[\begin{array}{c}
-h / 2 \\
-w \\
1
\end{array}\right] \\
& \xi_{31}=\left[\begin{array}{c}
-h / 2 \\
0 \\
1
\end{array}\right] ; \quad \xi_{32}=\frac{1}{\sqrt{w^{2}+b^{2}}}\left[\begin{array}{c}
w \\
h \\
0
\end{array}\right] ; \quad \xi_{33}=\left[\begin{array}{c}
h / 2 \\
-w \\
1
\end{array}\right]
\end{align*}
$$

where α_{j} is the angle made between the axis of the $j^{s t}$ prismatic joint axis and the x-axis of the stationary, or base, frame. I.e., this is the angle made the first passive revolute joint in the $j^{\text {th }}$ serial chain.

Note that the angles α_{i} and β_{i} can be found using the law of cosines. For example:

$$
\cos \alpha_{1}=\frac{h^{2}+d_{1}^{2}-d_{3}^{2}}{2 h d_{1}}
$$

Part (c): Using the notation in the figure above, we can see that the location of the points P_{1}, \cdots, P_{4} are:

$$
\begin{align*}
& P_{1}=\left[\begin{array}{c}
0 \\
h / 2
\end{array}\right] ; \quad P_{2}=\left[\begin{array}{c}
0 \\
-h / 2
\end{array}\right] ; \\
& P_{3}=\left[\begin{array}{l}
x \\
y
\end{array}\right] ; \quad+R_{\phi}\left[\begin{array}{c}
0 \\
h / 2
\end{array}\right] ; \quad P_{4}=\left[\begin{array}{l}
x \\
y
\end{array}\right] ; \quad+R_{\phi}\left[\begin{array}{c}
0 \\
-h / 2
\end{array}\right] ; \tag{11}
\end{align*}
$$

The actuator lengths can be derived as:

$$
\begin{align*}
d_{1} & =\left\|P_{3}-P_{1}\right\| \\
d_{2} & =\left\|P_{4}-P_{2}\right\| \tag{12}\\
d_{3} & =\left\|P_{3}-P_{2}\right\|
\end{align*}
$$

