
ME 115(a): Solution to Homework #2
Winter 2016

Problem 1: (5 points). You were to find the axis and angle of rotation for the following
rotation matrix:  0.882772 −0.416266 0.217798

0.44976 0.882772 −0.135756
−0.135756 0.217798 0.966506


Let the matrix entries be denoted aij, where i = 1, 2, 3 denotes the row, and j = 1, 2, 3
denotes the column. From class notes or the text:

cos(φ) =
a11 + a22 + a33 − 1

2
=

0.882772 + 0.882772 + 0.966506− 1.0

2
= 0.866025

where φ is the angle of rotation. Thus, φ = cos−1(0.866025) = 30.000o, and as a result
sin(φ) = sin(30o) = 0.5. Consequently, 2 sinφ = 1.0. Substituting in the appropriate
quantities yields:

ωx =
a32 − a23

2 sinφ
= 0.217798 + 0.135756 = 0.353554 (1)

ωy =
a13 − a31

2 sinφ
= 0.217798 + 0.135756 = 0.353554 (2)

ωz =
a21 − a12

2 sinφ
= 0.44976 + 0.416266 = 0.866026 (3)

Note that ω2
x + ω2

y + ω2
z = 1.0000.

Problem 2: (10 points) Can every orthogonal matrix be represented by the exponential of
a real matrix?

You should have either remembered or derived the fact that det(eC) = etr(C), where tr(C) is
the trace of determinant C. Note that if tr(C) is real, than etr(C) is always a positive number
and therefore orthogonal matrices with determinant -1 can not be represented as a matrix
exponential. This arises from the fact that the Orthogonal Group is a disconnected group.
That is, the matrices with +1 determinant are all connected to each other, and similarly
the ones with -1 determinant form a continuous subset of O(3). But, the two subsets are
disjoint.

Let’s consider this solution in a bit more detail. Note, that if tr(C) = π
2
i (where i2 = −1),

then det(eC) = −1. However, this can not be true if C is real. Recall that the trace of a
matrix is equal to the sum of its eigenvalues. Let C be a n × n matrix. If n is even, then
all of the eigenvalues of C must be complex cojugates and or an even number of real roots.
Thus, the sum of the eigenvalues must be real. Similarly, if n is odd, the eigenvalues will
either be complex conjugates and/or an odd number of real eigenvalues. Thus, the sum
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of the eigenvalues must also be real number. Thus, if C is a real matrix, then eC can not
represent orthogonal matrices with determinant -1.

Problem 3: (15 points). Do Problems 4(a,b,c) in Chapter 2 of MLS.

Part (a): Let’s assume that the statement in part (b) of the problem is true. Let ~w be a
3× 1 vector and let ~v be any 3× 1 vector. Then:

(RŵRT )~v = Rŵ(RT~v)
= R(~w × (RT~v))
= (R~w)× (RRT~v)
= (R~w)× ~v
= (̂R~w)~v

Since this must be true for any vector ~v, then RŵRT = (R~w)ˆ.

Part (b): We can now assume that part (a) holds.

(R~v)× (R~w) = (̂R~v)(R~w)
= (Rv̂RT )(R~w)
= Rv̂RTR~w
= R(v̂ ~w)
= R(~v × ~w)

Part (c): to show that so(3) is a vector space, note that all elements in so(3), which
consists of 3 × 3 skew symmetric matrices, can be written as a linear combination of
the following 3 elements of so(3) (which therefore form a basis for so(3)):0 0 0

0 0 −1
0 1 0

  0 0 1
0 0 0
−1 0 0

 0 −1 0
1 0 0
0 0 0

 . (4)

Moreover, the linearity requirements on vectors can be seen as follows, for α, β ∈ R,
~v, ~ω ∈ R3, and v̂, ω̂ ∈ so(3):

• αv̂ ∈ so(3).

• (α~v + β~ω)ˆ = (αv̂ + βω̂) ∈ so(3).

Problem 4: (5 points). Do Problem 5(c) of chapter 2 in the MLS text.

There are two ways to solve this problem. The simplest way is to use the result of part 5(b)
quoted in the text:
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R =
1

1 + ||a||2

1 + a2
1 − a2

2 − a2
3 2(a1a2 − a3) 2(a1a3 + a2)

2(a1a2 + a3) 1− a2
1 + a2

2 − a2
3 2(a2a3 − a1)

2(a1a3 − a2) 2(a2a3 + a1) 1− a2
1 − a2

2 + a2
3

 (5)

where ||a||2 is shorthand notation for ||a||2 = a2
1 + a2

2 + a2
3. Noting that

trace(R) =
3− ||a||2

1 + ||a||2
⇒ ||a||2 =

3− trace(R)

1 + trace(R)
=

3− r11 − r22 − r33

1 + r11 + r22 + r33

so that an expression for ||a||2 is known, simple algebraic manipulation of the off-diagonal
term of R yield a1

a2

a3

 =
1 + ||a||2
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r32 − r23

r13 − r31

r21 − r12


If you didn’t use the results of 5(b) in the text, then you would have started with Cayley’s
formula R = (I − â)−1(I + â) and derived Equation (5).

Problem 5: (10 points). Do Problem 8(b,c) in Chapter 2 of the MLS text.

Solution to 8(b):

egΛg
−1

= I +
1

1!
gΛg−1 +

1

2!
(gΛg−1)2 +

1

3!
(gΛg−1)3 + · · ·

= I +
1

1!
gΛg−1 +

1

2!
(gΛ2g−1) +

1

3!
(gΛ3g−1) + · · ·

= g(I +
1

1!
Λ +

1

2!
Λ2 +

1

3!
Λ3 + · · · )g−1

= geΛg−1

Solution to 8(c):

Problem 6: (5 points). Problem 10(b) in Chapter 2 of the MLS text, but without the issue
of surjectivity.

Note that

ω̂ =

[
0 −w
w 0

]
= wJ where J =

[
0 −1
1 0

]
Then:

ω̂2 = w2

[
−1 0
0 −1

]
= −w2I; ω̂3 = −w3J
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Hence the exponetial of ω̂ can be computed as:

exp (θω̂) =

(
I +

θ

1!
ω̂ + +

θ2

2!
ω̂2 + · · ·

)
=

(
I +

wθ

1!
J − w2θ2

2!
I − w3θ3

3!
J + · · ·

)
=

(
1− w2θ2

2!
+ · · ·

)
I +

(
wθ

1!
− w3θ3

3!
+ · · ·

)
J

=

[
cos(wθ) − sin(wθ)
sin(wθ) cos(wθ)

]

While you weren’t asked to consider this part of the problem, note that the exponential map
from so(2) to SO(3) can not be surjective, as every point in SO(3) can not be covered by
every point in so(2). This map is not injective since exp(θω̂) = exp((θ + 2π)ω̂).
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