Problem 1: (5 points). You were to find the axis and angle of rotation for the following rotation matrix:

$$
\left[\begin{array}{ccc}
0.882772 & -0.416266 & 0.217798 \\
0.44976 & 0.882772 & -0.135756 \\
-0.135756 & 0.217798 & 0.966506
\end{array}\right]
$$

Let the matrix entries be denoted $a_{i j}$, where $i=1,2,3$ denotes the row, and $j=1,2,3$ denotes the column. From class notes or the text:

$$
\cos (\phi)=\frac{a_{11}+a_{22}+a_{33}-1}{2}=\frac{0.882772+0.882772+0.966506-1.0}{2}=0.866025
$$

where $\phi$ is the angle of rotation. Thus, $\phi=\cos ^{-1}(0.866025)=30.000^{\circ}$, and as a result $\sin (\phi)=\sin \left(30^{\circ}\right)=0.5$. Consequently, $2 \sin \phi=1.0$. Substituting in the appropriate quantities yields:

$$
\begin{align*}
& \omega_{x}=\frac{a_{32}-a_{23}}{2 \sin \phi}=0.217798+0.135756=0.353554  \tag{1}\\
& \omega_{y}=\frac{a_{13}-a_{31}}{2 \sin \phi}=0.217798+0.135756=0.353554  \tag{2}\\
& \omega_{z}=\frac{a_{21}-a_{12}}{2 \sin \phi}=0.44976+0.416266=0.866026 \tag{3}
\end{align*}
$$

Note that $\omega_{x}^{2}+\omega_{y}^{2}+\omega_{z}^{2}=1.0000$.
Problem 2: (10 points) Can every orthogonal matrix be represented by the exponential of a real matrix?

You should have either remembered or derived the fact that $\operatorname{det}\left(e^{C}\right)=e^{\operatorname{tr}(C)}$, where $\operatorname{tr}(C)$ is the trace of determinant C. Note that if $\operatorname{tr}(C)$ is real, than $e^{\operatorname{tr}(C)}$ is always a positive number and therefore orthogonal matrices with determinant -1 can not be represented as a matrix exponential. This arises from the fact that the Orthogonal Group is a disconnected group. That is, the matrices with +1 determinant are all connected to each other, and similarly the ones with -1 determinant form a continuous subset of $\mathcal{O}(3)$. But, the two subsets are disjoint.

Let's consider this solution in a bit more detail. Note, that if $\operatorname{tr}(C)=\frac{\pi}{2} i$ (where $i^{2}=-1$ ), then $\operatorname{det}\left(e^{C}\right)=-1$. However, this can not be true if $C$ is real. Recall that the trace of a matrix is equal to the sum of its eigenvalues. Let $C$ be a $n \times n$ matrix. If $n$ is even, then all of the eigenvalues of $C$ must be complex cojugates and or an even number of real roots. Thus, the sum of the eigenvalues must be real. Similarly, if $n$ is odd, the eigenvalues will either be complex conjugates and/or an odd number of real eigenvalues. Thus, the sum
of the eigenvalues must also be real number. Thus, if $C$ is a real matrix, then $e^{C}$ can not represent orthogonal matrices with determinant -1 .

Problem 3: (15 points). Do Problems 4(a,b,c) in Chapter 2 of MLS.

Part (a): Let's assume that the statement in part (b) of the problem is true. Let $\vec{w}$ be a $3 \times 1$ vector and let $\vec{v}$ be any $3 \times 1$ vector. Then:

$$
\begin{aligned}
\left(R \hat{w} R^{T}\right) \vec{v} & =R \hat{w}\left(R^{T} \vec{v}\right) \\
& =R\left(\vec{w} \times\left(R^{T} \vec{v}\right)\right. \\
& =(R \vec{w}) \times\left(R R^{T} \vec{v}\right) \\
& =(R \vec{w}) \times \vec{v} \\
& =(R \vec{w}) \vec{v}
\end{aligned}
$$

Since this must be true for any vector $\vec{v}$, then $R \hat{w} R^{T}=(R \vec{w})$.
Part (b): We can now assume that part (a) holds.

$$
\begin{aligned}
(R \vec{v}) \times(R \vec{w}) & =\widehat{(R \vec{v})}(R \vec{w}) \\
& =\left(R \hat{v} R^{T}\right)(R \vec{w}) \\
& =R \hat{v} R^{T} R \vec{w} \\
& =R(\hat{v} \vec{w}) \\
& =R(\vec{v} \times \vec{w})
\end{aligned}
$$

Part (c): to show that so(3) is a vector space, note that all elements in so(3), which consists of $3 \times 3$ skew symmetric matrices, can be written as a linear combination of the following 3 elements of $s o(3)$ (which therefore form a basis for so(3)):

$$
\left[\begin{array}{ccc}
0 & 0 & 0  \tag{4}\\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Moreover, the linearity requirements on vectors can be seen as follows, for $\alpha, \beta \in \mathbb{R}$, $\vec{v}, \vec{\omega} \in \mathbb{R}^{3}$, and $\hat{v}, \hat{\omega} \in \operatorname{so}(3):$

- $\alpha \hat{v} \in s o(3)$.
- $(\alpha \vec{v}+\beta \vec{\omega})^{\hat{1}}=(\alpha \hat{v}+\beta \hat{\omega}) \in s o(3)$.

Problem 4: (5 points). Do Problem 5(c) of chapter 2 in the MLS text.
There are two ways to solve this problem. The simplest way is to use the result of part 5(b) quoted in the text:

$$
R=\frac{1}{1+\|a\|^{2}}\left[\begin{array}{ccc}
1+a_{1}^{2}-a_{2}^{2}-a_{3}^{2} & 2\left(a_{1} a_{2}-a_{3}\right) & 2\left(a_{1} a_{3}+a_{2}\right)  \tag{5}\\
2\left(a_{1} a_{2}+a_{3}\right) & 1-a_{1}^{2}+a_{2}^{2}-a_{3}^{2} & 2\left(a_{2} a_{3}-a_{1}\right) \\
2\left(a_{1} a_{3}-a_{2}\right) & 2\left(a_{2} a_{3}+a_{1}\right) & 1-a_{1}^{2}-a_{2}^{2}+a_{3}^{2}
\end{array}\right]
$$

where $\|a\|^{2}$ is shorthand notation for $\|a\|^{2}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$. Noting that

$$
\operatorname{trace}(R)=\frac{3-\|a\|^{2}}{1+\|a\|^{2}} \Rightarrow\|a\|^{2}=\frac{3-\operatorname{trace}(R)}{1+\operatorname{trace}(R)}=\frac{3-r_{11}-r_{22}-r_{33}}{1+r_{11}+r_{22}+r_{33}}
$$

so that an expression for $\|a\|^{2}$ is known, simple algebraic manipulation of the off-diagonal term of $R$ yield

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\frac{1+\|a\|^{2}}{4}\left[\begin{array}{l}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right]
$$

If you didn't use the results of $5(\mathrm{~b})$ in the text, then you would have started with Cayley's formula $R=(I-\hat{a})^{-1}(I+\hat{a})$ and derived Equation (5).

Problem 5: (10 points). Do Problem 8(b,c) in Chapter 2 of the MLS text.
Solution to 8(b):

$$
\begin{aligned}
e^{g \Lambda g^{-1}} & =I+\frac{1}{1!} g \Lambda g^{-1}+\frac{1}{2!}\left(g \Lambda g^{-1}\right)^{2}+\frac{1}{3!}\left(g \Lambda g^{-1}\right)^{3}+\cdots \\
& =I+\frac{1}{1!} g \Lambda g^{-1}+\frac{1}{2!}\left(g \Lambda^{2} g^{-1}\right)+\frac{1}{3!}\left(g \Lambda^{3} g^{-1}\right)+\cdots \\
& =g\left(I+\frac{1}{1!} \Lambda+\frac{1}{2!} \Lambda^{2}+\frac{1}{3!} \Lambda^{3}+\cdots\right) g^{-1} \\
& =g e^{\Lambda} g^{-1}
\end{aligned}
$$

## Solution to 8(c):

Problem 6: (5 points). Problem 10(b) in Chapter 2 of the MLS text, but without the issue of surjectivity.

Note that

$$
\hat{\omega}=\left[\begin{array}{cc}
0 & -w \\
w & 0
\end{array}\right]=w J \quad \text { where } J=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Then:

$$
\hat{\omega}^{2}=w^{2}\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=-w^{2} I ; \quad \hat{\omega}^{3}=-w^{3} J
$$

Hence the exponetial of $\hat{\omega}$ can be computed as:

$$
\begin{aligned}
\exp (\theta \hat{\omega}) & =\left(I+\frac{\theta}{1!} \hat{\omega}++\frac{\theta^{2}}{2!} \hat{\omega}^{2}+\cdots\right) \\
& =\left(I+\frac{w \theta}{1!} J-\frac{w^{2} \theta^{2}}{2!} I-\frac{w^{3} \theta^{3}}{3!} J+\cdots\right) \\
& =\left(1-\frac{w^{2} \theta^{2}}{2!}+\cdots\right) I+\left(\frac{w \theta}{1!}-\frac{w^{3} \theta^{3}}{3!}+\cdots\right) J \\
& =\left[\begin{array}{cc}
\cos (w \theta) & -\sin (w \theta) \\
\sin (w \theta) & \cos (w \theta)
\end{array}\right]
\end{aligned}
$$

While you weren't asked to consider this part of the problem, note that the exponential map from so(2) to $S O(3)$ can not be surjective, as every point in $S O(3)$ can not be covered by every point in $s o(2)$. This map is not injective since $\exp (\theta \hat{\omega})=\exp ((\theta+2 \pi) \hat{\omega})$.

