
ME 115(b): Homework #2 Solution

Problem 1: Problem 21 (d,e), Chapter 3 of MLS.

Let’s review some material from the parts (b) of this problem:

Part (b): Using the Product of Exponentials approach, the structure equations take the
form:

eξ11θ11eξ12(d1−W )eξ13θ13gBT (0) = eξ21θ21eξ22(d2−W )eξ23θ23gBT (0) = eξ31θ31eξ32(d3−d3,0)eξ33θ33gBT (0)

where d3,0 is the length of the third prismatic joint in the home position, which is d3,0 =√
h2 +W 2. With this home configuration,

gBT (0) =

 I [
W
0

]
~0T 1

 .
In the home position (the one showed in the left hand diagram of the figure which goes along
with problem 3.21 in the MLS text) the twists are:

ξ11 =

h/20
1

 ; ξ12 =

1
0
0

 ; ξ13 =

h/2−w
1


ξ21 =

−h/20
1

 ; ξ22 =

1
0
0

 ; ξ23 =

−h/2−w
1


ξ31 =

−h/20
1

 ; ξ32 = 1√
w2+b2

wh
0

 ; ξ33 =

h/2−w
1


(1)

Part (d): Using the results of part (b), the spatial Jacobians are simply:

JsBT,1
~̇θ1 = JsBT,2

~̇θ2 = JsBT,3
~̇θ3,

or [
ξ11 ξ

′
12 ξ

′
13

] θ̇11ḋ1
θ̇13

 =
[
ξ21 ξ

′
22 ξ

′
23

] θ̇21ḋ2
θ̇23

 =
[
ξ31 ξ

′
32 ξ

′
33

] θ̇31ḋ3
θ̇33


where ξ

′
ij is the appropriately transformed twist coordinates of the twists found in part (b) of

the problem. In the case of this simple mechanism, the transformed twists can be determined
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by inspection:

ξ11 =

h/20
1

 ; ξ
′
12 =

cos θ11
sin θ11

0

 ; ξ
′
13 =

(w + d1) sin θ11 + h/2
−(w + d1) cos θ11

1


ξ21 =

−h/20
1

 ; ξ
′
22 =

cos θ21
sin θ21

0

 ; ξ
′
23 =

(w + d2) sin θ21 − h/2
−(w + d2) cos θ21

1


ξ31 =

−h/20
1

 ; ξ
′
32 =

cos(θ32 + θo32)
sin(θ32 + θo32)

0

 ; ξ
′
33 = ξ

′
13

(2)

where θ032 is the angle made the d3 with respect to the horizontal in the home position:
θo32 = tan−1( h

W
).

Part (e): The set of possible motions of the tool frame lies in the intersection of the range
spaces of the three Jacobians, JsBT,1, J

s
BT,2, J

s
BT,3. Thus, when any one of these Jacobians

loses rank, the mechanism must be in an actuator singularity.

Taking the determinants of the above equations, singular configurations exist when:

• d1 +W = 0,

• d2 +W = 0,

• d3 + d3,0 = 0 .

The first condition corresponds to the first prismatic actuator collapsing so that revolute
joints (1, 1) and (1, 3) are collinear. The other conditions are similar.

With regards to the actuator singularities, we need to find under what conditions the span
of the wrenches generated by the actuators loses rank.

We begin by noting that to an observer in the stationary frame, the wrench due to each
prismatic joint will take the form:

Wi = Si

[
~vi

~ρi × ~vi

]
(3)

where Si is the “strength” of the ith primatic joint’s force, ~vi is the direction in which the
primatic actuator’s force acts, and ~ρi is a vector from the origin of the observing frame to a
point on the line of action of the prismatic actuator.

Now applying the above expression to each chain, we get the following wrenches:

W1 = ||~f1||

 cos θ11
sin θ11
h
2

cos θ11

 ; W2 = ||~f2||

 cos θ21
sin θ21
−h

2
cos θ21

 ; W3 = ||~f3||

 cos θ
′
31

sin θ
′
31

−h
2

cos θ
′
31

 (4)
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where θ
′
31 = θ31+θo31. Note that when θ21 = θ

′
31, the third wrench becomes linearly dependent

upon the second wrench, and therefore the span of actuator wrenches loses rank, indicating
that the mechanism is in an actuator singularity.

Problem 2:

Part (a): You can find the forward kinematics of this manipulator by using Denavit Harten-
berg paramaters, or by product of exponentials. Here we use the D-H approach

g01 =


cosθ1 −sinθ1 0 0
sinθ1 cosθ1 0 0

0 0 1 0
0 0 0 1

 g12 =


cosθ2 −sinθ2 0 l1
sinθ2 cosθ2 0 0

0 0 1 0
0 0 0 1



g23 =


cosθ3 −sinθ3 0 l2
sinθ3 cosθ3 0 0

0 0 1 0
0 0 0 1

 g34 =


1 0 0 l3
0 1 0 0
0 0 1 0
0 0 0 1


gST = g01g12g23g34 (5)

Plugging in the g values,:

gST =


cos(θ1 + θ2 + θ3) −sin(θ1 + θ2 + θ3) 0 l1cos(θ1) + l2cos(θ1 + θ2) + l3cos(θ1 + θ2 + θ3)
sin(θ1 + θ2 + θ3) cos(θ1 + θ2 + θ3) 0 l1sin(θ1) + l2sin(θ1 + θ2) + l3sin(θ1 + θ2 + θ3)

0 0 1 0
0 0 0 1


Thus,

RST =

cos(θ1 + θ2 + θ3) −sin(θ1 + θ2 + θ3) 0)
sin(θ1 + θ2 + θ3) cos(θ1 + θ2 + θ3) 0)

0 0 1



pST =

l1cos(θ1) + l2cos(θ1 + θ2) + l3cos(θ1 + θ2 + θ3)
l1sin(θ1) + l2sin(θ1 + θ2) + l3sin(θ1 + θ2 + θ3)

0


Part (b): Because we are only interested in the location of the tool frame origin, the Hybrid
Jacobian can be simply found as:

JH =
[
dp
dθ

]
Now using the solutions from part (a):

JH =

[
−sinθ1l1 − sin(θ1 + θ2)l2 − sin(θ1 + θ2 + θ3)l3 −sin(θ1 + θ2)l2 − sin(θ1 + θ2 + θ3)l3 −sin(θ1 + θ2 + θ3)l3
−cosθ1l1 − cos(θ1 + θ2)l2 − cos(θ1 + θ2 + θ3)l3 cos(θ1 + θ2)l2 + cos(θ1 + θ2 + θ3)l3 cos(θ1 + θ2 + θ3)l3

]
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Figure 1: Left: joint angles of manipulator as a function of time. Right: calculated path of
end-effector.

Part (c): Now we can use the fact that all of the link lengths are 1. Thus,

JH =

[
−sinθ1 − sin(θ1 + θ2)− sin(θ1 + θ2 + θ3) −sin(θ1 + θ2)− sin(θ1 + θ2 + θ3) −sin(θ1 + θ2 + θ3)
−cosθ1 − cos(θ1 + θ2)− cos(θ1 + θ2 + θ3) cos(θ1 + θ2) + cos(θ1 + θ2 + θ3) cos(θ1 + θ2 + θ3)

]

We are given that [
x(t)
y(t)

]
=

[
1.5− 0.5cos(ωt)
0.0− 0.5sin(ωt)

]
where ω controls the speed of the trajectory. The value of ω is left up to you, with the suggestion
of π or π

2 .

You are asked to simulate the robot following a circular trajectory using the resolved rate trajectory
planning scheme with a simple pseudo inverse solution:

Θ̇ = J†θṗ (6)

Remember that the pseudo-inverse can be found with the following equation:

J† = JT (JT )−1 (7)

The actual coding of this approach will depend on whether you are using Mathematica, Matlab,
or another package. The attached code provides an example in Mathematica. Also, the exact
trajectory of each simulated joint will also depend upon your initial conditions. Figure 1 shows the
output from the attached code.

4



 (*****************************************************************) 
 (** Mathematica program to simulate redundancy-resolution       **) 
 (** based on the Jacobian pseudo-inverse               **) 
 (*****************************************************************) 
 
 (* Link Lengths of the 3R robot *) 
l1 = 1.0; l2 = 1.0; l3 = 1.0 
 
 (* forward kinematics functions *) 
x[t1_,t2_,t3_]:= l1 Cos[t1] + l2 Cos[t1+t2] + l3 Cos[t1+t2+t3] 
y[t1_,t2_,t3_]:= l1 Sin[t1] + l2 Sin[t1+t2] + l3 Sin[t1+t2+t3] 
 
 (* the Jacobian matrix *) 
JacMat[t1_,t2_,t3_]:=Block[{J11,J12,J13,J21,J22,J23,s1,c1,s12,c12,s123,c1
23}, 
    s1 = Sin[t1]; s12 = Sin[t1+t2]; s123 = Sin[t1+t2+t3]; 
    c1 = Cos[t1]; c12 = Cos[t1+t2]; c123 = Cos[t1+t2+t3]; 
    J13 = - l3 s123;     J12 = J13 - (l2 s12);     J11 = J12 - (l1 s1); 
    J23 = l3 c123;       J22 = J23 + l2 c12;       J21 = J22 + l1 c1; 
    Return[{{J11, J12, J13},{J21,J22,J23}}]; ] 
 
 (* returns the Jacobian pseudo-inverse *) 
JPseudo[t1_,t2_,t3_]:= Block[{jac}, 
   jac = JacMat[t1,t2,t3]; 
   Return[PseudoInverse[jac]]; ] 
 
 (* equations for desired circular path *) 
R=0.5       (* radius of circle *) 
OMEGA = Pi/2     (* speed along path *) 
xd[t_]:= 1.5 - R Sin[OMEGA t]   (* desired x-position *) 
yd[t_]:=     - R Cos[OMEGA t]   (* desired y-position *) 
xddot[t_]:= -R OMEGA Cos[OMEGA t]  (* desired x velocity *) 
yddot[t_]:=  R OMEGA Sin[OMEGA t]  (* desired y velocity *) 
pdot[t_]:= List[xddot[t],yddot[t]] 
 
 (* constant basis vectors *) 
XVECT = List[1,0,0]; YVECT = List[0,1,0]; ZVECT = List[0,0,1] 
 
    (* use Mathematica's NDSolve capability to integrate the redundancy 
       resolution differential equations.  The manipulator is initialized 
at 
       configuration (97.1808,-97.1808,-97.1808) degrees. This function 
returns a vector of 
       interpolating functions *) 
 
Angles=NDSolve[{ 
   t1'[t] == XVECT . (JPseudo[t1[t],t2[t],t3[t]] . pdot[t]), 
   t2'[t] == YVECT . (JPseudo[t1[t],t2[t],t3[t]] . pdot[t]), 
   t3'[t] == ZVECT . (JPseudo[t1[t],t2[t],t3[t]] . pdot[t]), 
   t1[0] == 97.1808*(Pi/180), t2[0]== -97.1808*(Pi/180), t3[0]== -
97.1808*(Pi/180) },  {t1,t2,t3},{t,0,4.5}] 
 
 (* plot the joint angles resulting from the NDSolve integration *) 
PlotAngles = Plot[{Evaluate[t1[t] /. Angles], Evaluate[t2[t] /. Angles], 



            Evaluate[t3[t] /. Angles]}, {t,0,4.4}] 
 
 (* Plot the associated end-effector coordinates *) 
PlotXY = ParametricPlot[ 
  {x[Evaluate[t1[t] /. Angles][[1]], Evaluate[t2[t] /. Angles][[1]],  
     Evaluate[t3[t] /. Angles][[1]] ], 
   y[Evaluate[t1[t] /. Angles][[1]], Evaluate[t2[t] /. Angles][[1]],  
     Evaluate[t3[t] /. Angles][[1]] ] },  {t,0.1,4.4}, AspectRatio->1.0] 
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