
ME 115(a): Solution to Homework #4
(Winter 2015/2016)

Problem 1: (5 points, Prob. 11(e) in Chapt. 2 of MLS)

Part (e): Let V̂ b denote the planar body velocity:

V̂ b =

[
ω̂b ~vb

~0T 0

]
where ω̂b ∈ so(2), ~vb ∈ R2. Then the planar spatial velocity is:

V̂ s = AdgV̂
b = gV̂ bg−1

=

[
R ~p
~0T 1

] [
ω̂b ~vb

~0T 0

] [
RT −RT~p
~0T 0

]
=

[
Rω̂bRT −Rω̂bRT~p+R~vb

~0T 0

]
Therefore:

ω̂s = Rω̂bRT ~vs = R~vb −Rω̂bRT~p = R~vb − ω̂s~p
The spatial angular velocity can be simplified as follows:

ω̂s = Rω̂bRT =

[
r11 r12
r21 r22

] [
0 −ω
ω 0

] [
r11 r21
r12 r22

]
= ω

[
0 − det(R)

det(R) 0

]
= ω

[
0 −1
1 0

]
= ω̂b

Using this result:

~vs = R~vb − ω̂s~p = R~vb + ωb
[
py
−px

]
=

[
R

[
py
−px

]] [
~vb

ωb

]

Therefore:

V s =

[
~vs

~ωs

]
=

R [
py
−px

]
~0T 1

V b

Problem 2: (10 points, Problem 14 in Chapter 2 of MLS).

Part (a): Let g ∈ SE(3) denote a homogeneous transformation matrix:

g =

[
R ~p
~0T 1

]
Adg =

[
R p̂R
0 R

]
Then:

g−1 =

[
RT −RT~p
~0T 1

]
Adg−1 =

[
RT −(̂RT~p)RT

~0T RT

]
=

[
RT −RT p̂
0 RT

]
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where we have made use of the identity (̂RT~p) = RT p̂R. Let’s now compute AdgAdg−1 :

AdgAdg−1 =

[
R p̂R
0 R

] [
RT −RT p̂
0 RT

]
=

[
I 0
0 I

]
Hence, Adg−1 must equal (Adg)

−1 since AdgAdg−1 = I.

Part (b): If

g1 =

[
R1 ~p1
~0T 1

]
g2 =

[
R2 ~p2
~0T 1

]
Then

g1g2 =

[
R1R2 ~p1 +R1~p2
~0T 1

]
Hence:

Adg1g2 =

[
R1R2 (~p1 +R1~p2)

ˆR1R2

0 R1R2

]
=

[
R1R2 p̂1R1R2 +R1p̂2R

T
1R1R2

0 R1R2

]
=

[
R1R2 p̂1R1R2 +R1p̂2R2

0 R1R2

]
=

[
R1 p̂1R1

0 R1

] [
R2 p̂2R2

0 R2

]
= Adg1Adg2

Problem 3: (25 points, Problem 18(a,b,c,d,e) in Chapter 2 of MLS).

Part (a): Let

gab(t) =

[
Rab(t) ~dab
~0T 1

]
denote the relative location of a moving body (with a reference frame “B” attached to the
moving body) with respect to a fixed observer in frame “A.” The body velocity of the moving
body is:

~V b
ab = (g−1ab (t)ġab(t))

∨ =

[
~v2ab
~ωbab

]
=

[
RT
ab
~̇dab

(RT
abṘab)

∨

]
. (1)

To show the desired result,[
Rab 0
0 Rab

]
~V b
ab =

[
Rab 0
0 Rab

] [
RT
ab
~̇dab

~ωbab

]
=

[
RabR

T
ab
~̇dab

Rab~ω
b
ab

]
=

[
~̇dab
~ωsab

]
= ~V h

ab

where we have used the fact that ~ωsab = Rab~ω
b
ab.

Part (b): There are many ways to solve this problem. For example, you could either start
with Proposition 2.14 or Proposition 2.15 on page 59 of MLS which relate the velocities of
three frames, A, B, and C. Let’s choose Prop. 2.15:

V b
ac = Adg−1

bc
V b
ab + V b

bc (2)
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Using the fact that

V h
ac =

[
Rac 0
0 Rac

]
V b
ac

Eq. (2) can be written as:

V h
ac =

[
Rac 0
0 Rac

]
(Adg−1

bc
V b
ab + V b

bc)

=

[
Rac 0
0 Rac

] [
RT
bc −RT

bcp̂bc
0 RT

bc

]
V b
ab +

[
Rac 0
0 Rac

]
V b
bc

=

[
Rab −Rabp̂bc
0 Rab

]
V b
ab +

[
Rab 0
0 Rab

] [
Rbc 0
0 Rbc

]
V b
bc

=

[
I − ̂(Rabpbc)
0 I

][
Rab 0
0 Rab

]
V b
ab + AdRabV

h
bc

= Ad−RabpbcV
h
ab + AdRabV

h
bc

(3)

Part (c): Let frames A and B be stationary “spatial” frames, and let Frame C be fixed to
a moving body. Let V h

bc be the hybrid velocity of the body, as seen by an observer in the B
frame. If we now want to express this velocity as seem by an observer in the A frame (i.e.,
changing the spatial frame), we need to calculate V h

ac. You can do this using the results of
part (b) of this problem, which derived the result:

V h
ac = Ad−RabpbcV

h
ab + AdRabV

h
bc (4)

If you chose this approach, then since A and B are stationary, V h
ab = 0. Hence, Eq. (3) takes

the form:
V h
ac = AdRabV

h
bc

Hence, the hybrid velocity is dependent on the orientation of the spatial frame, but not its
position.

Alternatively, if you don’t want to rely upon part (b), you can recall that the expression for
the hybrid velocity is:

V h
ac =

[
~̇pac
~ωsac

]
Since ~pac = ~pab +Rab~pbc, and ~pab is constant:

~̇pac = Rab~̇pbc.

Similarly, ~ωac = Rab~ωbc. Hence, V h
ac is dependent of ~pab, but not Rab.

Part (d): Let A be a stationary spatial frame. Let B and C be two different frames attached
to a moving body. Let us assume that the velocity of the rigid body is given by V h

ab. If we
now switch the location of the body fixed frame from position B to position C, the hybrid
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velocity of the body is given by V h
ac. Since B and C are both fixed in the body, then V h

bc = 0
in Eq. (3). Hence Eq. (3) reduces to:

V h
ac = Ad−RabpbcV

h
ab

Hence, the hybrid velocity in only dependent on pbc, the position of the body frame, and not
on Rbc, the orientation of the body fixed frame. Alternatively, you could compute V h

ac in a
“brute force” way:

V h
ac =

[
~̇pac
~ωac

]
=

[
d
dt

(~pab +Rab~pbc)

(ṘacR
T
ac)
∨

]
=

[
~̇pab + ω̂sabRab~pbc)

(ṘabRbcR
T
bcR

T
ab)
∨

]
=

[
~̇pab + ω̂sabRab~pbc)

~ωsab

]
= Ad−RabpbcV

h
ab

Thus, the result only depends upon ~pbc, and not Rbc.

Part (e): Let the position and orientation of a moving rigid body be given by R(t) and
~p(t). Let V b be the body velocity of the rigid body, and let F b be a wrench applied to the
body, expressed in body coordinates. The power applied to the body due to this wrench is
given by:

V b · F b = (V b)TF b (5)

Let V h denote the velocity of the body in hybrid coordinates. Similarly, define the hybrid
wrench to be F h. We will define F h to be the wrench that preserves the amount of power
in Eq. (5):

V b · F b = (V b)TF b = V h · F h

= (V h)TF h

= (

[
R 0
0 R

]
V b)TF h

= (V b)T
[
RT 0
0 RT

]
F h

Hence, it must be true that:

F b =

[
RT 0
0 RT

]
F h or F h =

[
R 0
0 R

]
F b

Problem 4: (10 Points, Problem 16(a,b) in Chapter 2 of MLS)

Part (a): g0,3 can be determined in a variety of ways, such as by using the Denavit-
Hartenberg, the product of exponentials (POE) approach, or a “brute force” approach.
Let’s use the POE. Assume that the reference configuration is that given in Figure 2.17 of
MLS. Hence, gST (0) is:

gST (0) =


1 0 0 0
0 0 0 (l1 + l2)
0 0 0 l0
0 0 0 1
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The twist coordinates of the joint axes (in the reference configuration) are:

~ξ1 =

[
h1~ω1 + ρ1 × ~ω1

~ω1

]
=


0
0
0
0
0
1

 ~ξ1 =

[
h1~ω2 + ρ2 × ~ω2

~ω2

]
=


l1
0
0
0
0
1


The forward kinematics is then given by

gST = eθ1ξ̂1eθ2ξ̂2gST (0)

=


cos(θ1 + θ2) − sin(θ1 + θ2) 0 −(l1 sin θ1 + l2 sin(θ1 + θ2))
sin(θ1 + θ2) cos(θ1 + θ2) 0 l1 cos θ1 + l2 cos(θ1 + θ2)

0 0 1 l0
0 0 0 1

 (6)

Part (b): Given gST , the spatial velocity can easily be computed as

~V s
ST = (ġSTg

−1
ST )∨. (7)

Later will will learn that one can formally rearrange these equations into the form:

~V s
ST = JsST

~̇θ

where JsST is termed the spatial Jacobian matrix. One could substitute Eq. (6) directly into
Eq. (7) and carry through with the tedious algebra. To get a “hint” about the Jacobian
matrix, note that

ġSTg
−1
ST =

d

dt

(
eθ1ξ̂1eθ1ξ̂2gST (0)

)(
eθ1ξ̂1eθ2ξ̂2gST (0)

)−1
=

(
θ̇1ξ̂1e

θ1ξ̂1eθ1ξ̂2gST (0) + eθ1ξ̂1 θ̇2ξ̂2e
θ2ξ̂2gST (0)

)
g−1ST (0)e−θ2ξ̂2e−θ1ξ̂1

= θ̇1ξ̂1 + θ̇2e
θ1ξ̂1 ξ̂2e

−θ1ξ̂1 (8)

Hence, the spatial Jacobian matrix takes the form:

JsST =
[
~ξ1 ~ξ

′
2

]
=
[
~ξ1 Ad

eθ1ξ̂1
~ξ2

]

=


0 l1 cos θ1
0 l1 sin θ1
0 0
0 0
0 0
1 1
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Part (c): The body velocity can be computed as a function of the body Jacobian matrix,
or can be computed as the adjoint of the spatial velocity found in part (b). In either case,
the result is:

~V b
ST = J bST

~̇θ =


−(l2 + l1 cos θ2 −l2

l1 sin θ2 0
0 0
0 0
0 0
1 1


[
θ̇1
θ̇2

]

Problem 5: (10 Points)

Each finger applies a “wrench” to the disk object due to its contact with the disk. Since
we are assuming a frictionless contact, the finger can only apply forces to the disk that are
normal to the disk’s boundary. Hence, each finger applies a pure force in the direction of
the boundary normal vector, which corresponds to a zero pitch screw.

Define a coordinate system whose origin lies at the common intersection of all of the finger
forces at the center of the disk. Choose the z-axis of this system to be normal to the plane
of the disk. Let the x-axis coincide with one of the finger contact normals. Thus, the screw
coordinates for the three wrenches are:

ξ1 =


−1
0
0
0
0
0

 ξ2 =


− cos(120o)
− sin(120o)

0
0
0
0

 ξ2 =


− cos(240o)
− sin(240o)

0
0
0
0


If the disk is not immobilized, there there must exist a twist (i.e., an instantaneous motion of
the disk) that is reciprocal to the finger wrenches. Let ξR = [0 0 1 0 0 0]T denote the zero
pitch twist that corresponds to rotation of the disk about a vertical axis passing through the
origin of the reference frame (i.e., the concurrency point of the three contact normals). This
twist is reciprocal to each of the finger wrenches, and therefore the fingers can not stop any
rotational motions of the disk. Hence, the object is not immobilized.
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