Parametrization of a C-obstacle Boundary

(revised version II)

1 Background

We have already looked at the problem of how to symbolically describe a portion (or "patch") of a c-obstacle boundary corresponding to a EV contact between a planar polygonal robot, \mathcal{A}, and a planar polygonal obstacle, \mathcal{O}. The goal of this handout handout is to choose a parametrization of the robot and obstacle geometries which can then be used to derive a concrete formula that describes the boundary of a c-obstacle due to an EV contact.

2 Parametrization

Figure 1: Parametrization of polygonal obstacle and polygonal robot
Figure 1 describes a parametrization of the robot and an obstacle. Note that one must choose a fixed observing reference frame, whose basis vectors are subscripted by R, and a reference frame fixed to the body of the moving robot, whose basis vectors are subscripted by A. We choose a parametrization with the following variables

- \vec{r}_{i} is a vector from the origin of \mathcal{A} 's body fixed frame to the $i^{\text {th }}$ vertex of \mathcal{A}, a_{i}.
- $\left\|\vec{r}_{i}\right\|$ is the Euclidean length of \vec{r}_{i}.
- By abuse of notation, let \vec{o}_{j} be a vector from the origin of the fixed observing frame to the $j^{\text {th }}$ vertex of \mathcal{O}, o_{j}.
- $\left\|\vec{o}_{i}\right\|$ is the Euclidean length of \vec{o}_{i}.
- α_{i} is the angle between \vec{x}_{A}, the x-axis of the robot's body fixed frame and the vector $\overrightarrow{r_{i}}$.
- ϕ_{i} is the angle from \vec{x}_{A} to \vec{n}_{i}^{A}, the normal to the $i^{\text {th }}$ edge of \mathcal{A}, E_{i}^{A}.
- β_{j} is the angle between \vec{x}_{R} (the x-axis of the fixed observing reference frame) and \vec{o}_{j}.
- ξ_{j} is the angle between \vec{x}_{R} and \vec{n}_{j}^{O}, the normal to the $j^{\text {th }}$ edge of \mathcal{O}, E_{i}^{O}.

With these definitions, the basic vectors that are involved in the constraint equations are:

$$
\begin{array}{cc}
\vec{o}_{j}=\left\|\vec{o}_{j}\right\|\left[\begin{array}{l}
\cos \left(\beta_{j}\right) \\
\sin \left(\beta_{j}\right)
\end{array}\right] & \vec{r}_{i}=\left\|\vec{r}_{i}\right\|\left[\begin{array}{c}
\cos \left(\alpha_{i}\right) \\
\sin \left(\alpha_{i}\right)
\end{array}\right] \\
\vec{n}_{i}^{A}(q)=\left[\begin{array}{l}
\cos \left(\phi_{i}+\theta\right) \\
\sin \left(\phi_{i}+\theta\right)
\end{array}\right] & \vec{n}_{j}^{O}=\left[\begin{array}{c}
\cos \left(\xi_{j}\right) \\
\sin \left(\xi_{j}\right)
\end{array}\right] \tag{2}
\end{array}
$$

3 The Constraint Equations in Parametrized Form

$$
a_{i}(q)=\left[\begin{array}{l}
x \tag{3}\\
y
\end{array}\right]+\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \vec{r}_{i}=\left[\begin{array}{l}
x+\left\|\vec{r}_{i}\right\| \cos \left(\alpha_{i}+\theta\right) \\
y+\left\|\vec{r}_{i}\right\| \sin \left(\alpha_{i}+\theta\right)
\end{array}\right]
$$

First constraint. First consider the constraint which ensures that vertex o_{j} lies on the line underlying the $i^{\text {th }}$ edge of \mathcal{A} :

$$
\begin{equation*}
\vec{n}_{i}^{A}(q) \cdot\left(o_{j}-a_{i}(a)\right)=0 \tag{4}
\end{equation*}
$$

Substituting in the variables from above, and performing some algebra results in the equation:

$$
\begin{equation*}
0=-x \cos \left(\phi_{i}+\theta\right)-y \sin \left(\phi_{i}+\theta\right)+\left\|\vec{o}_{j}\right\| \cos \left(\phi_{i}+\theta-\beta_{j}\right)-\left\|\vec{r}_{i}\right\| \cos \left(\phi_{i}-\alpha_{i}\right) . \tag{5}
\end{equation*}
$$

This equation has the form:

$$
\begin{equation*}
A(\theta) x+B(\theta) y+C(\theta)=0 \tag{6}
\end{equation*}
$$

For a constant orientation (i.e., when the value of θ is fixed), Equation (6) represents a straight line in the $x-y$ plane (i.e., a straight line in the contant orientation slice of c-space at level θ). Thus, the local "patch" of the configuration-space obstacle boundary is a ruled
surface, since this equation shows that the surface is bounded by a line whose orientation changes as a function of θ.

Second Pair of Constraints. Next we consider the pair of inequality constraints that insure that the robot and obstacle don't overlap:

$$
\begin{align*}
\vec{n}_{i}^{A}(q) \cdot\left(\vec{o}_{j-1}-\vec{o}_{j}\right) & \geq 0 \tag{7}\\
\vec{n}_{i}^{A}(q) \cdot\left(\vec{o}_{j+1}-\vec{o}_{j}\right) & \geq 0 \tag{8}
\end{align*}
$$

Using the observation that:

$$
\left(\vec{o}_{j-1}-\vec{o}_{j}\right)=\left\|E_{j-1}^{O}\right\|\left[\begin{array}{c}
\cos \left(\xi_{j-1}-\pi / 2\right) \tag{9}\\
\sin \left(\xi_{j-1}-\pi / 2\right)
\end{array}\right]
$$

Substituting the parametrized terms into Equation (7), and simplifying yields the equivalent constraint:

$$
\begin{equation*}
\cos \left(\phi_{i}+\theta-\xi_{j-1}+\pi / 2\right) \geq 0 \tag{10}
\end{equation*}
$$

In general, for an angle γ to satisfy the equation $\cos \gamma \geq 0$, we require that $-\frac{\pi}{2} \leq \gamma(\bmod 2 \pi) \leq$ $\frac{\pi}{2}$. Hence, Equation (10) is equivalent to

$$
\begin{equation*}
-\pi \leq \phi_{i}+\theta-\xi_{j-1} \leq 0 \quad(\bmod 2 \pi) \tag{11}
\end{equation*}
$$

Note, for this equation, only the lower bound is physically meaningful for the geometry shown in Figure 1. Thus, constraint Equation (7) reduces to:

$$
\begin{equation*}
\xi_{j-1}-\phi_{i}-\pi \leq \theta \tag{12}
\end{equation*}
$$

Similarly, using the observation that

$$
\left(\vec{o}_{j+1}-\vec{o}_{j}\right)=\left\|E_{j}^{O}\right\|\left[\begin{array}{l}
\cos \left(\xi_{j}+\pi / 2\right) \tag{13}\\
\sin \left(\xi_{j}+\pi / 2\right)
\end{array}\right]
$$

Equation (8) can be rewritten as

$$
\begin{equation*}
\cos \left(\phi_{i}+\theta-\xi_{j}-\pi / 2\right) \geq 0 \tag{14}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
0 \leq \phi_{i}+\theta-\xi_{j} \leq \pi \quad(\bmod 2 \pi) \tag{15}
\end{equation*}
$$

For this equation, only the upper bound is physically meaningful, and thus constraint Equation (8) reduces to:

$$
\begin{equation*}
\theta \leq \pi+\xi_{j}-\phi_{i} \tag{16}
\end{equation*}
$$

These two constraints can then be summarized as:

$$
\begin{equation*}
\theta \in\left[\left(\xi_{j-1}-\phi_{i}-\pi\right),\left(\xi_{j}-\phi_{i}+\pi\right)\right] \quad(\bmod 2 \pi) \tag{17}
\end{equation*}
$$

Thus, these constraints bound the range of θ over which the local "patch" is defined. Note that the " $\bmod 2 \pi$ " modification applies to each of the upper and lower bounds.

Third pair of constraints. The final pair of inequality constraints bounds the vertex o_{j} to lie within the line segment E_{i}^{A} :

$$
\begin{equation*}
0 \leq\left(o_{j}-a_{i}(q)\right) \cdot\left(a_{i+1}(q)-a_{i}(q)\right) \leq\left\|E_{i}^{A}\right\|^{2} \tag{18}
\end{equation*}
$$

Substituting the parametrized expressions for $o_{j}, a_{i}(q)$, and $a_{i+1}(q)$ into this equation yields:

$$
\begin{align*}
0 \leq & x\left[\left\|\vec{r}_{i}\right\| \cos \left(\alpha_{i}+\theta\right)-\left\|\vec{r}_{i+1}\right\| \cos \left(\alpha_{i+1}+\theta\right)\right] \tag{19}\\
& +y\left[\left\|\vec{r}_{i}\right\| \sin \left(\alpha_{i}+\theta\right)-\left\|\vec{r}_{i+1}\right\| \sin \left(\alpha_{i+1}+\theta\right)\right] \tag{20}\\
& +\left\|\vec{o}_{j}\right\|\left\|\vec{r}_{i+1}\right\| \cos \left(\theta+\alpha_{i+1}-\beta_{j}\right)-\left\|\vec{o}_{j}\right\|\left\|\vec{r}_{i}\right\| \cos \left(\theta+\alpha_{i}-\beta_{j}\right) \tag{21}\\
& -\left\|\vec{r}_{i+1}\right\|\left\|\vec{r}_{i}\right\| \cos \left(\alpha_{i}-\alpha_{i+1}\right)+\left\|\vec{r}_{i}\right\|^{2} \leq\left\|E_{i}^{A}\right\|^{2} \tag{22}
\end{align*}
$$

These equations have the form:

$$
\begin{equation*}
0 \leq D(\theta) x+E(\theta) y+F(\theta) \leq\left\|E_{i}^{A}\right\|^{2} \tag{23}
\end{equation*}
$$

where:

$$
\begin{aligned}
D(\theta)= & {\left[\left\|\vec{r}_{i}\right\| \cos \left(\alpha_{i}+\theta\right)-\left\|\vec{r}_{i+1}\right\| \cos \left(\alpha_{i+1}+\theta\right)\right] } \\
E(\theta)= & {\left[\left\|\vec{r}_{i}\right\| \sin \left(\alpha_{i}+\theta\right)-\left\|\vec{r}_{i+1}\right\| \sin \left(\alpha_{i+1}+\theta\right)\right] } \\
F(\theta)= & +\left\|\vec{o}_{j}\right\|\left\|\vec{r}_{i+1}\right\| \cos \left(\theta+\alpha_{i+1}-\beta_{j}\right)-\left\|\vec{o}_{j}\right\|\left\|\vec{r}_{i}\right\| \cos \left(\theta+\alpha_{i}-\beta_{j}\right) \\
& -\left\|\vec{r}_{i+1}\right\|\left\|\vec{r}_{i}\right\| \cos \left(\alpha_{i}-\alpha_{i+1}\right)+\left\|\vec{r}_{i}\right\|^{2}
\end{aligned}
$$

3.1 Summary

The c-obstacle bounday patch defined by these constraint equations can thus be viewed as a ruled surface formed by sweeping a line segment (whose underlying line is given by Equation (6)) through the θ-range defined by Equation (5). The end points of the line segment can be determined as follows. One end of the line segment (for a given θ) occurs at the lower equality of Equation (23). Thus, this point can be found as the solution of the two linear equations

$$
\begin{aligned}
& 0=A x+B y+C \\
& 0=D x+E y+F
\end{aligned}
$$

Similarly, the other end-point of the line segment (again, for a given θ) can be found from the upper inequality of Equation (23). That is, the other point (for fixed θ) is found by solving the linear equations:

$$
\begin{aligned}
0 & =A x+B y+C \\
\left\|E_{i}^{A}\right\|^{2} & =D x+E y+F
\end{aligned}
$$

