(Due Wednesday, January 28, 2009)

Consider the convex polygonal robot, \mathcal{A}, and obstacle, \mathcal{O}, shown in Figure . The obstacle is a rectangle with side dimensions of 5 and 10 units, whose center is coincident with the origin of the fixed workspace observing reference frame (whose axes are denoted by X_{R} and $\left.Y_{R}\right)$. The rectangle faces are parallel to the workspace reference frame axes. The robot is an isoceles triangle whose base dimension is 4 and whose height is 6 . Its body fixed reference frame is located so that its x-axis is aligned with the triangle's centerline, and its origin is located a

Problem 1: Write a Mathematica (or other programming language) function to create the outline of the c-obstacle for a fixed orientation of \mathcal{A}. Create the c-obstacle outline for the case of $\theta=45^{\circ}$, where θ is the orientation of \mathcal{A}.

Problem 2: Using the function from Problem 1, create an visualization of the c-obstacle by superimposing on a single 3 -dimensional view the constant orientation c-obtacle boundaries for orientations of \mathcal{A} in 10° increments (in the range $\theta \in\left[0^{\circ}, 360^{\circ}\right]$). That is, plot 36 constant orientation slices (with each orientation differing by 10°) on a single 3 -dimensional view (with the axes being x, y, and θ).

Problem 3: Create the function that describes the surface boundary "patch" of the cobstacle associated with Type EV contact between robot edge $E_{1}^{\mathcal{A}}$ (which connects vertices a_{1} and a_{2}) and obstacle vertex o_{1}. Also determine the boundaries of this patch. Plot this patch using Mathematica, Matlab, or anoother approach.

