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Abstract—This paper presents a strategy for planning robot
motions in dynamic, uncertain environments (DUEs). Successful
and efficient robot operation in such environments requires
reasoning about the future evolution and uncertainties of the
states of the moving agents and obstacles. A novel procedure
to account for future information gathering (and the quality of
that information) in the planning process is presented. To ap-
proximately solve the Stochastic Dynamic Programming problem
associated with DUE planning, we present a Partially Closed-loop
Receding Horizon Control algorithm whose solution integrates
prediction, estimation, and planning while also accounting for
chance constraints that arise from the uncertain locations of
the robot and obstacles. Simulation results in simple static and
dynamic scenarios illustrate the benefit of the algorithm over
classical approaches. The approach is also applied to more com-
plicated scenarios, including agents with complex, multimodal
behaviors, basic robot-agent interaction, and agent information
gathering.

Index Terms—Motion Planning, Dynamic, Uncertain, Receding
Horizon Control, Partially Closed-Loop, Anticipated Measure-
ments, Information Gathering, Interaction

I. INTRODUCTION

THIS work is concerned with motion planning in Dynamic,
Uncertain Environments (DUEs). In such environments,

robots must work in close proximity with many other moving
agents whose future actions and reactions are difficult to
predict accurately. Moreover, only noisy measurements of the
robot’s own state and those of obstacles and moving agents
are available for planning purposes. An example of a DUE
application is a service robot which must move through a
swarm of moving humans in a cafeteria during a busy lunch
hour in order to deliver food items. The human trajectories
cannot be predicted with any certainty and the behaviors of
the individuals may differ, complicating the planning problem.
However, some prior knowledge about preferred paths and
behaviors may be available, and should be integrated when
possible. This article presents a framework and initial algo-
rithmic and simulation results that we hope will provide a
foundation for future DUE motion planners.

Robot motion planning in dynamic environments has re-
cently received substantial attention due to the DARPA Urban
Challenge [1] and growing interest in service and assistive
robots (e.g., [2], [3]). In urban environments, traffic rules
define the expected behaviors of the dynamic agents and
constrain expected future locations of moving objects. In other
applications, agent behaviors are less well defined, and the
prediction of their future trajectories is more uncertain.
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Previously proposed motion planning frameworks handle
only specific subsets of the DUE problem. Classical motion
planning algorithms [4] mostly ignore uncertainty when plan-
ning. When the future locations of moving agents are known,
the two common approaches are to add a time-dimension
to the configuration space, or to separate the spatial and
temporal planning problems [4]. When the future locations are
unknown, the planning problem is solved locally [5]–[7] (via
reactive planners), or in conjunction with a global planner that
guides the robot towards a goal [4], [7]–[9]. The Probabilistic
Velocity Obstacle approach [10] extends the local planner to
uncertain environments, but it is not clear how the method can
be extended to capture more complicated agent behaviors (a
constant velocity agent model is used).

The DUE problem is stochastic. Planning algorithms that
account for stochastic uncertainty have been applied largely
in static environments. Two types of stochastic systems are
distinguished: non-deterministic (the uncertainties lie in a
bounded set, [11], [12]), and probabilistic (the uncertainties
are described using probability distributions) [4]. This work
uses a probabilistic formulation. One of the first stochastic
robotic planning approaches was pre-image back-chaining
[13]. Since then, discrete search strategies have also been
extended to plan in belief space (e.g., [14]–[17]). The belief
roadmap method [18] and the Stochastic Motion Roadmap
[19] builds a connected, collision-free graph in the static
uncertain configuration space during a learning phase and then
queries the (static) graph during execution. The benefit of this
approach is reduced in dynamic environments since the graph
needs to be reconstructed at each planning cycle. Alternatively,
the problem can be posed as a stochastic Dynamic Program
(DP) [20]. When the system’s dynamic equation is time-
invariant and the stage cost is constant (which is not the case
for the problem considered here) then stochastic DP can be
solved using POMDP (Partially Observable Markov Decision
Process) methods [20], [21]. Otherwise, the stochastic DP can
be approximately solved with a Rollout algorithm (a limited
lookahead policy) or a restricted information approach [20].
A special case of these approaches is the Receding Horizon
Control (RHC) framework which has been extended to a
stochastic RHC formulation in the case of robot localization
uncertainty (e.g., [22]–[24]). For the related problem of prob-
abilistic dynamic target tracking, a promising forward-search
approach is proposed that makes efficient use of the linearity of
the system, a lack of collision constraints, and the independent,
Gaussian-distributed noise terms [25].

Previous work on the integration of interactive robot-agent
models into the planning process is limited. Kluge and Prassler
[26] introduced reflective navigation: the agent will maximize
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some utility function. This approach assumes knowledge of
that utility function and dynamic capabilities of each agent.
Van Den Berg et al. [27] introduce the reciprocal velocity
obstacle to approximate the effect of agent deliberation: if all
the movers take appropriate action to avoid collisions, then the
correct behavior can be obtained. This approach is applied to a
large number of movers, but does not account for uncertainty
and is limited to very simple agent behaviors.

Better prediction of future system states can result in greater
efficiency of robot action in DUEs. Short term predictors
evolve the future state of the dynamic agents using a simple
model (e.g., a constant velocity model [28], [29]). Longer
term predictions can be improved by learning and using the
dynamic agents’ preferred paths to predict future states (e.g.,
[30], [31]), or by inferring environment structure to inform the
prediction process (e.g., [32], [33]). Henry et al. [34] learn
planning strategies from example pedestrian trajectories.

While individual components of the DUE problem have
been previously considered, a comprehensive framework that
integrates planning, prediction, and estimation is missing. This
article represents a formal effort to integrate these activi-
ties while also incorporating the effect of anticipated future
measurements in the motion planning process1. As shown by
example, the proper inclusion of these effects can improve
robot performance in dynamic environments. Because the
exact DUE solution is intractable, we introduce the stochastic
DP and RHC frameworks (Section III) and present the Partially
Closed-loop RHC (PCLRHC) approach in Section IV. Key
results on probabilistic constraint satisfaction are described in
Section V (refer to [36] for details). Computational consid-
erations for the PCLRHC and the general DUE problem are
presented in Section VI. Simulation results for a robot navi-
gating in simple static and dynamic scenarios are presented in
Section VII-A to illustrate some of the characteristics of this
method. The approach is next applied to more complicated
scenarios: agents with complicated, multimodal behavioral
models (Section VII-B), and basic robot-agent interactions
(Section VII-C) including information gathering.

II. PROBLEM STATEMENT

This section develops a standard constrained stochastic
optimal control problem statement which encompasses the
aspects of the DUE problem developed in the remainder of the
paper. Our technical contribution is the subsequent analysis of
this problem.

Let xi ∈ X denote the system state (e.g., robot and agent
positions and velocities) at time ti, where the state space X ⊆
Rnx has dimension nx. The control action ui lies in the action
space U: ui ∈ U ⊆ Rnu . The disturbance, ωi ∈ W ⊆ Rnω ,
models uncertainty in the objects’ governing dynamic model2.
This disturbance may be parameterized in terms of the system
state and control, and is described by a conditional distribution:
ωi(xi, ui) ∼ p(ωi|xi, ui). The disturbance is assumed to be

1Initial results, presented in [35], are augmented here through a complete
analysis of the PCLRHC approximations and computational requirements.
Simulation results for cluttered, complicated dynamic scenarios, interactive
robot-agent examples, and agent information gathering are presented.

2Object refers to either the robot, dynamic agents, or static obstacles.

mutually independent of previous disturbances, conditioned
on xi and ui. The system (consisting of robot and dynamic
agents) evolves in discrete time intervals (enumerated stages),
starting at the current stage, k. The evolution is governed by
a discrete-time dynamic equation:

xi+1 = f (xi, ui, ωi) (1)

where the state transition function f : X × U ×W → X is
assumed to be C2 (continuous, twice differentiable).

The measurement, yi, is an element of the measurement
space Y(xi), yi ∈ Y(xi) ⊆ Rny , and is corrupted by noise,
νi ∈ V ⊆ Rnν , where νi(xi) ∼ p(νi|xi) may be parameterized
in terms of the system state. The C2 sensor mapping, h :
X× V→ Y, maps states to measurements:

yi = h(xi, νi). (2)

Our goal is to calculate a feedback control policy (e.g.,
ui = −Kxi) which defines a control action for every reachable
system state from the current stage, k, to the N th stage.
Since the system states are uncertain, the control law at some
future stage, i, is defined in terms of the information state (I-
state), Ii. This I-state captures all the information available to
controller, including the measurement yi (see Section III-A).
The control policies over the planning horizon are denoted by
Π = {πk(Ik), . . . , πN−1(IN−1)} and can be thought of as
output feedback policies. The set of admissible policies are
defined as Π̃.

In order to evaluate different possible trajectories for the
purpose of planning, a stage-additive cost function, which cap-
ture planning and missions goals (e.g., li(xi, πi(Ii)) = xTi xi
will draw the robot to the origin), is assumed:

L(xk:N ,Π) = lN (xN ) +

N−1∑
i=k

li(xi, πi(Ii)). (3)

Additionally, the controls and the states of the system may
be constrained by nonlinear inequalities g(xi, ui−1) ≤ 0 ∀i =
k . . . N (e.g., collision avoidance). Since the system states are
uncertain, these constraints are imposed as chance constraints
of the form: P (g(xi, ui−1) ≤ 0) ≥ α, where α is the level of
confidence (see Section V).

The optimal policy, Π(∗) = {π(∗)
k (Ik),. . . ,π

(∗)
N−1(IN−1)},

minimizes the expected cost over the set of admissible policies
while satisfying the constraints:

Π(∗) = arg min
Π∈Π̃

E [L(xk:N ,Π, ωk:N−1)] (4)

s.t. xi+1 = f (xi, ui, ωi)

yi = h(xi, νi) ∀i = k . . . N

P (g(xi, ui−1) ≤ 0) ≥ α.

This feedback control policy is generally difficult to obtain.
To gain insight, we first consider the unconstrained version
of this problem, which can be reformulated as a stochastic
DP problem, before the constraints are incorporated in the
stochastic RHC framework.
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III. STOCHASTIC DP APPROXIMATIONS

The problem of Section II, without the state and control
constraints, can be solved using the Stochastic DP (SDP)
formulation [20], [37] by converting the problem to belief
space. The SDP approach constructs an optimal feedback
control policy (defined for every reachable belief state), which
makes the approach computationally intensive. The Stochastic
RHC framework (SRHC) is an approximate solution to the
SDP problem that additionally incorporates constraints. The
SRHC approach recursively solves for a sequence of control
actions at every planning cycle. The control is selected only
for the states that the system is predicted to visit. It is useful
to write the problem in terms of belief states to gain intuition
about the use of anticipated information and draw parallels to
standard robot motion planning formulations.

A. Planning in Belief Space

Information states (I-states) summarize the information
available to the planner [4]. Two I-states of interest here are
the history I-state and the belief state. Let the history of
measurements at the ith stage be y0:i , {y0, . . . , yi} and the
history of controls be u0:i , {u0, . . . , ui}. The history I-state,
Ii, is defined as:

Ii = {I0, u0:i−1, y0:i}. (5)

where I0 is the initial history I-state (i.e., a priori information).
I-states evolve according to a dynamic transition function. The
propagated I-state is unpredictable because next the measure-
ment, yi+1, is unknown. The measurement yi+1 plays the role
of a process noise in the history I-space [20].

Since the history I-state can be unwieldy (its dimension
grows over time), it is often useful to work with the simpler
belief state, which is derived from the history I-state. The
transformation between these spaces is exact if it is assumed
that a Markov model governs the system’s evolution [4] (the
current state and control is the best predictor of future states
[21]). The belief space is just another state space for which
the states are defined as bi , p(xi|Ii) and the state transition
function, bi+1 = fb(bi, ui, yi+1), is obtained from Bayes’ rule
[20], [21]. The cost function is converted into an equivalent
function of the belief states (using a slight abuse of notation
to highlight similarities to the optimal control problem for
deterministic systems), noting that the control is to be selected
and is thus not a random variable:

ci(bi, πi) , E [li(xi, πi, ωi)|Ii] (6)

cN (bN ) , E [lN (xN )|IN ] . (7)

The expected cost is written in terms of the measurements
when the problem is converted to the belief space3:

Eyk:N

[
cN (bN ) +

N−1∑
i=k

ci(bi, πi)

]
. (8)

3The law of total expectation is used [4]. The Markov assumption is not
required for this result.

The DP algorithm solves this optimization problem with the
backwards recursion of the cost-to-go function, Ji(bi) [20]:

JN (bN ) = cN (bN ) (9)

Ji(bi) = min
πi

ci(bi, πi) + Eyi+1
[Ji+1(bi+1)|Ii] . (10)

The SDP algorithm constructs a feedback law on belief
space. However, the set of possible future measurements is
infinite in a probabilistic setting. Only a few SDP problems
yield closed form solutions (e.g., linear systems with quadratic
cost, Gaussian noise terms, and no constraints) [20], [25]. One
must therefore seek approximate solutions to the generally
intractable SDP.

B. Approximations to SDP

The SDP problem is approximated by (i) recursively solving
a simplified problem for a control sequence instead of a
control policy (e.g., the Open-loop Control strategy), (ii)
solving for a control policy over a limited horizon and then
approximating the cost-to-go function beyond this horizon
(Limited Lookahead Policies), or (iii) POMDP methods (not
applicable here since a constant stage cost is not assumed)
[20]. Strategy (i) uses a restricted information set4 [20] when
approximately solving the problem: future measurements are
ignored. The restricted information set at future stage i (based
on actual measurements up to the current stage, k) is denoted
the “open-loop” I-state:

IOLi = (y1, . . . , yk, u0, . . . , ui−1), i ≥ k. (11)

The resulting future belief states are the open-loop predicted
distributions, bOLi = p(xi|IOLi ) which can be updated using
bOLi+1 = fOLb (bOLi , ui) and then used in the SDP algorithm. As
a result, the solutions obtained with this approximation tends
to be conservative. However, the restricted information set
defines the future belief states completely for a given control
sequence (the problem becomes deterministic in terms of these
belief states) and the expectation in eq. (10) can be dropped:

Ji(b
OL
i ) = min

ui
ci(b

OL
i , ui) + Ji+1(fOLb (bOLi , ui)). (12)

The results of Sections III-A and III-B can now be used to
formulate the SRHC problem to incorporate the constraints.

C. SRHC in Belief Space

Receding horizon control (RHC) is a suboptimal control
scheme which can explicitly incorporate state and control
constraints into the planning problem [38], [39]. A simplified
version of the problem in Section II is solved over a finite
horizon to stage M (M ≤ N ) to obtain a sequence of
control actions. A portion of the plan is executed before new
measurements are obtained, the system states are updated, and
the problem is re-solved. Feedback is moved to the planning
phase, instead of the execution phase (i.e., it is an outer-loop
feedback mechanism).

4A restricted information set is a subset of the history I-state that is used
to construct a more tractable approximating solution.
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RHC was originally developed for deterministic systems.
While the best approach to extend the RHC formulation to
stochastic systems is still up for debate [22], [24], [40]–[42],
it is convenient to convert the problem into the belief space
(as per Section III-A):

min
uk:M

Eyk:M

[
cM (bM ) +

M−1∑
i=k

ci(bi, ui)

]
(13)

s.t. bi+1 = fb(bi, ui, yi+1)

P (gb(bi, ui−1) ≤ 0) ≥ α ∀i = k . . .M

where gb(bi, ui−1) is the equivalent nonlinear constraint func-
tion written in terms of the belief state (see Section V).
The dynamics and noise properties of the original system are
encoded in the belief state transition function.

This problem formulation is still cumbersome since it is
necessary to reason over the complete set of possible future
measurements, yk:M . In a probabilistic system, this is an
infinite set. Similar to Section III-B, this problem is com-
monly approximated by restricting the information set used
by the planner: measurements beyond the current stage are
ignored, resulting in the Open-loop Receding Horizon Control
(OLRHC) approach [22], [24], [40]–[42]. The resulting belief
states are the objects’ open-loop predicted distributions. For
this reason, the OLRHC approach tends to be conservative,
leading Yan and Bitmead [22] to introduce a ‘closed-loop
covariance’ (fixed at the one-step open-loop prediction value).
This crudely accounts for the anticipated future information
which will become available during plan execution. One of
our technical contributions is the formal inclusion of future
anticipated measurements into the SRHC framework with the
PCLRHC approach.

IV. PARTIALLY CLOSED-LOOP RECEDING HORIZON
CONTROL (PCLRHC)

To account for anticipated future information, we define
an alternative restricted information set, which forms the
basis for our Partially Closed-loop Receding Horizon Control
(PCLRHC) approach. To motivate the underlying assumptions,
consider a linear system with Gaussian noise where the
dynamic and measurement models are given in Appendices
A and B by equations (47) and (50), respectively. The belief
state transition function for the system is solved by the
Kalman Filter, resulting in prediction and update steps. Let
x̂i|j , E[xi|Ij ] and Σi|j , E[(xi − x̂i|j)(xi − x̂i|j)T |Ij ]:

Prediction step:

x̂i|i−1 = Ax̂i−1|i−1 +Bui−1 (14)

Σi|i−1 = AΣi−1|i−1A
T + FWFT . (15)

Measurement update step:

x̂i|i = x̂i|i−1 +Ki(yi − Cx̂i|i−1) (16)
Σi|i = Σi|i−1 −KiCΣi|i−1 (17)

where the innovation covariance is

Γi|i−1 = CΣi|i−1C
T +HVHT (18)

and the Kalman gain is

Ki = Σi|i−1C
TΓ−1

i|i−1. (19)

The key insight for this system is that incorporating future
measurements in the update step has two effects on belief state:
(i) the value of the measurement shifts the center of the belief
state (see eq. (16)) and (ii) incorporating the measurement
reduces uncertainty in the belief state and is independent of
the value of the measurement. For the PCLRHC approach,
the most likely measurement is assumed and as a result the
center of the resulting belief state is not updated. However, the
fact that a measurement will be taken is incorporated into the
planning process (which updates the shape of the distribution),
resulting in an accurate approximation of the true belief state.

A. Assumption and Formulation

In Section III-B, a restricted information set is used to obtain
the open loop approximation to the SDP problem. For the
PCLRHC approach, an alternative restricted information set
is used to obtain another approximation to the SDP problem,
which can then be extended to handle constraints (SRHC). If
the most likely measurement, ỹi = E[yi|IPCLi−1 ], is assumed
for the future measurements, the restricted information set is:

IPCLi = (y1, . . . , yk, ỹk+1, . . . , ỹi, uk, . . . , ui−1). (20)

The belief state associated with IPCL is

bPCLi = p(xi|IPCLi ) = p(xi|u0:i−1, y1:k, ỹk+1:i) (21)

and the state transition function is defined as:

bPCLi+1 = fPCLb (bPCLi , ui, ỹi+1). (22)

This belief state is completely defined in terms of the control
sequence since the most likely measurement can be calculated,
and as a result the expectation in (13) can be dropped. The
resulting optimization problem solved by PCLRHC is:

min
uk:M

cM (bPCLM ) +

M−1∑
i=k

ci(b
PCL
i , ui) (23)

s.t. bPCLi+1 = fPCLb (bPCLi , ui, ỹi+1)

P (gb(b
PCL
i , ui−1) ≤ 0) ≥ α ∀i = k . . .M.

B. Properties of the PCLRHC Approximation

To obtain this approximate algorithm, an assumption about
the anticipated information was necessary. One concern is that
this assumption introduces artificial information into the prob-
lem. However, it can be shown for linear systems with Gaus-
sian noise that the information gain during system propagation
using the assumption (over ignoring all measurements) is not
more than the information gained when actually executing the
system (and the true measurements are incorporated as they
become available).

Proposition 1: For linear systems with Gaussian-distributed
noise, the information gained (defined in terms of the relative
information entropy, H) for the most likely measurement
assumption (HPCL) is less or equal to the information gained
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when the system is executed and the true measurements are
incorporated (HEx):

HPCL ≤ HEx. (24)

Proof: The relative entropy (also known as the KL
divergence [43]) is a measure of the information gained by
a distribution over some baseline distribution. For Gaussian
distributions the relative entropy has a closed-form solution.
Let the baseline distribution be N (µ0,Σ0). The information
gained over the baseline distribution by N (µ1,Σ1) is:

H =
1

2

(
ln

(
det(Σ1)

det(Σ0)

)
+ tr

(
Σ−1

1 Σ0

)
+

(µ1 − µ0)
T

Σ−1
1 (µ1 − µ0)− nx

)
(25)

where nx is the dimension of the state space, and det(·) and
tr(·) are the determinant and trace of a matrix, respectively.
There are two controllable sources of information gain: the
relative size of the covariances (first two terms) and the shift
in means (third term).

Let the baseline distribution be the open-loop predicted
distribution (no measurements beyond the current stage, k, are
incorporated) with mean µ0 = x̂i|k and covariance Σ0 = Σi|k.
This baseline distribution is compared to two distributions at
stage i: the distribution used in the PCL approach where the
anticipated measurements are incorporated from stage k to i,
and the distribution obtained when the actual measurements
are incorporated (during system execution).

Consider first the distribution obtained from the partially
closed-loop approximation. By assuming that the most likely
measurement will occur, the center of the belief state is not
updated (see eq. (16)), so that µ1 = x̂i|k. However, the
covariance is updated (which accounts for the fact that a
measurement will occur) so that Σ1 = Σi|i. Thus, only the
covariance update contributes to the information gain:

HPCL =
1

2

(
ln

( |Σi|i|
|Σi|k|

)
+ Tr

(
Σ−1
i|i Σi|k

)
− nx

)
. (26)

Next, the baseline distribution is compared to the distribu-
tion obtained from the actual system execution (when the true
measurements are incorporated): µ1 = x̂i|i and ΣC = Σi|i.
The information gained is:

HEx = HPCL+
1

2

((
x̂i|i − x̂i|k

)T
Σ−1
i|i
(
x̂i|i − x̂i|k

))
. (27)

Since Σi|i is positive semidefinite, the quadratic term is non-
negative and thus HPCL ≤ HEx. If the actual measurement is
different from the most likely value (occurs with probability
1) then the quadratic term results in information gain.

Remark: Proposition 1 shows that the most likely measure-
ment assumption is the least informative assumption about the
value of the future measurement. From eq. (16), any other as-
sumed value will introduce a shift in the mean, resulting in an
artificial information gain. Thus, this approximation optimally
incorporates the effect of the measurement by updating the
covariance, but ignores the information from the value of the
(unknown) measurement.

As illustrated in the ensuing examples, the robot can make
more aggressive plans in the presence of uncertain static
and dynamic obstacles by accounting for the fact that future
measurements will be taken, though their values cannot yet be
predicted. However, we first return to the probabilistic state
constraints in the problem formulation.

V. CHANCE CONSTRAINTS

It is often necessary to impose nonlinear inequality con-
straints of the form g(xi, ui) ≤ 0 on the system states
when solving a motion planning problem (e.g., for obstacle
avoidance). However, when the system states are described
by unbounded probability distributions (e.g., normal distribu-
tions), there is no guarantee that the constraint can be satisfied
for all possible realizations of the states. It is instead necessary
to introduce chance constraints on the states, which are of the
form P (g(xi, ui) ≤ 0) ≤ δ, where δ is the level of confidence.
The constraints are specified as limits on the probability of
constraint violation.

Two types of chance constraints are considered: (i) linear
constraints (e.g., velocity constraints) and (ii) collision con-
straints (e.g., between the robot and dynamic agents). Results
are summarized here (see [36], [44] for details).

A. Linear Constraints on Gaussian-Distributed States

Let the linear chance constraint be of the form P (aTx ≤
b) ≤ δ. Assume Gaussian-distributed state variables, x. Then,
the chance constraint is satisfied iff:

aT x̂+ F−1(δ)×
√
aTΣa ≤ b (28)

where x̂ , E[x] and Σ , E[(x− x̂)(x− x̂)T ]. F−1(δ) is the
inverse of the cumulative distribution function for a standard
scalar Gaussian variable [36].

B. Probabilistic Collision Checking

Probabilistic collision checking between the robot and an
agent can be formulated as a chance constraint of the form
P (C) ≤ 1 − α, where C is the collision condition (defined
below). Let XR(xR) ⊂ Rnx be the set of points occupied by
the robot (centered at xR) and XA(xA) ⊂ Rnx be the set of
points occupied by the agent (centered at xA). The collision
condition is defined as C(xR, xA) : XR(xR)∩XA(xA) 6= {∅}.
The probability of collision is defined in terms of the joint
distribution of the robot and agent as:

P (C) =

∫
xR

∫
xA

IC(xA, xR)p(xR, xA)dxRdxA (29)

where IC is the indicator function, defined as:

IC(xA, xR) =

{
1 if XR(xR) ∩ XA(xA) 6= {∅}
0 otherwise.

(30)

This formulation of probabilistic collision checking is inves-
tigated by Du Toit and Burdick in [36] and can be implemented
using Monte-Carlo Simulation. Alternatively, a small-object
assumption yields a closed-form solution to the probability of
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collision (assuming Gaussian distributions, xR ∼ N (x̂R,ΣR)
and xA ∼ N (x̂A,ΣA)):

P (C) ≈ VR×
1√

det (2πΣC)
exp

[
−1

2
(x̂R − x̂A)

T
Σ−1
C (x̂R − x̂A)

]
(31)

where VR is the volume of the robot, and ΣC , ΣR + ΣA.
This solution results in a quadratic constraint on the robot
mean state in terms of the agent mean state:

(x̂R − x̂A)TΣ−1
C (x̂R − x̂A) ≥ κ(ΣC , δ, VD) (32)

which defines an ellipse around the agent that the robot must
avoid for the constraint to be satisfied. The interested reader
is referred to [36] for details.

C. Probabilistic Safety of the System

No practical robot can react instantaneously to unforeseen
changes in the environment due to the dynamics of the
system. Consideration of additional future stages during the
planning phase is required to guarantee system safety. The
number of additional stages that needs to be considered is
highly problem dependent. One approach is to avoid Inevitable
Collision States (ICS) [45]: states from which collisions
cannot be avoided. In ICS, the objective is to identify at
least one control sequence (from a system state) that avoids
collisions for all future times. ICS has recently been extended
to stochastic systems [46], [47]. The problem considered here
is different: the probabilistic safety associated with a specific
control sequence must be evaluated. The proposed approach
is to guarantee probabilistic safety over some horizon by
appropriately conditioning the collision chance constraints:
all probable disturbances and measurements are considered
over this horizon. This, in combination with the recursive
formulation of the problem is expected to render the approach
insensitive to measurement outliers (this has been verified in
simulation only). This important topic cannot be sufficiently
addressed here, and the interested reader is referred to [44].

VI. COMPUTATIONAL CONSIDERATIONS

The recursive nature of the PCLRHC approach and the re-
quirement to operate in an uncertain environment necessitates
a real-time solution of the motion planning problem. However,
the underlying optimization problem that must be solved is
highly dependent on the objective function, constraints, etc.,
making a concise treatment of the algorithm’s computational
complexity difficult. Instead, the complexity for the OLRHC
and PCLRHC approaches are compared, and computational
burden specific to the DUE applications are described.

The following notation is used: let nx be the robot’s C-space
dimension and bRi and b(j)i be the belief states associated with
the robot and jth agent at stage i, respectively. µRi and ΣRi
is the mean and covariance of the robot belief state, bRi . nX
is the dimension of the augmented state space, consisting of
the robot’s and agents’ C-spaces (e.g., Section VII-C). Let
bi = [bRi ; b

(1)
i ; . . . b

(nA)
i ], where nA is the number of agents.

Fig. 1. The calculated processing times for the belief state transition function
calculated for the PCLRHC and OLRHC approaches.

A. Complexity of OLRHC versus PCLRHC

The main computational difference between the OLRHC
and PCLRHC formulations lies in the propagation of the belief
states. The belief state transition function is generally derived
from Bayes’ Rule. For linear systems with Gaussian noise, the
belief state evolution is given by the Kalman Filter (see eq.
(14) through (17)). For the OLRHC, only the prediction step
of the filter is executed, which is known to scale as O(n3

X).
For the PCLRHC, the additional covariance update involves a
matrix inversion and matrix multiplications, which also scales
as O(n3

X). Thus, the computational complexity of this step
differs from that of the OLRHC approach by a constant factor.
In order to evaluate this factor, the average processing times5

for the two algorithms are plotted against the dimension of the
state space in Fig. 1. A cubic function is fitted to the data to
obtain a factor of 1.991.

When considering non-linear systems or systems with non-
Gaussian noise, no closed-form solution to the belief state
transition function is available. In this case, a non-linear filter
(e.g., an Extended Kalman Filter or Particle Filter) must
be used. The relative scaling of the calculations for these
approaches have not been investigated.

B. Complexity arising from the DUE Problem Formulation

The presence of multiple obstacles in the DUE problem
results in multiple local minima in the non-convex opti-
mization problem (e.g., passing to the left or right of an
obstacle). Additionally, the behaviors of the moving objects
may be coupled (due to interactions) and the noise models
for the objects may vary spatially and/or temporally (e.g.,
the uncertainty in the position measurements of the obstacles
may be a function of the distance between the robot and the
obstacle). The separation principle from control theory does
not apply in general and the control selection and estimation
problems are coupled.

1) Multiple Obstacles: Since the general DUE problem
is non-convex, most optimization schemes cannot guarantee
a global solution to this problem and approaches that are
insensitive to local minima should be considered. Sampling-
based motion planners [4] may be particularly suited to

5Averaged processing times for 500,000 function evaluations on a 2.66 GHz
Intel Core 2 Duo processor, 4 GB RAM, using the GSL CBLAS library.
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these types of problems and additionally have proven to be
computationally efficient. This benefit comes at the price of
solving a discretized (approximate) optimization problem.

2) Uncertainty: Incorporating uncertainty in the problem
structure impacts the complexity of the system state propaga-
tion and the evaluation of constraints in particular. In general,
the belief state propagation (Section VI-A) occurs inside the
optimization loop since control selection and estimation are
coupled. However, for linear Gaussian systems, covariance
propagation is independent of system states and controls and
can be computed outside the optimization loop.

The functional form of the constraints and noise distri-
butions affect the computational complexity of constraint
evaluation. For linear constraints and Gaussian-distributed un-
certainty, constraint evaluation requires an additional matrix-
vector multiplication (e.g., eq. (28)) which scales as O(n2

x).
Greater complexity will arise for non-Gaussian noise or non-
linear constraints (e.g., collision chance constraints may re-
quire solution by MCS - see [35] for details).

3) Dependence of Dynamic Models: When modeling the
interaction between the robot and agents, the augmented state
space dimension nX = (nA + 1) × nx implies a belief state
transition calculation of order O(n3

X) = O((nA + 1)3 × n3
x).

When the robot and obstacle models are independent, belief
state propagation scales in O((nA + 1)×n3

x). Since the robot
motion does not affect the obstacle behavior in this latter case,
the agents’ belief state updates can be performed outside of
the optimization loop.

Next, we show through simulation that the PCLRHC pro-
vides real benefit over the OLRHC approach.

VII. SIMULATIONS AND APPLICATIONS

The OLRHC (which is typical of current SRHC practice)
and the PCLRHC approaches are compared in static and
dynamic scenarios. While linear dynamical models (for both
robot and agents) with Gaussian noise were used for simplicity,
our approach is more generally applicable6. To demonstrate
the flexibility of the PCLRHC approach to handle a wide
variety of applications and situations, we extend and apply
the method to several scenarios. First, the robot operates in
a static environment, followed by a dynamic scenario with
simple agent behaviors. Even these trivial examples show
how anticipated future measurements and chance constraints
(which are fundamental to the DUE problem) can affect the
motion planning outcome. Next, more complicated agent be-
haviors are considered, including agents with multiple possible
destinations or models and examples with robot-agent interac-
tion. Finally, to highlight the PCLRHC approach’s ability to
incorporate the quality of anticipated future information, an
information gathering example is presented.

All simulation results assume:
• A disk robot (0.5 m radius) must navigate in a planar

environment, possibly with disk agents (0.5 m radius).

6In Section IV, the PCLRHC approximation is motivated by the Kalman
Filter. since the algorithm is formulated in terms of belief states, other non-
linear filtering techniques can be utilized. The appropriateness of specific
non-linear filters must be evaluated on a case-by-case basis.

• The robot state consists of position and velocity com-
ponents: xRi = [pRxi pRyi vRxi vRxi ]T . Similarly for
the agent states. The initial state estimates for the ob-
jects are Gaussian-distributed: xR0 ∼ N (x̂R0|0,Σ

R
0|0) and

xA0 ∼ N (x̂A0|0,Σ
A
0|0) with x̂R0|0 and x̂A0|0 specified below,

and ΣR0|0 = ΣA0|0 = 0.01 × I4 (unless specified otherwise).
I4 is the 4× 4 identity matrix

• The dynamic and measurement models used are given
in Appendix A and B. Gaussian-distributed process- and
measurement noise terms with WR = WA = VR = VA =
0.01× I2 are used.

• The objective is to minimize the expected value of the
quadratic stage-additive cost function:

M−1∑
i=0

{(
xRi − xG

)T
Qi
(
xRi − xG

)
+ (uRi )TRi(u

R
i )
}

+

(
xRM − xG

)T
QM

(
xRM − xG

)
(33)

where Qi and Ri are defined below.
• In the associated figures, circles indicate the robot (blue)

and agents (red). The robot goal is shown with a black +
and the agent destination with a black *. For the OLRHC
approach, we distinguish between the planned solution
(green, dashed) and executed trajectories (green, solid). The
1-σ positional uncertainty ellipses are overlayed along the
planned trajectory (e.g., Fig. 2). Similarly blue trajectories
depict the planned (dashed) and executed (solid) PCLRHC
trajectories. Finally, the predicted (red, dashed) and actual
(red, solid) agent trajectories are indicated with 1-σ posi-
tional uncertainty ellipses (e.g., Fig. 4).

• Consider the constraints (velocity and control constraints
illustrate the ability to handle realistic constraints):
– collision chance constraints (Section V-B) are imposed

at each stage with δc,i = 0.01
– control magnitudes are less than unity at each stage
– each velocity component is limited to [−2, 2] (except

Example 8): P (vRxi > 2|Ii−2) ≤ δv,i and P (vRxi <
−2|Ii−2) ≤ δv,i with δv,i = 0.01. Similarly for vRyi

A. Simple Environments

1) Example 1: Static Environment: The robot (whose mo-
tions are goverened by the dynamic model of Appendix A-A)
operates in the vicinity of a single rectangular obstacle. The
robot’s initial and goal locations are chosen so that the robot
must skirt the obstacle to reach the goal. Measurements are
governed by the model of Appendix B-A. The robot initial
mean state is xR0|0 = [0 0.75 1 0]T and the goal lies at
xG = [10 0.75 0 0]T . The collision chance constraint in
this case is P (x

(2)
i < 0|Ii−2) ≤ δp,i, where δp,i = 0.01.

For the cost function parameters, QM = diag(10, 10, 0, 0),
Qi = diag(1, 1, 0, 0), and Ri = diag(1, 1, 0, 0) and used for
i = 0, . . . ,M − 1.

The initial planned trajectories for each approach are shown
in Fig. 2. The optimal solution is to travel in a straight line
from the initial location to the goal. However, the planned
OL path diverges from the straight line due to the chance
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Fig. 2. Trajectories planned by the OLRHC (green, dashed) and PCLRHC
(blue, dashed) methods, with associated 1-σ positional uncertainty ellipses.
The static obstacle is red.

Fig. 3. Comparison of the planned and executed paths produced by the
OLRHC and PCLRHC approaches

constraints: since future measurements are not considered
during this plan, the growth in the predicted uncertainty forces
the robot to move away from the obstacle. The obtained
solution is very conservative, and the goal is not reached.
Since the effects of the anticipated future measurements are
incorporated in the PCLRHC plan, growth in uncertainty is
bounded. The initially planned PCLRHC solution drives the
robot directly to the goal.

The executed paths for the two approaches (Fig. 3) are
similar due to the RHC outer-loop feedback mechanism: the
problem is re-solved at each planning cycle as new measure-
ments are taken. However, the planned and executed OLRHC
trajectories differ substantially, as the planner relies almost
exclusively on the outer-loop feedback mechanism to execute
a reasonable trajectory. On the other hand, the PCLRHC’s
planned and executed trajectories are very similar, and the
outer loop feedback mechanism is used to correct for the actual
measurements and noise encountered along the trajectory.
The PCLRHC approach efficiently uses the anticipated future
information when solving the planning problem.

2) Example 2: Oncoming Agents: Two dynamic obstacles
move towards the robot. Their motions are independent of the
robot’s actions (i.e., the agents do not “react” to the robot’s
presence). However, the agent states enter the problem through
the collision chance constraints. The robot’s initial mean state
is x̂R0|0 = [0 0 1 0]T , and its goal lies at xG = [10 0 0 0]T .
The dynamic model of Appendix A-A and linear position
measurement model (Appendix B-A) govern each agent, with
x̂A1

0|0 = [12 2 1 0]T and x̂A2
0|0 = [12 −2 1 0]T . A collision

Fig. 4. Planned trajectories due to two oncoming agents

TABLE I
MC SIMULATION INITIAL CONDITION RANGES

x y Heading |v| [m/s]
Robot 0 [−2, 2] [−22.5◦, 22.5◦] 1.2

Agent 1 [4, 8] 6 [−120◦, −75◦] 1
Agent 2 [4, 8] −6 [75◦, 120◦] 1

constraint is applied to each agent (see Section V-B).
Fig. 4 shows the first stage planned trajectories for the

OLRHC and PCLRHC approaches. The PCLRHC method ob-
tains a significantly improved planned and executed trajectory
as compared to the OLRHC approach: due to the growth in
uncertainty, the OLRHC approach cannot plan a path between
the agents, and must instead move around both agents. The
PCLRHC approach can progress directly towards the goal and
its executed trajectory is significantly shorter than the OLRHC
path.

3) Example 3: MC Simulation of Crossing Agents: To
confirm that the performance improvement is not specific
to the chosen scenario, we carried out a Monte-Carlo Sim-
ulation (MCS) in which two dynamic obstacles cross the
space between the robot and the goal. The same models, cost
function, and constraints are used from the previous example.
The simulation is repeated 200 times with randomized initial
conditions of robot and agents (see Table I). The robot moves
from left to right (xG = [12 0 0 0]T ), agent 1 moves from
north to south, and agent 2 from south to north (crossing).

The histograms of the executed path lengths show that the
PCLRHC approach (Fig. 5) more often finds direct paths to
the goal (peak at 12.5 m) than the OLRHC approach (Fig.
6). A larger second peak (at 15 m) in the OLRHC histogram
suggests that the robot reacts to the agents more often, result-
ing in longer paths. The PCLRHC approach obtains shorter
average executed paths. On a case-by-case comparison, the
PCLRHC approach finds shorter paths in 72.0% of the trials,
with at least a 10% path length improvement in 37.5% and at
least a 20% improvement in 17.5% of the trials.

4) Example 4: High Clutter Environment: One of the ad-
vantages of the PCLRHC approach over the OLRHC approach
is the ability to handle high-clutter environments, as illustrated
in Fig. 7 and 8. The robot is initialized at the origin and
with the objective of reaching xG = [10 0 0 0]T . There
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Fig. 5. Histogram of executed path lengths for the PCLRHC approach. The
robot either reacts to the agents (peak around 15), or moves directly towards
the goal (peak around 12.5).

Fig. 6. Histogram of OLRHC executed path lengths (see Fig. 5)

are four static obstacles of radius 0.25 m in the environment
(magenta). The measurement noise for the static obstacles has
covariance VA = 0.01×I2. The static obstacles are initialized
at [3 0]T , [5 3]T , [5 −2]T , and [8 −1]T respectively. In
addition, three dynamic obstacles inhabit the robot’s environ-
ment (red). The dynamic and measurement models of Section
VII-A2 are employed. The dynamic obstacles are initialized at
x̂A1

0|0 = [2 3 0.707 − 0.707]T , x̂A2
0|0 = [9 3 − 0.354 − 0.354]T ,

and x̂A3
0|0 = [9 −3 − 1 0]T , respectively.

As expected, the OLRHC approach fails to find a reasonable
trajectory through this environment, due to the undesired
growth in uncertainty and the associated conservatism. In
contrast, the PCLRHC approach manages to steer the robot
through the field of dynamic and static obstacles towards the
goal.

B. Complicated, Independent Agent Behavior

The previous section showed the advantages obtained over
the OLRHC approach when uncertainty growth is bounded by
incorporating future anticipated measurements in the PCLRHC
approach. This section considers scenarios where agents have
more complicated behaviors (though still independent of the
robot state), which results in greater uncertainty in future states
of the system.

1) Example 5: Agents with Multiple Destinations: In the
cafeteria example, moving agents might be attracted to spe-
cific destinations (e.g., the salad bar or the cashier). This
information can improve long-term agent position prediction.
Agents with multiple possible destinations can be modeled
by a system with discrete unknown parameters, with each
parameter value modeling a different potential agent goal. The
resulting probability distribution describing the future agent

Fig. 7. Planned trajectory in a cluttered environment for the PCLRHC
approach.

Fig. 8. Planned trajectory in a cluttered environment for the OLRHC
approach.

location is multimodal7.
Consider the robotic system, cost function, and constraints

of Section VII-A2. The goal is xG = [8 1 0 0]. The initial
robot state mean and covariance are x̂R0|0 = [0 1 1 0]

T and
ΣR0|0 = 0.1 × I4. Assume that an agent is drawn to one
of two possible destinations (Appendix A-B, with k = 0.1,
θ(1) = [10 4] and θ(2) = [10 − 4]). The agent does
not change destinations during the plan execution. A linear
position measurement model (Appendix B-A) is assumed. The
agent initial state has mean x̂A0|0 = [2 0 1 0]

T and covariance
ΣA0|0 = 0.1 × I4. The destinations are initially approximately
equally likely: P (θ(1)|I0) = 0.501 and P (θ(2)|I0) = 0.499.
θ(2) is the true destination.

Using the above models, the agent behavior is governed by:

xAi = A(θ)xAi−1 +BuAi−1 + FωAi−1 + fθ(θ) (34)

yAi = C(θ)xAi +HνAi + hθ(θ) (35)

7Recent work by He et al. [25] considered multimodal agent behavior in
the tracking problem.
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Fig. 9. Predicted open-loop evolution of multimodal distribution. Two com-
ponents are clearly discernible, and the spread of the components increases.

Fig. 10. The OLRHC’s Initial planned trajectory and the agent’s predicted
trajectories towards the two possible destinations

where the parameter vector θ ∈
[
θ(1) θ(2) . . . θ(J)

]
can assume one of J possible values, ωAi−1 ∼ N (0,W ) and
νAi ∼ N (0, V ). It can be shown that the estimated agent state
distribution is a weighted sum of Gaussian components [44]:

p(xAk |yA1:k, u
A
0:k−1, {θ(j)}) =

J∑
j=1

w
(j)
k N (x̂

A(j)
k|k ,Σ

A(j)
k|k ) (36)

where
w

(j)
k , P (θ(j)|yA1:k, u

A
0:k−1) (37)

is the probability that θ(j) is the true parameter value. At each
planning cycle, one filter is required to update each viable
parameter value with the latest measurement.

Some flexibility exists in defining the ‘most likely mea-
surement’ for these multimodal distributions. In this work, the
evolution of the weights is not predicted since the effect of
the robot’s planned path on these probabilities is not modeled.
The most likely measurement for each possible parameter
value, denoted the locally most likely measurement8, is used:
ỹ
A(j)
i = E[yAi |yA1:k, ỹ

A(j)
k+1:i−1, θ

(j)]. The predicted open-loop
evolution of the agent’s multimodal distribution is shown in
Fig. 9. The multimodal probability distributions at different

8Alternatively, a globally most likely measurement, can be used, generated
from the current most probable parameter value, but this was found to
introduce undesirable bias.

Fig. 11. The initially planned PCLRHC trajectory and the predicted agent
trajectories towards the two possible destinations

stages are overlaid. The spreads of the distributions increase
due to the open-loop prediction of the future states.

The OLRHC’s initial planned trajectory is shown Fig. 10.
Two agent trajectories (one associated with each destination)
are plotted. The growth in agent uncertainty forces the robot
to move away from both possible agent trajectories when
the chance constraints are imposed, resulting in a very con-
servative plan. The PCLRHC’s planned trajectory (Fig. 11)
moves the robot towards the goal while avoiding the agent.
The sequence of executed (solid) and the planned (dashed)
trajectories are plotted in Fig. 12 for the PCLRHC (blue) and
OLRHC (green) methods. Both possible agent trajectories are
plotted (thicker lines indicate higher probability, as estimated
by the robot, of being the true behavior). The OLRHC ap-
proach is practically unable to plan in the presence of multiple
trajectories since the multimodal behavior effectively increases
the clutter at future times. Since the actual destination is
disambiguated as more information is obtained during system
execution, the false agent trajectory is eventually ignored. The
PCLRHC approach is better able to avoid the agent when both
destinations are likely and ignores the false destination once
the true destination becomes known.

2) Example 6: Agents with Multiple Models: Systems with
multiple model classes are of interest since complex behaviors
can be obtained by combining simpler behavioral models. For
example, being able to distinguish between an agent moving
at a constant velocity from one that is moving towards some
goal location allows for better prediction and planning. Such
scenarios are detailed in [44].

C. Interactive Robot-Agent Scenarios

This section considers motion planning when there
are different kinds of coupling between the robot and
agent models. To handle this interdependence, the prob-
lem is formulated in an augmented state space: xi =
[(xRi )T (xA1

i )T . . . (xAnAi )T ]T . Similar augmented spaces
are used for ui, ωi, yi, and νi.

1) Example 7: Agent Information Gathering: It is desirable
to model the quality of information that can be obtained about
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(a) (b)

(c) (d)

Fig. 12. Executed (solid) and planned or predicted (dashed) trajectories at
stages 1, 2, 5, and 10 (thicker lines indicate more probable behaviors)

the agents. In this example, the measurement quality is a
function of agent distance from the robot: better observations
are obtained as the robot nears the agent. We use again
the robotic system, cost, and constraints of Section VII-A2.
Assume the agent dynamic model of Appendix A-A, and a
distance-dependent measurement model (Appendix B-B with
dmax = 5, nξ = 2, and ξ

(p)
i ∼ N (0, 1) ∀p = 1, 2). This

augmented system has state-dependent noise (e.g., [48]):

xi = Axi−1 +Bui−1 + Fωi−1 (38)

yi = Cxi +Hνi +

nξ∑
p=1

H
(p)
ξ

(p)
i +

nξ∑
p=1

G(p)xiξ
(p)
i .(39)

Note that the multiplicative noise terms are the products of
two Gaussian variables, which is non-Gaussian. Therefore an
optimal estimator is not generally available. An approximate
estimator can be derived by assuming a Luenberger estimator:

x̂i|i = x̂i|i−1 +Ki(yi − ŷi|i−1). (40)

The resulting 2-step filter is given by [44]:
Prediction step:

x̂i|i−1 = Ax̂i−1|i−1 +Bui−1 (41)

Σi|i−1 = AΣi−1|i−1A
T + FWFT . (42)

Measurement update step:

x̂i|i = x̂i|i−1 +Ki(yi − Cx̂i|i−1) (43)
Σi|i = (I −KiC)Σi|i−1 (44)

where

Γi|i−1 = CΣi|i−1C
T +HVHT +

nξ∑
l=1

σ2
ξH

(l)
H

(l)T
+

nξ∑
l=1

σ2
ξG

(l)
(

Σi|i−1 + x̂i|i−1x̂
T
i|i−1

)
G(l)T+

Fig. 13. The PCLRHC’s planned robot trajectory and predicted agent
trajectory . The robot moves closer to the agent to improve information
gathering quality.

nξ∑
l=1

σ2
ξ

(
H

(l)
x̂Ti|i−1G

(l)T +G(l)x̂i|i−1H
(l)T
)

(45)

Ki = Σi|i−1C
TΓ−1

i|i−1. (46)

The dependence between the robot and agent models must
be accounted for in the chance constraints and the interested
reader is referred to [36], [44] for additional details.

In the simulations, the robot’s goal is xG = [10 2 0 0]
T .

The mean initial states of robot and agent are x̂R0|0 =

[0 2 1 0]
T and x̂A0|0 = [1 0 1.2 0]

T . A quadratic cost func-
tion (33) of the augmented state and control is used. Un-
like previous examples, the robot’s plan affects the qual-
ity of agent measurement, and therefore the resulting qual-
ity of future agent state estimates. As a result, the esti-
mation and the planning processes are not separable, and
the covariance terms in the cost function cannot be ig-
nored. Here, QN = diag(10, 10, 0, 0, 100, 100, 0, 0), Qi =
diag(1, 1, 0, 0, 100, 100, 0, 0), and Ri = diag(0.1, 0.1, 0, 0),
for all i = 0, . . . , N−1 are used in (33). The planned PCLRHC
trajectory is shown in Fig. 13. The agent’s position uncertainty
is heavily penalized in the cost function in order to accentuate
the active learning component of the plan. The plan moves the
robot towards the agent to obtain more accurate measurements,
and therefore better information about the agent.

2) Example 8: Adversarial Agent Model: This example
considers an adversarial agent model which continually at-
tempts to collide with the robot, causing the robot to actively
avoid the agent. Again, the robotic system, cost and constraints
of Section VII-A2 are assumed. The robot’s goal is xG =
[10 0 0 0] and its mean initial state is x̂R0|0 = [0 0 1 0]

T . To
complicate the planning task the robot’s velocity components
are limited to [−1.6 1.6] so that it can’t easily outrun the
agent. For the agent, assume the adversarial model (Appendix
A-C with k = 0.15), and a linear position measurement
model (Appendix B-A). The agent initial mean state is x̂A0|0 =

[5 3 0 − 1]
T .

As shown in Fig. 14, the OLRHC method is initially unable
to plan past the agent due to the growth in uncertainty.
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Fig. 14. The OLRHC’s planned trajectory for the robot (with robot velocity
constraints [−1.6 1.6]) and the predicted trajectory for the adversarial agent

(a) (b)

(c) (d)

Fig. 15. The OLRHC’s executed and planned trajectories at stages 1, 6,
7, and 10 with an adversarial agent model (with robot velocity constraints
[−1.6 1.6])

However, as new information is incorporated (by recursively
resolving the problem), the robot can move towards the goal.
The sequence of executed plans and planned trajectories is
given in Fig. 15. The PCLRHC’s planned trajectory is plotted
in Fig. 16. The reduction in conservatism allows the PCLRHC
approach to plan past the agent and move towards the goal.
The robot’s motion is more aggressive, but still probabilisti-
cally safe.

What happens when the robot cannot physically avoid
the dynamic agents? This case was briefly investigated by
limiting the robot velocity components to [−1.2 1.2]. The
OLRHC approach was unable to find a path towards the
goal, as the adversarial agent can move sufficiently close to
the robot to violate the chance constraints for all possible
control actions. However, a feasible solution was found by the
PCLRHC method. Snapshots from the sequence of executed
and planned OLRHC trajectories for are given in Fig. 17. This
is an example where the OLRHC approach cannot solve the
problem, but the PCLRHC is still able to find a safe and
efficient solution (not plotted). It should be noted that the
PCLRHC approach will eventually fail when the robot velocity
is sufficiently constrained.

3) Example 9: Friendly Agent Model: It is easy to postulate
problems where the robot must rely on the agent cooperation

Fig. 16. The PCLRHC’s planned trajectories for the robot and the predicted
trajectory for the adversarial agent (with robot velocity constraints [−1.6 1.6])

(a) (b)

(c) (d)

Fig. 17. The OLRHC’s executed and planned trajectories at stages 1, 6
7, and 10 with an adversarial agent model (with robot velocity constraints
[−1.2 1.2]). Note: the robot never reaches the goal.

in order to successfully complete a mission. Such scenarios
are detailed in [44].

VIII. CONCLUSIONS AND FUTURE WORK

A complete strategy for solving motion planning problems
in Dynamic, Uncertain Environments (DUEs) has been lack-
ing. These environments are characterized by uncertainty in
the positions of the robot and moving agents, as well as uncer-
tainty about the future trajectories of the agents. The ultimate
solution must integrate estimation, prediction, planning, and
complex models of agent behavior. This paper took some
initial steps toward building such a framework. Because the
classical SDP does not readily incorporate collision constraints
and exact SDP solutions are often intractable, we developed a
Partially Closed-Loop Receding Horizon Control (PCLRHC)
strategy for this problem. Our approach was motivated by
the desire to account for anticipated future information in the
planning process. In this way, we are better able to manage
the growth of system uncertainty in the prediction component
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of the DUE solution, as the anticipated future information
reduces the uncertainty associated with future belief states.
Previous planning approaches are hampered by the growth
in uncertainty associated with future belief states, leading to
potentially constrained and conservative plans. Since the future
belief states better represent the belief states realized during
execution, the planned and executed PCLRHC paths are much
closer, indicating that the planner effectively uses the antici-
pated future information during the planning process. These
plans are more aggressive because they take into account
the fact that updates of the world’s state will be available.
Simulation of a robot navigating in static and simple dynamic
environments highlighted the improvement in plan quality for
the partially closed-loop approach, compared to an open-loop
approach where all future information is ignored.

We showed by way of several examples that the PCLRHC
approach can also be applied in more complex dynamic scenar-
ios which include multiple possible agent destinations and/or
multiple simple agent models. The PCLRHC framework al-
lows for integrated parameters estimation and model selection
of these complex multi-modal distributions, which is key
to efficiently incorporating complex agent behavior into the
planning and execution process. Simulations demonstrated the
potential benefit of the PCLRHC approach over standard ap-
proaches in these dynamic scenarios. These simulation results
also demonstrated that the robot can adjust its plan to obtain
better information about the dynamic agents. The PCLRHC
approach is also better able to avoid adversarial agents, even
with reduced dynamic capabilities, than the OLRHC approach.

The effects of system models, objective functions, uncer-
tainty, and clutter in the environment on the computational
complexity of the DUE problem are discussed. It is shown
that the increase in the computational burden from the OLRHC
to the PCLRHC approach is small. DUE problems are non-
convex, resulting in local minima in the solution space. An
inherently parallelizable sampling-based approach (e.g., the
expansive space tree, [4]) may offer a practical implemen-
tation since it is less prone to local minima and have been
successfully applied in high-dimensional spaces and will be
investigated in future work.

APPENDIX A
DYNAMIC MODELS

A. Random Walk Model

The object’s dynamics are governed by:

xi = Axi−1 +Bui−1 + Fωi−1 (47)

where state x consists of the planar position and velocity. Let
I2 be as before, and O2 be a 2× 2 zero matrix. Then,

A =

[
I2 ∆t I2

O2 I2

]
, B =

[
O2

I2

]
, and F =

[
O2

I2

]
and ∆t = 0.5 s. The process noise is independent with a
Gaussian distribution, ωi−1 ∼ N (0,W ).

B. Known Destination Model

The agent is attracted to a destination via a spring-mass-
damper potential function, which has unit mass and is critically
damped. Let k be the spring stiffness:

xAi = AxAi−1 +Nθ + FωAi−1 (48)

where ωi−1 ∼ N (0,W ) is the white Gaussian disturbance
that is independent of the previous noise terms, ω0:i−2. The
parameter matrices are given by:

A =

[
I2 ∆t I2

−k∆t I2 (1− 2
√
k∆t) I2

]
, N =

[
O2

k∆t I2

]
.

F is the same as for the random walk model (Appendix A-A).

C. Adversarial Agent Model

The agent is drawn to the robot’s current position, based
on a critically damped spring-mass-damper system with unit
mass. The resulting dynamic equation has the form:

xAi = AxAi−1 +ARAx
R
i−1 + FωAi−1 (49)

where ωAi−1 ∼ N (0,WA) is white, Gaussian noise, A and F
are as in Appendix A-B (with spring stiffness k), and

ARA =

[
O2 O2

k∆t I2 O2

]
.

APPENDIX B
MEASUREMENT MODELS

A. Linear Position Measurement Model

Assume that the measurement is a scaled, noisy subset of
the system state:

yi = Cxi +Hνi (50)

where C = [I2 O2], H = I2, and with independent, Gaussian-
distributed measurement noise, νi ∼ N (0, V ).

B. Distance-dependent Measurement Quality Model

Assume a measurement model with state-dependent noise:

yAi = CAx
A
i +HAν

A
i +

nξ∑
l=1

Φlg(xAi , x
R
i )ξ

(l)
i (51)

where νAi ∼ N (0, VA), and ξ
(l)
i ∼ N (0, σ2

ξ ) ∀l = 1, . . . , nξ.
g(xAi , x

R
i ) is some nonlinear function of the robot and agent

states (e.g., distance between the objects). Φl is a matrix that
aligns the lth state-dependent noise term with the appropriate
component of the measurement.

Assume g(xAi , x
R
i ) = ‖xRi|i−1 − x

A
i|i−1‖

2
2 so that the mea-

surement quality decreases as the distance between the objects
increase. Linearize this function around the conditional means
of the robot and agent states [44]. Let x̃i , (x̂Ri|i−1− x̂

A
i|i−1):

yAi = CAx
A
i +HAν

A
i +

nξ∑
l=1

H
(l)

A ξ
(l)
i +

nξ∑
l=1

G
(l)
A x

A
i ξ

(l)
i +

nξ∑
l=1

G
(l)
R x

R
i ξ

(l)
i . (52)
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where

H
(l)

A =

{
−Φlx̃

T
i x̃i if E

[
g(xRi , x

A
i )|IOLi−1

]
≤ d2

max

Φld
2
max otherwise

G
(l)
A =

{
−2Φlx̃

T
i if E

[
g(xRi , x

A
i )|IOLi−1

]
≤ d2

max

0 otherwise

G
(l)
R =

{
2Φlx̃

T
i if E

[
g(xRi , x

A
i )|IOLi−1

]
≤ d2

max

0 otherwise
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