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Abstract— This paper introduces a new algorithm to estimate a
robot’s planar displacement by weighted matching of dense two-
dimensional range scans. Based on models of expected sensor
uncertainty, our algorithm weights the contribution of each scan
point to the overall matching error according to its uncertainty.
A general maximum likelihood formulation is used to optimally
estimate the displacement between two consecutive poses. We
develop uncertainty models that account for effects such as
measurement noise, sensor incidence angle, and correspondence
error. By explicitly modeling these noise sources, we can cal-
culate a more realistic covariance of the displacement estimate
than is done in prior work. A realistic covariance estimate is
needed when further combining the displacement estimates with
odometric and/or inertial measurements within an estimation
or localization framework [1]. Experiments using a Nomad 200
mobile robot and a Sick LMS-200 laser range finder illustrate
that the method is more accurate than prior techniques, but with
comparable computational requirements.

Index Terms— Displacement estimation, mobile robot localiza-
tion, range sensing, motion from structure, laser scanner, sensor
modeling.

I. INTRODUCTION AND PRELIMINARIES

A robot’s ability to determine and maintain knowledge of
its absolute position is a basic requirement for long term
autonomous navigation and operation. Consequently, the sub-
jects of localization and mapping have justifiably received
considerable attention in the last 15 years (e.g., see [2], [3],
[4], [5], [6], [7]). Two-dimensional range finders, such as laser
range finders [8] or rings of ultrasonic range sensors [9],
are often used as a part of many mobile robot localization
and mapping procedures. This paper introduces a “weighted”
range sensor data matching algorithm to estimate a robot’s
displacement between the configurations where dense two-
dimensional range scans are obtained. This novel algorithm
takes into account several important physical phenomena that
affect range sensing accuracy, and that have been neglected
in prior work. Our experiments (Section VI) show that this
algorithm is not only efficient, but appreciably more accurate
than non-weighted matching methods, such as that of Ref.
[10]. In addition, by computing a more realistic covariance of
the displacement estimates, the weighted matching algorithm
provides a better basis for fusion of these estimates with odo-
metric and/or inertial measurements [1]. The fused estimates
can subsequently support localization and mapping tasks.
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T Division of Engineering

To best understand the content of this paper and its contri-
butions, we first describe the basic problem, how our solution
differs from previous ones, and the generality of our approach.
We focus on mobile robots operating in planar environments.
We assume that the robot is equipped with a dense planar range
sensor (e.g., a laser range scanner). As discussed in Section
II-D, on-board odometry is useful, but not essential.

B . . -Range

. // \\\ \\\ \'\ B

‘, V\B -, Measurements
! //i/ ) ~ \\ (\

[BVAVANN N N .

[ \\ \\\ \\/\\

Pose j

| /X,
¢E

Fig. 1. Geometry of the range sensing process. The robot acquires dense
range scans in poses ¢ and j. The circles represent robot position, while the
-y axes denote the robot’s body fixed reference frames.

The robot starts at an initial configuration, g;, and moves
through a sequence of configurations, or poses, g;, i =
2,...,m. Here g; € SE(2) denotes the robot’s position and
orientation relative to a fixed reference frame, go. We assume
that at each pose, the robot measures the range to the boundary
of its nearby environment along rays which are separated by a
uniform! angle, 3 (see Fig. 1). As described below, we allow
for various uncertainties in this range measurement.

Let the set of Cartesian coordinates of the n; scan points
taken in the i** robot pose be denoted by {@t}, k = 1,...,n;.
The scan point coordinates are described in the robot’s body
fixed reference frame. Typically, the Cartesian coordinate of
the scan point is derived from range data according to the

expression: } .
; x; ; |cos®;
W= 0| =l |gn gt M
Yr, sin 0,
where [} is the measured distance to the environment’s bound-
ary along the k*" measuring ray. The measuring ray is oriented

!The extension to non-uniform angle 3 is straightforward.



in the direction denoted by 0%, where 6 is the angle made by
the k' measuring ray with respect to the z-axis of the body
fixed reference frame (see Fig. 1).

Our main goal is to accurately estimate the robot’s dis-
placement between poses by matching range data obtained in
sequential poses. This displacement estimate can be used as
the basis for a form of odometry, or fused with conventional
odometry and/or inertial measurements to obtain better relative
robot pose estimates. These estimates in turn can support
localization and mapping procedures. First, assume that the
range scans at poses ¢ and j have a sufficient number of
corresponding points to be successfully matched (see Section
IV). Let {@}, @} for k = 1,...,n;; be the set of corre-
sponding matched scan point pairs, where n;; is the number
of corresponding pairs. From these pairs we first want to
estimate the relative displacement between poses ¢ and j:

9i; = 9; '9; = (Rij, pij) where

COSs Qbij —sin ¢1J:| — |:£CZ]:|

i b s e Pij =1, " @
sin ¢;;  cos ¢y Yij

i.e., the displacement between poses ¢ and j is described by a
translation (z;;, y;;) and a rotation, ¢;;.

We next wish to estimate the covariance, P, of the dis-
placement estimate. This covariance has two main uses. First,
it reflects the quality of the displacement estimates. Large
diagonal elements of the covariance matrix indicate increased
uncertainty. Any localization process should be aware of the
level of confidence in its computed pose estimates. Second,
the covariance is also needed when combining displacement
estimates with measurements provided by other sensors. More
accurate and realistic estimates of the contributing covariances
lead to more accurate overall estimates in a sensor fusion
algorithm, such as a Kalman filter.

Our approach differs from prior work in that the contri-
bution of each scan point to the final displacement estimate
is individually weighted according to that point’s specific
uncertainty. The scan point uncertainties are estimated using
sensor measurement noise models as well as models of specific
geometric issues within the matching process itself. To better
understand these issues, examine Fig.s 1 and 2. Fig. 1 depicts
the situation when a range sensor (e.g., a laser range finder)
samples points on a nearby wall. The boundary points sampled
in pose ¢ are indicated by circles, and labeled by @i _,, i,
and @, +1- The nearby boundary points sampled in pose j are
indicated by X’s and are labeled by @}, _,, @}, and 4, 1. Prior
range matching methods (e.g., [11], [12], [13]) have made
the simplifying assumption that the range scans of different
poses sample the environment’s boundary at exactly the same
points—i.e., point @t is assumed to be exactly the same point
as U7, etc. This assumption is generally not true. In this paper,
we model this correspondence error and incorporate this effect
into our matching algorithm.

As described in Sections III-A and III-C, the range mea-
surements are corrupted by noise and possibly a bias term
that is a function of the range sensing direction, 6%, and
the sensor beam’s incidence angle, o} (Fig. 1). Figure 2
shows the 95% confidence level ellipses associated with the
covariance estimates (calculated using the methods that we
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Fig. 2. Representation of the uncertainty of selected range scan points

will introduce later) of selected data points from an actual
laser range scan. Clearly, the wide variation in uncertainties
seen in Fig. 2 strongly suggests that not all range data points
are of equal precision. Hence, this potentially large variability
should be taken into account in the estimation process. While
the existence of these uncertainty sources has previously been
suggested [14], [8], [13], [15], [16], our algorithm is the first
to explicitly model and account for their effects within the
estimation process. Some prior works have no explicit noise
modeling (e.g. [11]), or apply a uniform uncertainty to all
contributing points. The most complete existing methods [14]
and [17] employ statistical methods to calculate displacement
estimate uncertainty. These methods do not take sensor un-
certainty models into account in the displacement estimation
process and use an unweighted assumption for the contributing
points. Also [14] and [17] do not use any specific sensor
noise characteristics as a basis for calculating uncertainty but
instead use a numerical sample of perturbations to extract an
estimate of covariance. We are able to demonstrate significant
improvements over previous unweighted methods by devel-
oping physically based uncertainty models for each individual
point and incorporating these models in both our displacement
estimation process and our covariance calculation.

The basic principle behind our approach generally applies
to any case of dense range data, such as sonars, infrareds,
cameras, radars etc. The basic weighted matching formulation
and its solution given in Section II are independent of any
sensor specifics. To use the general results, specific models
of sensor uncertainty are needed. We develop these detailed
sensor models in Section III. Since some of the assumptions
underlying these sensor models are best suited to laser range
scanners, the application of our detailed sensor model formulas
is best suited to the use of laser scanners in indoor environ-
ments, though they can be extended to structured outdoor envi-
ronments. However, the general approach of Section II should
work for other range sensors and other operating environments
with reasonable modifications to the sensor models.

This paper is structured as follows. Section II describes
a general weighted point feature matching problem and its
solution. Section III develops correspondence and range mea-
surement error models. Sections IV and V summarize the



point pairing selection and sensor incidence angle estimation
procedures. Experiments in Section VI demonstrate our algo-
rithm’s accuracy, robustness, and convergence range. Direct
comparisons with previous methods (e.g. [10], [17]) validate
the effectiveness of our approach.

II. THE WEIGHTED RANGE SENSOR MATCHING PROBLEM

This section describes a general point feature matching
problem and its basic solution.

A. The Measurement Model

Let the sets of Cartesian range scan data points acquired in
poses i and j be denoted by the {u} and {7} respectively.
These measurements will be imperfect. Let {7} and {ng} be
the “true” Cartesian scan point locations. The measurements
can generally be decomposed into the following terms:

7+ 0, + by
7+ 6a) + b 3)

U, =
@ =

where 0%, and 51??; represent noise or uncertainty in the range
measurement process, while 52 and gfc denote the possible
range measurement “bias.” These noise and bias terms are
discussed in more detail in Sections III-A and III-C. The
term iy, is generally well modelled by a zero-mean Gaussian
noise process. The bias by, is an unknown offset that can
be approximated by a term? 0 corrupted by a zero-mean
additive Gaussian noise 55k [16]. The covariance of this noise
component reflects the level of confidence in the value 0j.
Contingent on this approximation, 52 and l_)»fc take the form:
i =04+ 0b; bl = 0], + . @

Let (@}, ﬁfe) be points that are deemed to correspond in the
range scans at poses ¢ and j. As shown in Fig. 1, these points
are not necessarily the same physical point, but the closest
corresponding points. Accounting for the fact that scan data
is measured in a robot-fixed frame, the error between the two
corresponding points is

ey = Uy — Rijify, — pij )

for a given displacement (R;;, p;;) between poses. Substitut-
ing Eq. (3) into Eq.(5) results in

e = (7t = Rij7%, — pi) + (0}, — Rioid) + (b, — Rijb)
(®) (i)

(4i4)

(6)
A relative pose estimation algorithm aims to estimate the
displacement g;; = (R;;, p;;) that suitably minimizes Eq. (6)
over the set of all correspondences. If the dense range scans do
sample the exact same boundary points, then 7%, — R —Dij =
0 when R;; and p;; assume their proper values. However,
7 and 7, generally do not correspond to the same boundary

2The value of &}, can be determined by statistical analysis of measurement
data.

point. Hence, term (i) in Eq. (6) is the correspondence error,
denoted by ¢}

off =7, — Rij7 — pij- @

The matching error ag for the k" corresponding point is also
a function of: (ii) the error due to the measurement process
noise, and (iii) the measurement bias error.

For the sake of simplicity, we ignore the bias offsets for
now (i.e., we assume that b, = b; =0), but consider their effect
again in Section III-C.

B. A General Covariance Model

For subsequent developments, we must derive a generalized
expression for the covariance of the measurement errors:

PY £ EB[ED ®)

= B|(¢f + 0, — Ryydi) (e} + ot} — Rijoa)”

where E[-] is the expectation operator, and we are ignoring
bias effects for now. P’ captures the uncertainty in the
error between corresponding range point pairs. Because the
range measurement noise is assumed to be zero mean, Gaus-
sian, and independent across measurements, E[du}, (5u7,)"] =
E[éw,(6ui)T] = 0. Practically speaking, one would expect
that the range measurement noise of the k" scan point in
pose ¢ to be uncorrelated to the measurement noise of the
k" corresponding range point in pose j. Hence, this is a fine
assumption in practice.

The correspondence error, czj , 1s generally a deterministic
variable that is in turn a function of the geometry of the
robot’s surroundings. However, since we do not assume that
the geometry of the environment is known ahead of time,
in this work we make a reasonable probabilistic approxi-
mation to this term which accounts for the fact that the
geometry of the surroundings is apriori unknown. In this
probabilistic approximating model, the correspondence error
and sensor measurement error terms are independent, and

therefore E[c} (3})7] = Elc/ (0u})"] = Elpui(c))"] =
E[0i@,(c?)"] = 0. See Section III-B for a more detailed
discussion.

With these assumptions, the covariance of the matching

error at the k" point correspondence of poses i and j
becomes:
r 2 B[E)T] = B[d )] + B b))

+ Ry [0, (0)" | ;]
= “P?+NpPl+R;NPIRL ©)
7+ Ri;S) RE (10)



where
CP,ZJ = covariance associated with the approximating
correspondence error model
Npi = measurement noise covariance of the k" scan
point in the ith pose
N P! = measurement noise covariance of the k' scan
point in the 5" pose
{2 CRIAE
ij &  Npj
Sy = Py

The matrices Qz and Si represent the configuration in-
dependent and conﬁguratlon dependent terms of P 7. As
shown below, the correspondence errors depend upon the
sensor beam’s incidence angle. The noise covariances will also
generally be a function of the variables 0%, 9%, lli, and li. Thus,
the covariance matrix P,ij would be expected to vary for each
scan point pair (see Figure 2 for an illustration). Hence, it is
not suitable to assume, as in prior work (e.g. [17], [10]), that
P is a constant matrix for all scan point pairs.

C. Displacement Estimation via Maximum Likelihood.

We employ a Maximum Likelihood (ML) framework to
formulate a general strategy for estimating the robot’s dis-
placement from a set of nonuniformly weighted point corre-
spondences. Let £({} }|gi;) denote the likelihood function
that captures the likelihood of obtaining the set of matching
errors {€;)} given a displacement g;;. With the assumptions
made above, the k = 1,...,n;; range pair measurements are
independent * and therefore the likelihood can be written as a
product:

L({eHgij) = (11)

Recall that the measurement noise is considered to be a zero-
mean Gaussian process. Finally, as it is shown in Section
III-B, the correspondence noise can be approximated by a
zero-mean Gaussian process. Neglecting the bias offset for
the moment (see Section III-C), the above assumptions imply
that £({e} }|gi;) takes the form:

L(e¥

Nij

L(e719i)L(e 1gi7) - - 9ij)-

.. Tij ,l(sij)T(Pw‘)—lsij _ i
) e 2\Vk k k e
oo - 11 e
where MY ‘Z DTE) e a3
.. n” —
D = HQW\/C?P,ZJ (14)
k=1

The optimal displacement estimate is the one that maxi-
mizes the value of £({e}’ }|gi;) with respect to displacement.
One can use any numerical optimization scheme to obtain this

3Possible dependencies of these measurements will be briefly considered
in Section III-B. Generally, the only effect that will lead to dependence is
possible couplings in the correspondence error that arise if the geometry of
the environment is a priori known.

displacement estimate. Note however that maximizing Eq. (12)
is equivalent to maximizing the log-likelihood function:

n[L({e}Ygij)] = —MY — in(DV)

and from the numerical point of view, it is often preferable to
work with the log-likelihood function.

Before discussing the solution to this estimation problem,
we first compare this formulation with prior work. Most
previous algorithms that take an “unweighted” approach to
the displacement estimation problem assume that all of the
covariance matrices P I are uniformly the 2 x 2 identity
matrix. Consequently, the maximization of the log-likelihood
function reduces to a standard least-squares problem. However,
as Fig. 2 and our experiments in Section VI show, such
a simplistic covariance approximation for all data points is
typically not a theoretically sound one. Ref. [12] allowed for
a scalar weighting term, though no guidance was provided on
how to select the value of the scalar.

The weighted estimation problem has some inherent struc-
ture that leads to efficiency in the maximization procedure.
Appendix A proves that the optimal estimate of the robot’s
translation can be computed using the following closed form
expression.

Proposition 1: The weighted scan match translational dis-
placement estimate, p;;, is:

15)

Nij

pZJ_PPPZ(

where R” = R” ((b ) is the estimated rotational matrix calcu-
lated with the current estimate of the orientation displacement
¢i;, and P, is given by the formula:

- Ryi#)) (6)

Mij -1

_ iy —1
Pop = | >_(B)
k=1
There is not an exact closed form expression for esti-

mating the rotational displacement ¢;;. However, there are
two efficient approaches to computing this estimate. In the
first approach, the translational estimate of Equation (16) is
substituted into Equation (12) (or equivalently, into Equation
(15)). Since the resulting expression is a function of the single
variable ¢;;, the estimation procedure reduces to numerical
maximization over a single scalar variable ¢;;, for which there
are many efficient algorithms.

Alternatively, one can develop (Appendix B) the following
second order iterative solution to the non-linear estimation
problem:

Proposition 2: The weighted scan match rotational dis-
placement estimate is updated as (ﬁj = gi;; + 5@]-, where:

> vk (P

a7

§pij ~ — = (18)
Zkul qk ( k )71JQk
where
J= , Tk A (19)
[ 10 ] pr = U, — piy — Rijity,

Using various experimental data, we have found that this
approximation agrees with the exact numerical solution up



to 5 significant digits. However, it is computationally more
efficient to implement.

D. The Algorithm and Its Initial Conditions

Prop.s 1 and 2 suggest an iterative algorithm for estimating
displacement. An initial guess ¢;; for ¢;; is chosen. A trans-
lation estimate p;; is computed using Prop. 1. This estimate
can be used with an exact numerical optimization procedure or
with Prop. 2 to update the current rotational estimate ¢, ;. The

improved giA):; is the basis for the next iteration. The iterations
stop when a convergence criterion is reached.

The initial guess, gZA);, will usually be derived from an
odometry estimate. However, odometry is not necessary for
the method to work. An open loop estimate of the robot’s
displacement based on the known control inputs that generate
the displacement will often provide sufficient accuracy for an
initial guess. We show in Section VI-A that the algorithm’s
performance is not hampered by quite large errors in the initial
value of the displacement used as a seed for the algorithm.
Note that if odometry does provides the initial guess, there
will be no correlation between the estimate arising from our
scan matching algorithm and the odometry estimate since
the accuracy of the latter is not considered in the estimation
process. This simplifies subsequent fusion of these estimates
that may be desired for some applications.

We prefer an iterative algorithm for two reasons. First, non-
linear ML problems are suited to iterative computation. Sec-
ond, the correct correspondence between point pairs cannot be
guaranteed in the point correspondence problem (see Section
IV). This is especially true in the first few algorithm iterations,
where some inaccurate initial pairings are unavoidable. Our
iterative approach allows for continual readjustment of the
point correspondences as the iterations proceed.

E. Covariance of the Displacement Estimation Error

Letting pi; = pij — Pij, $ij = ¢ij — ¢ig (1., Pij, ¢ij are
translational and the rotational displacement error estimates),
a direct calculation yields the following.

Proposition 3: The covariance of the displacement estimate
is:

Pij_[Ppp P, }[

_ E{pip;}  E{pij ¢ZZ; } ]
Pgp  Pog

E{dipL} E{dijol}
with

Mg -1 Nij
B = e (Se0) S e

k=1 k=1
Py = P 1)
1
Pyy = — (22)
rT
reo= =Y gl J(P) gk (23)
k=1

and P, is given by Eq. (17).
The proofs for Prop. 3 are given in Appendix C. For a
given sensor, one must derive appropriate uncertainty models

which are then substituted into the above procedure.

Note 1: The matrix —J (P7)~! J = # PY in Eq.
(23) is a positive definite matrix and therefore ﬁw is a positive
number.

Note 2: From Eq.s (22) and (23), we can see that for
bounded covariance (||(P7)7| < K, 0 < K < c0) we
have:

lim P¢¢ =

ll, | =00

lim P¢¢ =0.

llgx [ —o0

This result leads to the following corollary.

Corollary 4: Matching of distant features (in the limit fea-
tures at infinite distance from the current location) minimizes
the expected error in the orientation displacement estimate. In
the limit, the relative orientation error is zero.

Note 3: Since all matrices P,ij, kE =1,...,n4, in Eq.
(17) are positive definite, the covariance of the translational
estimate, P,,, can be written as:

Mg
(Ppp) ™" YEHT>E) e
k=1
Py, < P, k=1,...,n;. (24)

Here we used the notation X > Y to indicate that the
difference X — Y is a positive definite matrix. Eq. (24) leads
to the following corollary.

Corollary 5: Let UY = ming—1,... n,, P,ij denote the min-
imum covariance over all corresponding point pairs. The
translational covariance estimate P,, given by Eq. (17) is
bounded above by U%: P,, < UY.

This corollary states that the covariance of the translational
estimate will always be less than the best single covariance
associated with any corresponding point pair.

III. SCAN MATCHING ERROR/NOISE MODELS

In order to derive explicit expressions for the covariances of
Eq. (10), this section develops models for the errors inherent
in the range scan matching process. Most of the models are
quite general, though we do make a few assumptions at some
points that are most appropriate for laser range scanners.

A. Measurement Process Noise

Many range sensing methods are based on the time of
flight (e.g., ultrasound and some laser scanners) or modulation
of emitted radiation [16], [8]. The circuits governing these
measurement methods are subject to noise. These effects often
can be well modelled in a simple way, enabling the simple
computation of the covariance contributions P} and N Pl
We focus on the computation of P}, as the one for N P,g is
completely analogous.

Recall the polar representation of scan data, Eq. (1). Let
the range measurement, [}, be comprised of the “true” range,
L?C, and an additive noise term, €;: l,iC = LZ + ¢;. The noise
€; is assumed to be a zero-mean Gaussian random variable
with variance o7 (see e.g., Ref. [16] for justification of this



assumption). Also assume that error or uncertainty exists in the
measurement 9,@. That is, the actual scan angle differs from the
reported or assumed angle of the scan snapshot. Thus, 6} =
O +ep, where O is the “true” angle of the k" scan direction,
and €p is again a zero-mean Gaussian random variable with
variance o;. Hence:

cos 9};
sin O},

} e { cos(fi. — g)

sin(0} — ep)

o= Lk [ ] . (29
For small g, ¢; (which is a good approximation for most
laser scanners), expanding Eq. (25) and using the relationship
Sl = i — 7 yields

i —sin 6}, cos 0}
oy = ()eo { cos 0} ] te [sin 92] ' (26)
Assuming that 9 and ¢; are independent, then:
Npi i emivry (p)%05 [2sin? 0L —sin 20}
Py = Elbd(dd) ] = 2 —sin26; 2cos? 6},
2 2 pi o ogi
0f |2cos” 0, sin26;
T { sin20;  2sin” 0} @7)

The quantities 0% and ¢ are the ones measured by the laser
scanner.

B. Correspondence Error

Here we analyze the correspondence error described in
Section II-A. We then derive a probabilistic approximation
to this error. Our derivation assumes that the sensor beam
strikes an environmental boundary that is locally a straight
line segment (Fig. 1). However, this derivation can be extended
to other boundary geometries, or it can serve as an excellent
tangent approximation for moderately curved boundaries.

We first develop a formula for the maximum possible
correspondence error that can occur due to the fact that the
exact same boundary points are not sampled in two successive
range scans. Consider how nearby scan points will be matched
in the vicinity of points @} and %, in Fig. 1. Let

84 = [y —@ll, 0L =l —uwp |l (28)
denote the distance to the adjacent scan points (from pose
i’s scan) near the candidate matching point , (see Fig. 1).
Similarly, let &, = ||d},, — @] and 67 = ||@), — ;]|
denote the distances to the adjacent scan points (from pose
J’s scan) near the candidate matching point @}, The maximum
distance (or error) between any pair of points that are chosen
to be in correspondence will be half of the minimum distance
between adjacent scan points. If the error is greater than this
value, the point will be matched to another point, or it will not
be matched at all. On average, this error will be the minimum
of (0% +6%)/4 or (&% +67)/4. Simple geometric analysis of
Fig. 1 shows that

6% + 6L li sin 8
4 4
_ lisinfg [ sinaj cosf

N 2 [sin2 i — sin® ﬁ}

1 1
[sin(a}; +3) + sin(ad, — 5)]

(29)

Substituting j for ¢ yields the analogous formula for (51_ +
§) /4.

We now propose a probabilistic model for the correspon-
dence errors, and develop explicit formulas for its first two
moments. For simplicity, and without loss of generality, let
the robot be situated so that 6% + §° < & + & (ie., the
correspondence error is defined by pose 7). Recall the corre-
spondence error formula of Eq. (6): ¢/ = 7, — Ri;7™ — pij.
Letting = be the position along the boundary relative to %,
the correspondence error is locally a function of z. With no
correspondence error, x = 0. Since the correspondence error is
locally collinear with the boundary’s tangent, let 11}/ = ¢/ - 1,
be the projection of ¢;” onto the unit boundary tangent vector,
t, at . The vector ty is positive pointing from j, to j, ;.
Hence, 11 is a signed quantity, and c;/ = 1;/#).. The expected
value (mean) of the error in the interval z € [—¢*, 4% ] is:

B = [ )P (30)

where P(x) is the probability that the k" scan point from
pose j will be located at x.

We assume that the geometry of the robot’s surroundings
is not previously known. Therefore, it is not possible to know
a priori the probabilistic distribution of the correspondence
errors, P(x). We reasonably assume that 7°(z) has an a priori
uniform probability. That is, the scan point 7, that is matched
to 1}, could lie anywhere in the interval [—¢* 4% ] with no
preferred location. Hence P (z) = 1/(d% +0".). Realizing that
(1 (x) = x in the interval [—d, 8% ], evaluation of Eq. (30)
yields:

(84 — (5L

E[M?] = 53’_ Y = 63— — 4L
li sin? 3 cos o
piErTr— 6D
k

Note that when the incidence angle is not normal (047'C %+ 909),
the mean is non-zero. However, since the mean is proportional
to sin? 3, this term is negligible when the magnitude of 3 is
small. Hence, we can practically consider the correspondence
error to be a zero-mean quantity when ( is small (this holds
for the experiments described in Section VI). To compute the
variance of the correspondence error (using the zero-mean
assumption),

. &% 22 (51’ )3 + (51' )3
E 17\2 _ / i _dx = + i - )
S el R e T R O

(32)

Letting 1, = o}, + 6%, and keeping the above results in mind,
the covariance of the correspondence error, CP,i of Eq. (10),
can be found as

°Pi = El/(c])"] = Bl(w)tuth (33)
(8P () cos? nt cos k. sinnt
~ 3(8% +6%)  |cosm sinmy, sin? 7}

Note that this expression is a function of the sensor beam’s
incidence angle, . In Section V we discuss how to estimate
this quantity from the range scan data.



Because we do not want to assume prior knowledge of
the environment’s geometry, we consider the correspondence
errors to be independent. This assumption is conservative
in that we do not assume any structure in the environment
beyond the immediate geometry of the local point pairs. It
would be possible to predict subsequent correspondence errors
along a wall (or other regular geometric structure) given the
knowledge that the subsequent corresponding point pairs did
indeed come from the same exactly straight wall. With a
proper line fitting method (e.g., see [18]), the correlations
between correspondence errors could be estimated from the
line fitting method’s uncertainty model®*.

In general, knowing that adjacent corresponding pairs lie
along a common wall will significantly reduce the magnitude
of Eq. (32), which in turn will lead to lower variances for most
of the points along the wall. In this case, the correspondence
error variance becomes dominated by the uncertainty in the
wall’s geometry, which in turn is a function of the line fitting
method. These effects can fit easily within our framework
if desired, leading to even better displacement estimates and
tighter estimate covariances. However, we choose to take
a conservative approach where we do not assume that the
robot’s surrounding geometry is a priori known. Moreover,
since the reduction in uncertainty will only occur for points
along one line (or other geometric feature), in even modestly
complex environments, the amount of precision to be gained
by using this approach is unlikely to be worth the complexity
of implementing these more advanced methods.

C. Measurement Bias Effects

Range measurement bias is an artifact of some range sensing
methods (e.g., see [16]). Since bias models will strongly
depend upon the given range sensing method, it is not possible
to give a complete summary of bias models for common
sensing methods. Instead, we consider a general approach for
calculating the effect of bias on the displacement estimate.

To analyze the bias effect, let 5}3 = Ezj + 6}3, where 6 =
0% — R;;09, is the total constant bias offset effect at the k"
correspondence, and sfg is the previously defined matching
error (that ignored the constant bias term). Incorporating the
bias offsets, the likelihood function takes the form:

~ij _ ~ig\T [ Dij\—1,zij _ ~ij
MNij e_%(E;cj_O;cj) (P;J) (E;C]_ ;CJ)

H 2m4/det P,?

k=1
where P}’ is the covariance matrix with bias uncertainty taken
into account:

L({&7gi5) (34)

=i i i
By = Qi + RSy (35)
where QZJ = Zj + BPZ and S‘IZJ = S,ij + BP‘,i, with

Bpi = E[5bi.(5b.)T] and BP] = E[6b](5b))T]. That is, the
covariance formula is updated to include uncertainty in the bias
term. To obtain these results, we again assume that the bias

4In the case of correspondence error correlations, the likelihood model of
Eq. (11) will no longer take a product form. The form of the likelihood model
in this case will depend upon the line fitting method.

noise is uncorrelated with the range measurement noise and
the correspondence error (since variance in bias is typically
a function of the variability of the surface properties, rather
than measurement noise).
Following the derivations that lead to Prop. 1, one can show
that the translation estimate in this case is:
Mg
Pij =P Y ((P;?)_l(ﬁ% — Ry, + 52‘7)) (36)
k=1
Formulas analogous to Eq. (18) can be derived for the orien-
tation estimate as well. The previous covariance formulas take
the same structure, with Q% and S}’ modified to Q) and S}’
(i.e., to include possible bias uncertainty terms). Clearly, Eq.
(36) shows that bias effects can influence the displacement
estimate. However, bias models can be used to compensate
for bias effects in the estimate.

IV. SELECTION OF POINT CORRESPONDENCES

The focus of this work is to improve displacement es-
timation via more accurate considerations of the noise and
uncertainty inherent in the estimation process. However, the
displacement estimation process clearly depends upon the
ability to successfully match corresponding points from range
scans taken in adjacent poses. In order to isolate the benefits of
our estimation method, we use a very simple “closest-point”
rule similar to the one in [10]. ‘

Given two scan sets {@i} and {@}, the outliers are
removed in the first step. These are the points visible in one
scan, but not in the other (see [10] for details). After removing
the outliers, we attempt to find correspondences between scan
point pairs in the two poses. For every point in pose i, we
search for a corresponding scan point in pose j that satisfies
a range criterion: the corresponding point must lie within
a given distance: ||} — @7|| < d. If no points in pose j
satisfy this criterion, then the point is marked as having no
correspondence. The parameter d is initially set at a value
defined by the error in the initial translation estimate (e.g., the
estimated odometry error). Thereafter, to speed convergence,
d is monotonically reduced to a value whose order is the
maximum point error predicted by our noise model.

It is also possible to establish point correspondences based
on a chi-squared analysis of point pairs using the detailed
sensor noise models already computed in our method. Though
this approach shows promise, in our experimental tests we
chose to isolate the estimation benefits of our work. Be-
cause unweighted scan-matching methods lack the uncertainty
models to perform a chi-squared based point correspondence
determination process, we present and compare results using
the “closest-point” method for all tests, as this leads to the
fairest comparison procedure.

V. ESTIMATING THE INCIDENCE ANGLE

The correspondence error model of Section III-B assumes
knowledge of each scan point’s incidence angle. While any
method of incidence angle estimation can be used, we have
chosen a method which estimates the local geometry of the
scan points using a Hough transform. The Hough transform



[19] is a general pattern detection technique which we use to
determine an estimate of the supporting line segment about
a point. The incidence angle can then be estimated from
the configuration of the line segment. In the general Hough
transform line finding technique, each scan point {xy, yx} is
transformed into a discretized curve in the Hough space. The
transformation is based on the parametrization of a line in
polar coordinates with a normal distance from the line to the
origin, dr, and a normal angle, ¢,

dr, = xk sin(gbL) + Yk COS(¢L). (37)

Values of ¢, and dj, are discretized with ¢y, € {0,7} and
dr, € {—D,D} where D is the maximum sensor distance
reading. The Hough space is comprised of a two-dimensional
hash table of discrete bins, where each bin corresponds to
a single line in the scan point space. For each scan point,
the bins in Hough space which correspond to lines passing
through that point are incremented. Peaks in the Hough space
correspond to lines in the scan data set. As the bins in the
Hough space are incremented, we maintain a history of the
contributing scan point coordinates in the bin, so that when
a peak is determined to represent a line, the contributing set
of points can be recovered. The incidence angles can then be
estimated for every point in the line.

The algorithm is only precise up to the level of discretization
chosen for the line parameters. Both computational complexity
and the memory needed for the hash table grow with finer
discretization so it is important to establish a reasonable
balance between precision and computing resources. For our
implementation we found a line angle measurement precise
to the nearest degree to be adequate for incidence angle
estimation. Discretization in distance was set to 10mm, though
this choice of this value is less significant as we are only using
the orientation of the fit lines.

The Hough transform is not limited only to straight line
detection. It can also be used to detect and fit simple curves
such as circles and ellipses and even arbitrary shapes [20]. The
tangent vectors to these curves (and subsequently the incidence
angle) can then easily be estimated from the transform. For
most indoor environments the line fitting method is sufficient
to determine incidence angles. More accurate line fitting
methods (e.g., [18] and references therein) can be used to
get more accurate estimates of incidence angle, but the extra
computation is typically not balanced by sufficiently better
estimation accuracy.

For points that are not found to be clustered into a line we
do not calculate an incidence angle estimate. These points are
weighted only according to the computed measurement noises
such that the covariance of the matching error at the k*" point
correspondence of poses ¢ and j from Equation (9) becomes:

P A Npi 4 R NPIRT. (38)

where the correspondence covariance estimate CP;J has been
dropped.

VI. EXPERIMENTS

We implemented our method on a Nomadics 200 mobile
robot equipped with a Sick LMS-200 laser range scanner.

This sensor measures the range to points in a plane at every
half degree over a 180 degree arc, as seen in Figure 2. For
the purpose of comparison, we implemented an unweighted
least squares scan matching algorithm analogous to that of
Lu and Milios [10], hereafter called the “UWLS.” Both the
weighted and unweighted estimation algorithms used the same
point correspondence algorithm so that the comparison could
fairly focus on the relative merits of both estimation schemes.
Section VI-A compares the robustness and accuracy of the
algorithms in four different environment geometries. Section
VI-B compares results from two longer runs. Section VI-C
presents the estimated computational costs of the algorithms,
while Section VI-D experimentally explores bias compensa-
tion. Our experiments used the values § = 0.5, oy = 5 mm,
and oy = 10~* radians obtained from the Sick LMS-200 laser
specifications.

A. Robustness and Accuracy Comparisons

The experiments reported in this section focus on two
aspects of estimation performance: the robustness with respect
to errors in the initial displacement estimate that seeds the
algorithms’ iterations; and the accuracy of the displacement
estimates. A more robust algorithm can successfully recover
from a wider range of errors in the initial displacement guess.
In practice, such errors in the initial displacement estimate
come from large odometry errors, or might arise in the absence
of odometry when the initial guess is provided by an open loop
estimate of the robot’s motion response.

To test for robustness, we ran each algorithm through
multiple trials with the same pair of scans, each time only
perturbing the initial displacement guess. Some initial guesses
were sufficiently poor that the algorithm converged to an
erroneous solution. An estimate was deemed successful when
the true measured displacement lied within the 30 deviation
range as defined by the algorithm’s calculated covariance (the
UWLS covariance was calculated using the formula given in
[17]). The initial displacements we used ranged from O to 600
mm at 8 radial directions (every 7/4 radians) at increments
of 200 mm in position, and ranged from -0.6 o 0.6 radians
in orientation, at increments of 0.02 radians. For each of
the 25 discrete initially perturbed positions, we tested 61
initially perturbed orientations to generate 1525 unique initial
condition perturbations. These perturbations were added to the
true displacement to create initial conditions for the 1525 trials
for each algorithm and each environmental condition described
below.

We also compare the overall accuracy of each algorithm’s
displacement measurement. The true displacements are mea-
sured by hand with an uncertainty of less than 2mm in
displacement and 0.002 radians in orientation. We ran this
robustness and accuracy test over four different scan pairs.

Single Pose Test: The first experiment shown in Fig. 3 tests
for robustness and accuracy while isolating the effects of our
modeling of the point correspondence error (Section III-B).
In this test, two scans were taken from the exact same robot
pose (i.e., the robot was not moved between scans), with one
scan comprised only of the even scan points and the second



Unperturbed Trial: Unperturbed Trial: Percentage of Converged Trials: Converged Trials:
Final Error in Final Error in 1525 Perturbed Average Error in Average Error in
Position (mm) Orientation (mrad) Trials Converged Position (mm) Orientation (mrad)
Test Weighted | UWLS | Weighted [ UWLS || Weighted | UWLS |[ Weighted | UWLS | Weighted | UWLS
Fig 3 || 0.19 1.33 0.23 8.8 91.0% 64.9% 0.63 1.8 0.79 8.6
Fig4 || 1.5 3.6 0.43 1.4 82.0% 56.9% 1.8 6.0 0.67 2.6
Fig 5 || 2.5 9.8 0.57 16.0 95.5% 31.2% 2.5 11.1 0.57 16.0
Fig 6 1.8 4.1 0.0334 0.31 75.1% 3.0% 3.1 14.5 0.0392 0.47
TABLE I

STATISTICS FOR ROBUSTNESS AND ACCURACY COMPARISON TESTS.
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Fig. 3. A) Experiments with initial displacement perturbations between scans
taken at a single pose. B) Closeup of robot pose with results.

scan comprised only of the odd scan points. In this way,
correspondence errors are artificially introduced into the two
scans.

The two scans and the initially perturbed positions are
shown in Fig. 3A. The displacement estimates of the success-
fully converged estimates are shown in Fig. 3B. The results of
the two runs with unperturbed initial guesses are shown with
boldfaced markers, along with the 30 uncertainty boundary
of these estimates (shown as dashed ellipses). Of the 1525
runs with initial displacement perturbations our algorithm
converged successfully in 91.0% of the cases while the UWLS
algorithm was successful in 64.9% of the cases. The average
error for successful weighted estimates was 0.63mm and
0.00079 radians while the average error for successful UWLS
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Fig. 4. A) Experiments with initial displacement perturbations between scans
taken at different poses. B) Closeup of Pose 2 with results.

algorithm estimates was 1.8mm and 0.0086 radians. The error
for the case when the initial displacement guess is unperturbed
is 0.19mm and 0.00023 radians for our weighted algorithm
and 1.33mm and 0.0088 for the UWLS algorithm. Though the
true displacement between the poses is exactly zero (since the
scans were taken at the same robot pose), due to the even/odd
nature of the scans no two corresponding scan points sample
the exact boundary points of the environment. The effect of
this correspondence error on the UWLS algorithm can be
visualized in the presence of three distinct local minima in
Fig. 3B. This multi-modal result surrounding the value is often
seen in UWLS algorithm robustness test results.

Two Pose Test: Fig. 4 shows results from initial condition
robustness testing on two scans taken in our lab with true
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Fig. 5. A) Experiments with initial displacement perturbations in a non-static
environment. B) Closeup of Pose 2 with results.

position and orientation displacements of 683mm and 0.467
radians. Fig. 4A shows the robot poses and scans under consid-
eration, as well as the initial perturbed displacement guesses.
Fig. 4B shows the results obtained by starting the algorithms
from the 1525 different initial displacement perturbations.
Our algorithm successfully converged in 82.0% of the cases
while the UWLS algorithm was successful in 56.9% of the
cases. The average error for successful weighted estimates
was 1.8mm and 0.00067 radians while the average error for
successful UWLS algorithm estimates was 6.0mm and 0.0026
radians. The error for the case when the initial displacement
guess is unperturbed is 1.5mm and 0.00043 radians for our
weighted algorithm and 3.6mm and 0.0014 for the UWLS
algorithm.

Two Pose Test With IntraScan Changes in the Environment:
Fig. 5 shows the results of the same type of testing performed
on a pair of scans in which the environment changed between
scans. Note that the horizontal double wall on the lower left
side of the figure is actually a table at almost exactly laser
height. The first scan sampled the wall behind the table while
the second scan sampled the front edge of the table due
to small changes in floor geometry. The additional nearby
obstruction to the left of the robot was caused by a person who
moved between the two scans. The range points associated
with these non-repeating objects represent 29.2% of the total
number of scan points. For the 1525 trials with different initial
displacement perturbations, our algorithm was successful in
95.5% of the cases, while the UWLS algorithm was successful
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Fig. 6. A) Experiments with initial displacement perturbations in a hallway
environment. B) Closeup of Pose 2 with results.

in 31.2% of the cases. The average error for successful
weighted estimates was 2.5mm and 0.00057 radians while
the average error for successful UWLS algorithm estimates
was 11.1mm and 0.016 radians. The error for the case when
the initial displacement guess is unperturbed is 2.5mm and
0.00057 radians for our weighted algorithm and 9.8mm and
0.016 for the UWLS algorithm. These results show that our
method’s emphasis on weighting each scan point results in
superior robustness to the presence of a significant number of
non-corresponding range points.

Two Pose Test In a Hallway: Fig. 6 shows the results of
analogous testing done in a nearly symmetrical hallway. In
a perfectly symmetrical hallway with no discernible details
along the walls, no scan-based algorithm can effectively
correct initial displacement errors in the direction along the
hallway’s main axis. In this test, a single door is open at a
slight angle on the left side of the hallway. The presence of
this feature allows for possible scan matching convergence.
For the set of 1525 initial displacement perturbations, our
algorithm successfully converged in 75.1% of the cases while
the UWLS algorithm was successful in only 3.0% of the cases.



The average displacement estimate error for the successful
weighted estimates was 3.1mm and 3.92 * 10~° radians while
the average error for successful UWLS algorithm estimates
was 14.5mm and 0.00047 radians. The error for the case
when the initial displacement guess is unperturbed is 1.8mm
and 3.34 * 10~° radians for our weighted algorithm and
4.1mm and 0.00031 radians for the UWLS algorithm. In
effect, the weighted algorithm better uses the hallway’s small
non-symmetries to correct the position estimation along the
hallway axis. This significantly better performance is primarily
due to our approach of modeling the correspondence errors,
which discounts the contributions along the hallway’s axis
(since there is very low certainty in that direction). Instead, the
small asymmetries are effectively accentuated. Conversely, in
the UWLS algorithm the contributions of the non-symmetries
are effectively lost, resulting in very poor correction of position
errors along the hallway. The plots of the uncertainty ellipses
in Fig. 6B also show how only our weighted algorithm’s
calculated covariance reflects a greater uncertainty in the
direction parallel to the hallway, as would be expected.

B. Multi-Step Runs

The above results showed not only the improvement in
robustness of our algorithm over the UWLS algorithm, but
also a significant improvement in the overall accuracy of the
successful final displacement estimates. This improvement in
accuracy is best seen in longer runs with multiple displacement
estimates added end to end.

Long Run With Accurate Odometry: Fig. 7 shows a 32.8
meter loop path consisting of 109 poses with the final pose
the same as the starting pose. Because of the difficulty of
hand measuring each pose we analyze and compare only
the initial and final positions. For each step the current and
previous scans are processed by each algorithm with odometry
supplying the initial guess, and updated displacement and
covariance estimates are calculated. In order to maintain
statistical independence in our estimates, two scans were
taken at each pose, with scan 1 used to match with the
pose behind and scan 2 used to match with the pose ahead.
In practical applications, such a dual scan procedure would
not be necessary, as a Kalman filter could incorporate the
scans while accounting for the correlation between successive
displacement estimates. However, we do not use that approach
here so that we can focus directly on the properties of the
displacement estimate, and not worry about the impact of the
filter on our results.

In order to close the loop, the second scan taken at the last
pose is matched with the first scan taken at the initial pose.
Therefore a perfect series of displacement estimates added
tip to tail would result in exactly zero overall displacement
estimate. For the run shown in Fig. 7, the final odometry
error is 1.817 meters and 0.06 radians. The final UWLS algo-
rithm error is 0.271 meters and 0.021 radians while the final
weighted algorithm error is 0.043 meters and 0.0029 radians.
The ratio of the final translation error to total path length is
5.54% for odometry, 0.82% for the UWLS algorithm, and
0.131% for our weighted algorithm. Perhaps more importantly,
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Fig. 7. A) A 109 pose 32.8 meter loop path. B) Closeup of final path poses,
shown the covariance estimates of the weighted and unweighted algorithms.

as shown in Fig. 7B, the final covariance calculation for our
algorithm clearly encompasses the true final pose within the
30 bounds, while the covariance calculation of the UWLS
algorithm does not.

Long Run With Inaccurate Odometry: This improvement
over the UWLS algorithm is even more pronounced in the
presence of poor odometry estimates. Fig. 8 shows an actual
run where one of the odometry readings was substantially
corrupted as the robot rolled over a door jamb when heading
into the room in the upper right hand corner of the plot. This
path is a 24.2 meter loop consisting of 83 poses with the
scans taken and loops closed as in the previous path. For the
path shown in Fig. 8 the final odometry error is 1.040 meters
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Fig. 8. A) 83 pose 24.2 meter loop. B) Closeup of final loop poses.

and 0.354 radians. The final UWLS algorithm error is 0.919
meters and 0.200 radians while the final weighted algorithm
error is 0.018 meters and 0.013 radians. The ratio of the final
translation error to total path length is 4.30% for odometry,
3.80% for the UWLS algorithm, and 0.074% for the weighted
algorithm.

C. Comparison of Computational Demands

We implemented both algorithms in Matlab and analyzed
their computational demands using the Matlab Profiler on a
desktop computer with a Pentium 4, 1.80GHz CPU with 512M
RAM. Within each iteration, computation is divided between
the point correspondence phase (which usually consumes the
bulk of the computation) and the estimation phase. The number
of iterations required to reach convergence also affects the
overall cost of computation.

In the 109 steps of run 1 shown in Fig. 7, the correspondence
method used on both algorithms comprises 81.0% of the total
UWLS algorithm computation time of 0.112 seconds/iteration
and 44.3% of our weighted algorithm computation time of
0.205 seconds/iteration. For the relatively low initial odometry
errors in run 1, the UWLS algorithm converges in an average
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of 12.78 iterations for an average computation time of 1.43
seconds per displacement while our algorithm converges in an
average of 10.36 iterations with a total average computation
time of 2.12 seconds per pose displacement. For larger initial
odometry errors, especially in orientation, the difference in
iterations to convergence increases to the point where our
weighted algorithm is actually faster than the UWLS algo-
rithm. For the data shown in Fig. 4, when the orientation error
is greater than 0.2 radians the UWLS algorithm converges
in an average of 42.98 iterations for an average computation
time of 4.81 seconds per displacement while our weighted
algorithm converges in an average of 22.60 iterations for an
average computation time of 4.63 seconds per displacement.

In summary, our experiments show that in real world indoor
environments, our method provides significantly greater esti-
mation accuracy and robustness as compared to an unweighted
approach without a significant increase in computational cost.
Clearly, the computational demands in the estimation phase
are larger for our algorithm (as compared to an unweighted
algorithm). However, since the computations required by the
estimation part of the algorithm account for only a small
portion of each iteration, and our algorithm often converges in
fewer iterations compared to the UWLS algorithm, the total
run time is reduced.

D. Experiments with Bias Compensation

For completeness, we also implemented the bias compen-
sation scheme of Section III-C. In order to implement this
scheme, we experimentally determined the laser’s range bias in
a controlled laboratory setting, and fit a functional relationship
to the experimental data. For our experiments, a white paper
target was placed at a known distance from the sensor. The
center beam of the laser was aligned so as to be normal
to the axis of rotation of the target. A total of 100 range
measurements were recorded for every 10 degrees of rotation
up to 80 degrees from the normal. This process was repeated
for nominal ranges of approximately 1.5m, 3m, and 4.2m. Ref.
[21] provides a more detailed characterization of this specific
laser. The data provided there could be used to build a more
detailed model as compared to the one given below.

This experiment showed that the bias for this particular laser
sensor is a function of both distance and incidence angle. A
function was fit to these data which was then employed to
determine the bias, b, (in mm), in the measurement given the
reported distance, r (in mm), from the laser sensor and the
angle from normal, « (in radians), from the Hough Transform.
Fig. 9 shows both the data collected and the fitting function.
The bias function is given by:

be(r, @) = —14 4 0.0047 — 0.035e*9* (39)

When this bias model was incorporated in the WLSM es-
timation process, the resulting position estimates were almost
unchanged. Over the 21.8 meter, eight-step path described
in [22], the incorporation of the bias term resulted in an
improvement of only 1.8mm or 0.0082% in the final position
estimate. There are two reasons for such a small contribution
from the bias term. First, as can be seen in Fig. 9, this laser’s
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bias is quite small and relatively constant (~1cm) for angles up
to 60 degrees from normal. This excellent behavior is certainly
due in part to pre-processing that occurs inside the sensor
itself. Most of the corresponding points processed by the
WLSM algorithm are recorded at angles within the 60° range.
At larger incidence angles, range points are usually sparsely
distributed on surfaces far from the sensor and are usually
rejected by the matching algorithm since they cannot be paired
with the required level of confidence. Even if these points are
included, their associated matching covariance is large enough
to make their effective contribution negligible. Moreover,
symmetries in the environment result in mutual cancellation
of the bias effect introduced by points found in opposite
directions. Nevertheless we believe that a similar process for
estimating the bias can be used and provide improved accuracy
in the case of lower quality distance measuring sensors that
experience significant bias.

VII. CONCLUSIONS

This paper introduced a new method for estimating robot
displacement based on dense range measurements. In par-
ticular, we investigated the effects of different error and
noise sources on the convergence and accuracy properties
of these motion from structure algorithms. Our experiments
showed that careful attention to the details of error modeling
can significantly enhance overall displacement and covariance
estimation accuracy.

The first part of the paper gave a general formulation of
the displacement estimation problem using weighted point pair
correspondences. A general solution to the estimation problem
and formulas for the covariance of the displacement estimate
were then derived. The application of these results then de-
pends upon explicit error models, and we gave general models
for range measurement noise, bias error, and correspondence
error. Although parts of this analysis were mainly aimed at
planar laser range sensors, the methods can likely be extended
to algorithms for non-planar laser scanners [23], [24], where
detailed uncertainty modeling has not been considered, and
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other range sensors such as stereo cameras, radar, ultrasound,
etc. Our techniques should also be useful for methods that
use both planar laser range finders and cameras to estimate
3-dimensional motion parameters [25], [26]. The specifics of
our analysis must be modified to incorporate the appropriate
error/noise models for each particular sensor.

The accurate displacement estimates afforded by this
method can be fused with odometry estimates [1] to provide
better robot localization capability. Similarly, the improved
displacement estimation afforded by this method should in
the future lead to more accurate map making and localization
procedures.
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APPENDIX
A. Weighted Translation Solution

Recall the log-likelihood formula of Eq. (15). Since D%
is independent of z;; and y;;, the necessary condition for
an extremal in the log-likelihood function with respect to the
variable p;; = [ zi; Yij ]T is:

Vi (M”) =0 &

%Vpu( TP ) =0 @
ZRZ[( Vo, (1) )(Pk) =0 «
S [(P,z’jrl(a;; ~ Ry _pij{ o

k=1

Rearranging this formula results in Eq. (16).

B. Weighted Rotation Solution

Given an initial estimate of the translational displacement
Dij, the rotational displacement can be derived by maximizing
the likelihood function in Eq. (12), or equivalently, the log-
likelihood function in Eq. (15) with respect to ¢;; = ¢, i.e.

oM™ (¢)
o

Instead of directly computing the gradient of M with respect
to ¢, we calculate it as follows:

OMY(p)  OMY (¢ + 5¢)

=0. (40)

0(56) _ DM (50)

= 41
33 o0s) oo owe P
where we used the relation:
~ 06
dp=0¢+dp = (42)

969



Here we derive an exact expression for the quantity M% as
a function of d¢. From the Taylor series expansion for the
functions sin and cos we have:

s1n¢) 5¢—
cosgb 0p — = smd) 5% —

Substituting in Eq. (2), the rotat10na1 matrix IR;; can be written
as:

cos¢p = cosa— cosqﬁ 5p? +

sing = blngb—l—

-~

Rij(¢) = (1 + %J&b - %wﬁ - %JW + ) Rij(9)

where J is defined in Eq. (19). The error 5? between two
corresponding laser points, defined in Eq. (5), can be described
as a function of the orientation error d¢:

e = i), —piy— Ry, 43)
- N RS P
= @, —pij — Rijy, — 37T Rij 6,09
1.

The covariance matrix for the matching error at the k** point
correspondence of poses ¢ and j in Eq. (10) can also be
described as a function of d¢:

P (5¢) = i+ Sy + (JS - 877)6¢
(S + IS 1)6? — 2(J§;’j ~ S7J)6°
%(S” + JS7.0)8¢" + (44)
where
Sy = Rij(9)S/ R (9).
The inverse I} (5¢) = (P (§¢))~" of the covariance matrix

can be computed using Taylor series expansion as:

17 (60) = 1)7(0) + 17V (0)50 + %I}j(?) (0)3¢* + ... (45)
with -

s o (1% (5
where
L0 = (BIO)T = (B = (QF §”‘>*1
V) = —(@QF+S5)7 IS - SIN@E + 57
17%(0) 21,7 (0)PY (0) 1, (0) + 2(SY + IS} J).

By substituting from Eq.s (43), (45) to Eq. (13) we have:

! i{ 112(0)
[ 20 1 (0)Jax + f 17 0)pe] 56

+ [p;‘ffff (0)qr — g JI; (0) T qi

M4 =

1 1 17
— 2T 17V (0)Jgi, + 529351;3(2) (0)p4 6¢°

+..} (46)
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where

pe = - piy — Ry, 47)
o = Riyu, (48)
el << llaxll- (49)

Note that there has been no approximation made up to this
point. Eq. (46) is a complete expression of the cost function
M;;, expressed as an infinite series of terms polynomial in
the orientation estimation error d¢. In order to minimize this
function, we approximate it after considering a limited number
of terms. For small errors in the initial orientation estimate
(6¢ < m/6), a second order approximation is sufficient when
a large number of point correspondences are available. Higher
order approximations are necessary as the number of point
correspondences decreases.

By substituting Eq. (46) in Eq. (41) and employing Eq. (49)3
we derive the expression for the orientation displacement error
of Eq. (18).

C. Covariance Estimation

Here we consider the estimation problem where n;; mea-

_ (7T T T (wi _ (7T (79\T\T

surements Z = [Zl' Zn”_] (with Zy, = [(a},)" (u3.) ] )

are processed to derive an estimate of a vector A of the motion
parameters

5= [ Dij } _ { hy(Z)
bij he(Z)
with the expressions for functions %, and hg given by Eq.s

(16) and (18). A first order approziimation of the error in the
estimate of the parameter vector \ is given by:

| =12 (50)

&5 =Voh(Z) ez => V3 h(Zk) ez, (51)
k=1
with
Vin(z) = | VEMZ) . VR M2 | 62
and
VZ h »(Z )
T Z
Note that
E{e;} = E{VLh(Z) ez} = VLh(Z) E{ez} = O3x1.
The covariance of the estimate X is:
P9 = P; = E{esel} = V,h(Z) Pz Vzh"(Z)  (54)
where
Pz . 0
PZ = E{Ezag} = . . (55)
0o . PZnij

SEq. (49) expresses the fact that the point correspondence errors are very
small compared to the distances to these points.



and
o,

PZk = E{EZJCEE;C}_E{{ 55‘%

= ,ILCJ O . .
0 S

Substituting from Eq.s (52), (55) in Eq. (54) yields:
Nij

> V% 1(Z) Py, Vz,h"(Z)
k=1

RGN

(56)

<A VT h,(Z
= Y| Vi) | Pa Tant) Vet
_ Pop Py } 57
[P¢p Psy | (57)

For £,¢ € {p, ¢} each of the previous sub-matrices can be
written as:

Nij
P = Y V3 he(Z)PzVz,hl(Z) (58)
k=1
- ;(W&ha 7 (Vah)

+ (V5 he) SP (T hD))
uy, &
where we substituted from Eq. (56) and the relation:
VL he(Z) = [ Vi he(2) Vi he(Z) } .

In order to derive the expressions for the covariance sub-
matrices we compute the following quantities from Eqs. (16)
and (18):

-1

MNij
T _ ijy—1 ij\—1
Viiihp X_jl(Pm (7)) (59)
nij -1
Vahy = - ZI(PZ{)_I (P2)~" Rij  (60)
1 .
VEihy ~ ——aqJP7)? (61)
k ’["T
1 g R
VEhy ~ ——qJ(P7)"' Ry (62)
k rr
with
R/ = Qf+RySUE
@ = Riju
rro= =Y g J(P) gk
k=1

In Eq.s (61), (62) we employed the approximation made in Eq.
(49). The interested reader is referred to [27] for the details
of these derivations.

By substituting Eq.s (59) to (62) in Eq. (58) the sub-
matrices of the covariance matrix for the estimated motion
vector AT = | jirh giA)l-j ] in Eq. (57) can now be computed.
The final expressions are given by Eq.s (17)-(22).
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