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Mobile Robot Navigation

Navigation Applications

• Unmanned exploration

• Convoys for military supplies

• Autonomous highway driving

Robot localization is critical for:

• Effective path planning

• Accurate construction and use
of global maps
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Sensor Based Localization and Mapping

Localization Methods
• Dead reckoning [Lu&Milios]

• Beacon based localization (GPS)

• Localization using known maps
[Borenstein]

• Localization with no prior knowledge
of environment
- Requires sensor based mapping

Mapping Methods
• Grid based mapping - [Elfes]

• Feature based mapping - [Chatila &
Laumond]

Robot

Global frame

Environment Boundary
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Sensor Based Localization and Mapping

Critical Goals

• Accurate estimates of
– robot position
– map feature position
– measurement uncertainty

• Robustness for long term
operation

• Computational efficiency
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Sensor Based Localization and Mapping

Critical Challenges

• Data association accuracy and
efficiency
– Feature correspondence

• Sensor noise compensation

• Unmodeled errors and effects
– Changing environment
– Bad data
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Overview

Three localization and mapping methods are presented

Assumptions: Planar robot motion in SE(2)
Sensors: Dense planar range scanner, Simple odometry
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Overview

Three localization and mapping methods are presented

1. Range point based
dead reckoning:
scan matching

2. Line feature based
mapping and global
localization

3. Multi-scale feature
based mapping and
global localization
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Method 1) Weighted Scan Matching

Scan2

Scan Matching
Iterate

Displacement
Guess
Initial

Point Correspondence

Displacement Estimate

Scan 1

• Correlate range measurements to estimate displacement
• Can improve (or even replace) odometry - [Roumeliotis]
• Previous Work - Vision community and Lu & Milios ’97
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Weighted Approach

Explicit models of uncertainty
& noise sources for each point pair:

• Sensor noise & errors
– Range noise
– Scan angle uncertainty

• Point correspondence uncertainty
– Due to a geometric effect Pose i

Pose j

Correspondence Errors

Improvement vs. unweighted method:
• More accurate displacement estimate
• More realistic covariance estimate
• Increased robustness to initial conditions
• Improved convergence
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Weighted Formulation

Goal: Estimate displacement (pij, φij)

Error εijk between kth scan point pair

iukuj
k

uj
k−1

iuk−1

uj
k+1

iuk+1

φij

Pose i

Pose j
ijp

kεij

εijk = ~̂uik −Rij~̂u
j
k − pij Rij = rotation through φij

εijk = (~uik −Rij~u
j
k − pij)︸ ︷︷ ︸

(Noise Error)

+(~bik −Rij~b
j
k)︸ ︷︷ ︸

(Bias Error)

+ (δ~uik −Rijδ~u
j
k)︸ ︷︷ ︸

(Correspondence Error)
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Covariance of Error Estimate

P ijk
4
= E

[
εijk (εijk )T

]
= NP ik +Rij

NP jkR
T
ij︸ ︷︷ ︸

(Sensor Noise)

+BP ik +Rij
BP jkR

T
ij︸ ︷︷ ︸

(Sensor Bias)

+ CP ijk︸ ︷︷ ︸
(Correspondence)

1) Sensor Noise

NP ik = E
[
δ~uik(δ~u

i
k)
T
]

NP ik =
(dik)

2σ2
θ

2

[
2 sin2 θik − sin 2θik
− sin 2θik 2 cos2 θik

]
+
σ2
d

2

[
2 cos2 θik sin 2θik
sin 2θik 2 sin2 θik

]
θk

i

i
kd

σd
σθ

iuk

Pose i

2) Sensor Bias
Neglect for now - more details in dissertation
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3) Correspondence Error = cijk
Estimate bounds of cijk from the
geometry of the boundary and
robot poses

Max error = 1
4(δ

i
+ + δi−)

=
lik sinβ

2

[
sinαik cosβ

sin2αik − sin2 β

]

Assume uniform distribution

θk
i

iuk

kθj

αk
j

αi

juk

i

β

Pose i

β

Pose j

δ+i
δ−

i

k

c

l
t

ij
k

k

k

E[(µijk )2] =
(δi+)3 + (δi−)3

3(δi+ + δi−)
where µijk = cijk tk

CP ik = E[cijk (cijk )T ] = E[(µijk )2]tktTk

=
(δi+)3 + (δi−)3

3(δi+ + δi−)

[
cos2 ηik cos ηik sin ηik

cos ηik sin ηik sin2 ηik

]
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Determination of Incidence Angles
Goal : Find incidence angles αik and αjk
Approach : Use the Hough transform to extract underlying lines

Hough Transform

• General pattern
detection method

• Fits lines to range data

• Local incidence angle
estimated from line
tangent and scan angle

• Common technique in
vision community
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Maximum Likelihood Estimation
Likelihood of obtaining errors εijk given displacement gij

L({εijk }|gij) =
nij∏
k=1

e−
1
2(ε

ij
k

)T (P
ij
k

)−1ε
ij
k

2π
√

detP ijk
gij =

[
pij
φij

]

Non-linear Optimization Problem ∇(L) = 0

• Position displacement estimate obtained in closed form

p̂ij = Ppp

nij∑
k=1

(
(P ijk )−1(~̂uik − R̂ij~̂u

j
k)
)

Ppp =

( nij∑
k=1

(P ijk )−1

)−1

• Orientation estimate found using 1-D numerical optimization, or series
expansion methods

δφ̂ij ' −
∑nij
i=1 p

T
k (P ijk )−1Jqk∑nij

k=1 q
T
k J(P ijk )−1Jqk

, J =
[

0 −1
1 0

]
,

qk = R̂ij~̂u
j
k

pk = ~̂uik − p̂ij − R̂ij~̂u
j
k

04/14/2006 35



Experimental Results: Robustness Testing

• 1525 trials with different
initial displacement guesses

• Max initial error =
600mm, 0.6 radians

• Successful convergence
defined by covariance

Weighted Results
• 95.5% converge
• Average error =

2.5mm, .57 mrad

Unweighted Results
• 31.2% converge
• Average error =

11.1mm, 16 mrad

−6000 −5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000
(mm)

Table at Laser Height

Moving Person
Pose 1

Pose 2

A

Pose 1 Scan Points
Pose 2 Scan Points
Perturbed Initial Displacements

−110 −105 −100 −95 −90 −85 −80
(mm)

Pose 2

      Closeup : Pose 2 B

 
476 estimates (31.2%)
converge to within 3σ
of the true displacement

Unweighted

 
1456 estimates (95.5%)
converge to within 3σ
of the true displacement

Weighted

Initially
unperturbed
unweighted
estimate

Initially
unperturbed
weighted
estimate

True Pose 2 Displacement
Unweighted Displacement Estimates
Weighted Displacement Estimates
Pose 2 Measurement Covariance (3σ)
Unweighted Covariance (3σ)
Weighted Covariance (3σ)
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Experimental Results: Robustness Testing

• 1525 trials with different
initial displacement guesses

• Max initial error =
600mm, 0.6 radians

• Successful convergence
defined by covariance

Weighted Results
• 75.1% converge
• Average error =

3.1mm, 0.04 mrad

Unweighted Results
• 3.0% converge
• Average error =
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Experimental Results : Long Run
32.8 meter, 109 step loop path
Weighted Results
• Final error =

43mm, 2.9 mrad

Unweighted Results
• Final error =

271mm, 21 mrad
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Experimental Results : Long Run
24.2 meter, 83 step loop path
Weighted Results
• Final error =

18mm, 13 mrad

Unweighted Results
• Final error =

919mm, 200 mrad
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WLSM Conclusions

Contributions:

• A method of point correspondence error compensation
through modeling

• A general approach to incorporate uncertainty into scan match
displacement estimates

Results:

• More accurate relative position estimation

• More accurate covariance

• More robust to poor initial guess

• More efficient in the case of poor initial guess
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Method 2) Line Segment Feature Based
Localization and Mapping

1. Define and extract features from the raw data
2. Compare and align features across data sets
3. Use assembled feature based maps for localization

Raw point data
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Method 2) Line Segment Feature Based
Localization and Mapping

1. Define and extract features from the raw data
2. Compare and align features across data sets
3. Use assembled feature based maps for localization

Extracted line segment features
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Method 2) Line Segment Feature Based
Localization and Mapping

1. Define and extract features from the raw data
2. Compare and align features across data sets
3. Use assembled feature based maps for localization

Merged feature based map
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Method 2) Line Segment Feature Based
Localization and Mapping

1. Define and extract features from the raw data
2. Compare and align features across data sets
3. Use assembled feature based maps for localization

Benefits vs. point based methods
• More efficient data representation for reduced storage
• More efficient localization and mapping algorithms
• More discerning data association

Background
• Fitting lines to range data has been done

[Ayache, Faugeras, Castellanos]

• I introduce rigorous noise modeling, and novel feature correspondence
methods
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Line Segment Feature Representation

σα

S

α

ρ

σψb

σψa

σρ

aψ

bψ

S =


α
ρ
ψa
ψb

 PS =


Pαα Pαρ Pαψa Pαψb
Pρα Pρρ Pρψa Pρψb
Pψaα Pψaρ Pψaψa Pψaψb
Pψbα Pψbρ Pψbψa Pψbψb


L =

[
α
ρ

]
PL =

[
Pαα Pαρ
Pρα Pρρ

]
.
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Center of Rotational Uncertainty

P

ψ
P

σα

S

α

ρ
σρ

V

[
σ2
α 0
0 σ2

ρ

]
=
[

1 0
−δψP 1

]
PL

[
1 −δψP
0 1

]
, δψP = −Pρα/Pαα

Center point : ~VP =
[
xP
yP

]
=
[
ρ cos(α)− ψP sin(α)
ρ sin(α) + ψP cos(α)

]

σ2
α 0 0 0
0 σ2

ρ 0 0
0 0 σ2

ψa
0

0 0 0 σ2
ψb

 = H−1
P PS(H−1

P )T , HP =


1 0 0 0
ψP 1 0 0

−Pψaα/Pαα 0 1 0
−Pψbα/Pαα 0 0 1
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Line Segment Feature Extraction
1. Group colinear points using a Hough transform
2. Fit optimal infinite line using point noise models
3. Extract endpoints and repeat for any unused points

1. Initial grouping using a Hough transform
Raw points Hough space Infinite line Grouped points

A

Robot pose

1000 mm

Range scan points

1140

(ρ0, α0)

α 
(ra

d)
−1

−0
.5

0
0.

5
1

1.
5

ρ (mm)
−4000 −2000 0 2000 4000

A

ρ0

α0

BB

1000 mm

Range scan points
Extracted infinite line

AA

1000 mm

Point uncertainty bounds
Grouped points
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Feature Extraction: Weighted Line Fitting

• Find L = [α, ρ] which
minimize the set of errors δρ

δρk = d̂k cos(α̂− θ̂k)− ρ̂

Pδρk = [cos(α̂) sin(α̂)]Puk[cos(α̂) sin(α̂)]T d
φ kα

ρ

ψP

δψ
u

δρ

k

k

k
k

First calculate center of rotational uncertainty position ψP :

ψP =

∑n
k=1

ψ̂k
Pδρk∑n

k=1
1

Pδρk

Then use a maximum likelihood approach compute

ρ =

∑n
k=1

d̂k cos(α̂−θ̂k)
Pδρk∑n

k=1
1

Pδρk

, δα = −

∑n
k=1

(
δρkδψk
Pδρk

)
∑n
k=1

(
(δψk)

2

Pδρk

)
04/14/2006 48



Feature Extraction: Endpoint Detection

• Split line at large gap

• Determine endpoint
covariance

α

ρ

Gap Measurement

• Repeat to find multiple lines

BB

1000 mm

Line uncertainty bounds
Extracted line segment

B

1000 mm

Line uncertainty bounds
Extracted line segments
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Line Segment Feature Correspondence

Hypothesis: Feature A from pose i and feature B from pose j

represent measurements of the same aspect of the environment

• Type I error : Rejection of a true
hypothesis

• Type II error : Acceptance of a false
hypothesis

Hypothesis test types:

• Chi-squared hypothesis test -
Addresses type I errors

• Probabilistic confidence test -
Addresses type II errors

S j

S i

S i

S j

S i

S j

S j

S i
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Chi-squared Hypothesis Tests
Can the observed error be reasonably explained by the model?

L jP

L i

V

Underlying line chi-squared test:
• Compute combined center of rotational uncertainty ~VP
• Transform both lines to frame at ~VP
• Calculate Mahalinobis distance

D2 =
[
αi − αj
ρi − ρj

]
(PLi + PLj)

−1

[
αi − αj
ρi − ρj

]T
The hypothesis is rejected if D2 > χ2

-The χ2 threshold is from a chi-squared distribution at a chosen probability
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Feature Correspondence: Overlap Test

`i = ψib − ψia `j = ψja − ψjb ∆ij
ψ =

`i + `j

2

Piecewise calculation of D2

if |ψic − ψjc| ≤ ∆ij
ψ then D2 = 0

if ψic − ψjc > ∆ij
ψ then D2 =

(ψic − ψjc −∆ij
ψ )2

P iψaψa + P jψbψb

if ψic − ψjc < −∆ij
ψ then D2 =

(ψic − ψjc + ∆ij
ψ )2

P iψbψb + P jψaψa

The hypothesis is rejected if D2 > χ2

S i

S j
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Feature Correspondence: Endpoint Test

• Endpoint Mahalinobis
distance calculation

D2
a =

(ψia − ψ̃ja)
2

P iψaψa + P jψaψa

D2
b =

(ψib − ψ̃jb)
2

P iψbψb + P jψbψb

σψb
i S i

S j

σψb
j

• Only matching aspects of a feature are later merged

• Chi-squared test not effective at detecting false positives
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Probabilistic Confidence Test
What is the likelihood of a false positive?

S i
jS

χ2 =
(|αi − αj|
P iαα + P jαα

|αi − αj| = ∆̄ij
α =

√
χ2(P iαα + P jαα)

With a similar calculation for ρ, the probability of a random match is:

P(Mij) =
∆̄ij
α

2π

(
∆̄ij
ρ

2dmax

)
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Probabilistic Confidence Test
What is the likelihood of a false positive?

j2S

j1SS i

χ2 =
(|αi − αj|
P iαα + P jαα

|αi − αj| = ∆̄ij
α =

√
χ2(P iαα + P jαα)

With a similar calculation for ρ, the probability of a random match is:

P(Mij) =
∆̄ij
α

2π

(
∆̄ij
ρ

2dmax

)
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Line Merge

• Transform both features to
frame at ~VP

• Calculate hypothesis tests

• Merge line feature portions
which correspond

L jP

L i

V

Full segment merge:
Sim = P iSm

(
(PSi)

−1Si + (PSj)
−1Sj

)
P iSm =

(
(PSi)

−1 + (PSj)
−1
)−1

Underlying line only merge:
Lim = P iLm

(
(PLi)

−1Li + (PLj)
−1Lj

)
P iLm =

(
(PLi)

−1 + (PLj)
−1
)−1

Unmerged ends are updated as follows: ψma = min(ψia, ψ
j
a), ψmb = max(ψib, ψ

j
b)
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Kalman Filter Based SLAM

• Robot state at timestep k : Xk =
[
x y φ S1 ... Sn

]T
k

• State covariance matrix at timestep k : PXk
• Propagation step : Integrates odometry

• Update step : Incorporates sensed features
– Updates both robot position and feature coordinates

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k + VkPS̄V

T
k

)−1

X̂k = X̂k|k−1 +Kk(S̄ − h(X̂k|k−1, 0))

Pk = (I −KkHk)Pk|k−1

Matrix Hk depends on which aspects of the line segments were
determined to match

04/14/2006 57



04/14/2006 58



Line Segment Feature Based Mapping

Localization comparison : Errors due to lost data

Odometry : Raw Data

1000 mm

Range Point Data
Robot Poses
Actual Robot Poses

Castellanos et.al.

1000 mm

Line Segments
Estimated Robot Poses
Actual Robot Poses

My Methods

1000 mm

Line Segments
Estimated Robot Poses
Actual Robot Poses
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Line Based Approach Conclusions
Contributions:

• An improved method of line feature extraction with individual point noise
modeling

• An effective approach to feature correspondence :
– Tests for partial feature matching
– A method of estimating confidence of a feature pair match

• Improved compensation for non-linear effects

• A more flexible line feature :
– Allows for comparison of very short line segments
– Allows for effective merging of long line segments across gaps

Results:

• Improved accuracy in localization and mapping

• more robust feature correspondence

• More efficient map representation without data loss
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Method 3) A Multi-scale Approach

• Introduces a block feature

– Extends the line segment with
a notion of width

• Introduces a multi-scale tree
structure

– The data is represented at
multiple scales

– Related data is connected in
the tree

Motivation:

• Computational efficiency

Scale = 25 mm

1000 mm

Extracted bounds uncertainty
Selected feature bounds
Feature bounds

Scale = 50 mm

1000 mm

Extracted bounds uncertainty
Selected feature bounds
Feature bounds

Scale = 100 mm

1000 mm

Extracted bounds uncertainty
Selected feature bounds
Feature bounds

Robot pose

Scale = 200 mm

1000 mm

Extracted bounds uncertainty
Selected feature bounds
Feature bounds
Data points
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Multi-scale Background
Prior approaches to address computational complexity

• Sparsification of the information matrix [Leonard, Thrun]

• Selectively reduce the feature set [Newman]

• Rao Blackwellization for particle filtering based SLAM
algorithms [Thrun]

Multi-scale approaches in robotics

• Efficient data processing [Madhavan]

• Efficient representations [Theocharous, Thrun]

Multi-scale approaches in vision

• Multi-scale features for object recognition [Lowe, Kadir]

• Multi-scale edge detection and filtering [Perona, Weickert]
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Multi-scale Overview:

• Feature extraction

– Multi-scale Hough transform

• Feature correspondence

– Scale compensation
– Partial feature matching

• Multi-scale tree structure

• Experimental results

– Correspondence benefits
– Robustness benefits
– SLAM
– Kidnapped robot problem

Multi−scale graph connections
Feature nodes
Selected feature nodes

25
50

10
0

20
0

Sc
al

e 
(m

m
)

Robot pose

Scale = 200 mm

1000 mm

Extracted bounds uncertainty
Selected feature bounds
Feature bounds
Data points

Scale = 100 mm

1000 mm

Extracted bounds uncertainty
Selected feature bounds
Feature bounds

Scale = 50 mm

1000 mm

Extracted bounds uncertainty
Selected feature bounds
Feature bounds

Scale = 25 mm

1000 mm

Extracted bounds uncertainty
Selected feature bounds
Feature bounds
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Block Feature Representation

B

bψ

aψ

ρ ρ

α

a
b

B =


α
ρa
ρb
ψa
ψb

 , PB =


Pαα Pαρa Pαρb Pαψa Pαψb
Pρaα Pρaρa Pρaρb Pρaψa Pρaψb
Pρbα Pρbρa Pρbρb Pρbψa Pρbψb
Pψaα Pψaρa Pψaρb Pψaψa Pψaψb
Pψbα Pψbρa Pψbρb Pψbψa Pψbψb
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Center of Rotational Uncertainty

B

ψ
P

ρ

V

P

P


σ2
α 0 0 0 0
0 σ2

ρa 0 0 0
0 0 σ2

ρb
0 0

0 0 0 σ2
ψa

0
0 0 0 0 σ2

ψb

 = H−1
PB
PB(H−1

PB
)T , H−1

PB
=


1 0 0 0 0

−ψP 1 0 0 0
−ψP 0 1 0 0
−ρP 0 0 1 0
−ρP 0 0 0 1


Center point : ~VP =

[
xP
yP

]
=
[
ρP cos(α)− ψP sin(α)
ρP sin(α) + ψP cos(α)

]
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Block Feature Extraction

• Features are extracted
sequentially using a
multi-scale approach based
on the Hough transform

Raw data points

Robot pose

1000 mm

900

α0

α 
(ra

d)
−1

−0
.5

0
0.

5
1

1.
5

ρ (mm)
−4000 −2000 0 2000 4000

Hough Space

ρa ρb

Convolution Basis

Extracted bounds uncertainty
Extracted block bounds (ρa ρb)
Convolved data
Hough space data at angle α0

ρ (mm)
−2000 0 2000 4000

Block Position Extraction (ρa, ρb)
Coarse Scale

ρa ρb

Convolution Basis

Extracted bounds uncertainty
Extracted block bounds (ρa ρb)
Convolved data
Hough space data at angle α0

ρ (mm)
−3000−2000−1000 0 1000 2000 3000

Block Position Extraction (ρa, ρb)
Fine Scale

ρ0

α0

Extracted infinite block
Coarse Scale

Extracted infinite block
Coarse Scale

1000 mm

Extracted bounds uncertainty
Extracted block bounds

ρ0

α0

Extracted infinite block
Fine Scale

Extracted infinite block
Fine Scale

1000 mm

Extracted bounds uncertainty
Extracted block bounds
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Block Feature Extraction

• Endpoints are extracted using
a convolution analysis

• Subsequent features are
extracted from remaining
points

Covariance Terms:
Pαα = (Dα)2 + PSαα

Pρaρa = (σρ)2 + PSρρ

Pρbρb = (σρ)2 + PSρρ

Pψaψa = (σψ)2 + PSψaψa

Pψbψb = (σψ)2 + PSψbψb

= scale+ noise

ψa ψb

Convolution Basis

Extracted bounds uncertainty
Extracted ends (ψa ψb)
Convolved data
Point data projected into ψ axis
Point data inside infinite block

ψ (mm)
−2000 −1000 0 1000 2000 3000

Endpoint Extraction (ψa, ψb) 
Fine Scale

Extracted Block
Fine Scale

1000 mm

Extracted bounds uncertainty
Extracted block bounds
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α0
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(ra

d)
−1

−0
.5

0
0.

5
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5
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−4000 −2000 0 2000 4000

Hough Space Extracted Block
Fine Scale

1000 mm

Extracted bounds uncertainty
Extracted block bounds
Prior block
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Efficiency in Multi-scale Extraction

• Sub-sampling - At coarse
scales the Hough space bin
size can be increased

• Prior estimation - A prior
guess can limit Hough space
bounds

• Reuse - Hough space
calculations can be reused at
multiple scales

900
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−1

−0
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5
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−4000 −2000 0 2000 4000
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5
1

1.
5

ρ (mm)
−4000 −2000 0 2000 4000

Hough Space
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Block Feature Correspondence

Two groups of hypotheses are
considered:

• Overlap Hypotheses
– Takes scale based differences

into account
– Allows for rough matches at

coarse scales

• Matching Hypotheses
– Considers block border

correspondence
– Only takes parameter uncertainty

into account

Pose i
Pose j

Different representation of
identical data
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Overlap Hypotheses
Can the blocks be describing the same underlying contour?

Orientation Overlap Test:

iB

∆ α
j jB∆ α

i

∆i
α = tan−1

(
ρib − ρia
ψib − ψia

)
, ∆j

α = tan−1

(
ρjb − ρja

ψjb − ψja

)
if |αi − αj| ≤ ∆i

α + ∆j
α then D2 = 0

if |αi − αj| > ∆i
α + ∆j

α then D2 =
(|αi − αj| −∆i

α + ∆j
α)

2

P iαα + P jαα

Tests along block width and length dimensions are similarly formulated
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Match Hypotheses

• Chi-squared tests are developed to determine block boundary
matches

• Boundary match tests are analogous to line segment matches

• Partial matches can occur

• Matching boundary elements are used to merge and localize

a

a

ρ

ψ
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Scale Tree Construction:

• Bottom up approach

– Benefits in Hough space
reuse similar to Gaussian
scale tree

• Top down approach

– Separates data for
computation at finer scales

– Allows for partial
construction of tree as
needed

Multi−scale graph connections
Feature nodes
Selected feature nodes
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Extracted bounds uncertainty
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Data points

Scale = 100 mm

1000 mm

Extracted bounds uncertainty
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Scale = 50 mm
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Extracted bounds uncertainty
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Feature bounds

Scale = 25 mm

1000 mm

Extracted bounds uncertainty
Selected feature bounds
Feature bounds
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Tree Based Correspondence

• Matches are established across
scales descending from coarse to
fine

• Finer scale feature match search is
guided by coarser matches

• Match search scales linearly with the
number of features

• Experimental results vs. single
scale:
– 100 overlapping pairs considered
– Average of 4-fold decrease in

computation time
Sc
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(m
m

)
20

0
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0
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Matched feature nodes
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Robot pose 1

1000 mm

Robot pose 2
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Unmatched features
Matched features, pose2
Matched features, pose1

04/14/2006 73



Tree Based Localization
• Matches are established across scales descending from coarse to fine
• An updated displacement estimate is calculated at each scale
• Experimental results show improved robustness to initial error

True pose 2

Perturbed pose 2

Pose 2 uncertainty boundsPose 2 uncertainty bounds

Pose 1

Features, pose2
Features, pose1

Scale = 400 mm Scale = 200 mm

Scale = 100 mm Scale = 50 mm Scale = 25 mm Scale = 12.5 mm

Unmatched features, pose2
Unmatched features, pose1
Matched features, pose2
Matched features, pose1
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The Kidnapped Robot Problem
• Consider a large, unmodeled localization error

• The robot has no prior position knowledge

• Goal: Relocalize the robot, or determine it is in a new region

Kidnapped Robot Data,  Scale = 200mm

1000 mm

Range Data Points
Block Features

Kidnapped Robot Data,  Scale = 100mm

1000 mm

Kidnapped Robot Data,  Scale = 50mm

1000 mm

Kidnapped Robot Data,  Scale = 25mm

1000 mm

Kidnapped Robot Data,  Scale = 12.5mm

1000 mm

Map Scale = 200mm

1000 mm

Uncertainty Bounds
Block Features

Map Scale = 100mm

1000 mm

Map Scale = 50mm

1000 mm

Map Scale = 25mm

1000 mm

Map Scale = 12.5mm

1000 mm
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The Kidnapped Robot Problem

• Generate hypotheses
by aligning two features

• Test hypothesis by
computing percentage
of feature overlap

• If more than 50%
overlap, check at a finer
scale

• If less than 50%
overlap, invalidate
hypothesis

Examples of invalidated hypotheses

1000 mm

Comparison Scale = 200mm
Overlap Ratio = 0.44797 − INVALID HYPOTHESIS

1000 mm

Comparison Scale = 200mm
Overlap Ratio = 0.26055 − INVALID HYPOTHESIS

1000 mm

Comparison Scale = 200mm
Overlap Ratio = 0.38526 − INVALID HYPOTHESIS

1000 mm

Comparison Scale = 200mm
Overlap Ratio = 0.2519 − INVALID HYPOTHESIS
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The Kidnapped Robot Problem

Examples of hypotheses invalidated at a finer scale

1000 mm

Comparison Scale = 200mm
Overlap Ratio = 0.993 − CANDIDATE MATCH

Comparison Scale = 100mm
Overlap Ratio = 0.8594 − CANDIDATE MATCH

1000 mm

Comparison Scale = 50mm
Overlap Ratio = 0.40885 − INVALID HYPOTHESIS

1000 mm

1000 mm

Comparison Scale = 200mm
Overlap Ratio = 0.72829 − CANDIDATE MATCH

Comparison Scale = 100mm
Overlap Ratio = 0.72997 − CANDIDATE MATCH

1000 mm

Comparison Scale = 50mm
Overlap Ratio = 0.3887 − INVALID HYPOTHESIS

1000 mm
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The Kidnapped Robot Problem

1000 mm

Comparison Scale = 200mm
Overlap Ratio = 1 − CANDIDATE MATCH

Comparison Scale = 100mm
Overlap Ratio = 0.94655 − CANDIDATE MATCH

1000 mm

Comparison Scale = 50mm
Overlap Ratio = 1 − CANDIDATE MATCH

1000 mm

Comparison Scale = 25mm
Overlap Ratio = 0.98494 − CANDIDATE MATCH

1000 mm

Confirmed unique solution
Comparison Scale = 12.5mm

Overlap Ratio = 0.99137 − CONFIRMED MATCH

1000 mm
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The Kidnapped Robot Problem

Averages over 50 runs at different positions in the map

• Multi-scale results
– 2.74 seconds to first solution
– 9.65 seconds for exhaustive search

• Single-scale results
– 25.3 seconds to first solution
– 40 minutes for exhaustive search

Averages over 30 runs from positions not in the map

• Multi-scale results
– 8.3 seconds for full search and no found hypotheses

• Single-scale results
– Over 30 minutes per run
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Multi-scale Approach Conclusions
Contributions:

• A method of multi-scale feature extraction with individual point noise
modeling

• An effective approach to multi-scale feature correspondence

• A more flexible feature :
– Allows for representation of arbitrary data distribution
– Allows for comparison of line-like and point-like features

• A multi-scale tree structure for efficient data comparison

Results:

• Maintains the high accuracy of line-segment methods

• more robust to error unstructured environment

• More efficient computation of feature correspondence

• More efficient solution of kidnapped robot problem
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Future Work

• Further explore of scale-tree efficiency

– Focused feature extraction through
partial tree construction

• Apply and test features in unstructured
outdoor environments

• Develop rigorous multi-scale Kalman filter
based SLAM

• Extend algorithms for 3-D mapping
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Conclusion : Contributions
Weighted Scan Matching Approach

• A method of point correspondence error compensation through modeling

• A general approach to incorporate uncertainty into scan matching

Line Segment Feature Based Approach

• An improved method of line feature extraction

• An effective approach to feature correspondence

• Improved compensation for non-linear effects

• A lossless line feature based approach

Multi-scale Feature Based Approach

• A method of multi-scale feature extraction

• An effective approach to multi-scale feature correspondence

• A multi-scale tree structure for efficient data comparison

04/14/2006 84


