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Abstract—In this paper we characterize the impact of imperfect com- motion-planning algorithm that considers both sensing and commu-
munication on the performance of a decentralized mobile sensor network. npjcation objectives. The algorithm modifies the local information-
We first examine and demonstrate the trade-offs between communication . -assing and motion-planning functions of each sensor to account
and sensing objectives, by determining the optimal sensor configurations S . . .
when introducing imperfect communication. We further illustrate the for communication channels. Finally, our simulation results show the

performance degradation caused by non-ideal communication links in performance improvement gained by using this algorithm.

a decentralized mobile sensor network. To address this, we propose a

decentralized motion-planning algorithm that considers communication 11. SYSTEM MODEL

effects. The algorithm is a cross-layer design based on the proper interface

of physical and application layers. Simulation results will show the = ConsiderN mobile sensors that are cooperatively estimating the

performance improvement attained by utilizing this algorithm. state of a target with the following dynamics:

|. INTRODUCTION z[k + 1] = z[k] + w[k] (1)

There has recently been considerable interest in sensor networks B e B i 1 ; tina the state of th
[1], [2]. Such networks have a wide range of applications such g@erex[ ] < IS ann x 1 veclor representing the state of the
et at timek andw[k] is the process noisev[k] is assumed zero

environmental monitoring, surveillance and security, smart homes ARt . ; i o : .

factories, target tracking and military systems. A team of mobil@€an: Gaussian and white with r_epreserjtlng Its covariance matrix.

agents equipped with sensing, wireless communication and Io&ﬁt ys[k] represent the observation of tj€" sensor at time:

processing capabilities can further take advantage of the mobility to k] = p

achieve sensor configurations that result in better networked sensing. uslh] = alk] +vs K] @

To address and overcome technological challenges of such netwovkere the observation noise;[k], is zero mean Gaussian noise with

different and non-conventional designs and strategies should Bglk] representing its covariance matri®;[k] = v;[kv![k] with

used. Such designs lie at the intersection of multiple disciplinésuperscriptt” representing the transpose of a vector/matrix.

like control, communication and computation, necessitating cross- ) ) ) )

disciplinary approaches. A. Sensor Fusion and Decentralized Motion Planning
Decentralized control of sensor motions is a key issue in suchEach node transmits its local measurement and measurement error

networks and has gotten considerable interest [3], [4], [5]. Most of th@variance to other nodes. Let ;[k] and R, ;[k] represent the

current research in this area, however, assumes ideal communicati@asurement of thg” sensor and its corresponding error covariance

links, considering only sensing objectives. Communication playsatrix received at the®® sensor respectively. We will have the

a key role in the overall performance of such networks as eafifilowing for 1 <i,j < N,

sensor relies on improving its estimate by processing the information R

received from others. Giglk] = ys[k] +cii[k] - ciilk] = Onxa 3)
Considering the impact of communication channels on wireless Rij[k] = Rj[k] + Lij[k]  Lii[k] = Onxn

estimation/control is an emerging area of_resc_aarch. Authors in [6], [uhere cislk] € ®" and Li ;[k] € ®™*"™ contain communication

[8] have looked at the impact of communication channels on Kalmapises occurred in the transmission of each elemen; ] and

filtering over a wireless link and the conditions required for Stabl|ltij [k] respectively and),, x; and0, ., represent the zero vector and

Authors in [9], [10], [11], [12], [13], [14] have looked at the iImpactyayix respectivelyl/; ;[k] represents covariance matrix ef ;[k]:
of some aspects of a communication link like noise, quantization,

fading, medium access and packet loss on wireless control of a mobile Ui ;K] = cijk]ct ;K] 4)

1,5
sensor. Authors in [15] have derived the minimum required rate for ) . .
maintaining stability of control over a communication channel. Each sensor would then fuse its own measurement with the received

Considering the effect of communication on motion planning iR"€S to reduce its measurement uncertainty. We assume that each

a decentralized mobile network and addressing the introduced copRnSOr Uses a Best Linear Unbiased Estimator (BLUE) [16] to process

munication and sensing trade-offs, however, have not been studiaggl and received information. It then makes a local decision about

before. It is the goal of this papér to inveétigate the reIationshYﬁhere to move next to minimize its local fused estimation error. Let
: 2 e th ;

between sensing and communication in mobile sensor networks g ] € R° represent the position of the! Sensor at timet. The

demonstrate how the mobility can be utilized to achieve bettér SENsor decides its next move as follows:

overe_lll performanc_e. We show that without a proper interface of pilk+1] = f(pj[k],@j,l[k],l%j,l[k],...,z}j,N[k},Rj,N[k]) (5)

physical and application layers, the performance of the network

can degrade considerably when considering non-ideal communicatwinere £(-) represents the motion-planning function used locally at

links. To improve the performance, we propose a decentralizedch node.



In order to provide a measure for evaluating the overall perfoways of formulating the optimization problem. One possible way is
mance, in the next section we will first find optimal sensor confige optimize an average measure,
urations for networked sensing. To hlghllght communlcatlon/sensmg Mazimize Y. det(v1) —
trade-offs, we show how the optimal locations change when consid- o I .
ering imperfect communication. This analysis provides the basis of Magzimize ), det(3 ;. (Ri + Uja) ™)
comparisons and conclusions made later in this paper. To see communication and sensing trade-offs from Eq. 8 and 10,
we have to be more specific about the task of the network and
[ll. PROVIDING A BENCHMARK: OPTIMAL SENSINGLOCATIONS  define the functiony in Eq. 6. Therefore in the remainder of the

In this section we examine sensing and communication trade-of&Per, We consider a target moving in thg plane, and its state is
by finding the optimal locations of the sensors in the presence $ffined to be its position, i.ex = pr € R°. The network will

imperfect communication. This investigation will serve two purpose{!€n be estimating the position of the target jointly. The conclusions

L S . drawn from this example are, nevertheless, applicable to other sensor
1) To give insight on how communication impacts sensing, network examples as well

2) To provide a benchmark for evaluating the performance of the
decentralized network in the subsequent sections. C. Cooperative Sensing for Target Location Estimation

(10

We are interested in finding optimal sensor locatiopgik]. The 1) Observation ParametersTo model observation noise of each
observation and communication noise covariances are functionssehsor, we choose a typically used sonar model [18], [19], which
the locations of the sensors and target. §&f) and h(-) represent results in the following measurement noise covariameg,

these functions respectively. Then,
P Y R; = T(6;)D;(r;)T"(6;) (11)

R;[k] = g(p;[K],pr[k]) 1<j<N

Ui sk = h(pilk]. ps[K]) 1<ij <N (6) whereT'(6,) is the rotation matrix:

where pr[k] represents target location at thé&" time instant. The T(0;) = [ fg;si]g)) zlozgzjg ] 12)
optimal locations considering only communication costs may differ ! !

from the optimal locations considering only sensing costs. This resu@gd

in a trade-off between communication and sensing. We will consider Dji(r;) = { fi(rs) 0 ] (13)
the nature of these trade-offs in this section. The time inklexill 0 11i(75)

be implied except when explicitly necessary. wherer; is the distance of thg!" sensor to the target arfyj is the

corresponding angle in the global reference frame, as illustrated in

Fig. 1. The functionf;, the model for the range noise variance of
First we will look at the optimal locations under perfect communithe j** sensor, depends orm; and v is a scaling constant. Eq. 11

cation to focus on sensing costs. lef represent the error covariancedescribes functiory of Eq. 6 sincer; and §; are functions of the

matrix of the j** sensor after processing the information receivelbcations of the targer, and thej!" sensorp;. A common model

from others. We will have the following using a BLUE estimator: for f is quadratic, with the minimum achieved at a particular distance

from the target, namely the “sweet spot” of the sensor [3].

N
;= (; R ) A

A. Case of Perfect Communication

. Sensor

Note that in the absence of communication noise, each sensor has the pi B oo
same fused error covariance,. We take the determinant of ; to ‘
be the cost to minimize. Then the optimal locations are the solution N
to the following optimization problem: H N

N
Magzimize det(\Ilgl) — Maximize det(z R7Y (8 . N
=1 :' ~
i i at ; i ) ‘ Pi
where sensor locationg;, po, . . ., pn, are the optimization variables ;

and R; for 1 <7 < N are functions of sensor locations as defined
in Eq. 6.

Y

B. Case of Imperfect Communication .
Py

In this case, we will have the following error covariance matrix

; -th .
after fusion at thg™ sensor: Fig. 1. lllustration of System Variables

N —1
U, = Z(Ri + ij,i)*l 9) 2) Communication ParametersiVe consider an AWGN channel
and a distance-dependent path loss model to describe the communi-

h R dU functi f th timizati iabl _cation link [20]. Communication noises of the received observation
where ki and U;.; are functions o e optimization varables:, o .., are taken to be zero mean and i.i.d, which results in

p1,P2,---,PN, as indicated by Eg. 6. In this scenario, each sensor
will have a different local cost function. Therefore, there are different Ui,j = afomm,mb (14)

1=1



with I representing & x 2 unit matrix. We assume symmetric search, for the parameters of Table | and for three different channels,
uplink and downlink, which implieV; ; = Uj ;. Ugomm,i,jr the «a =570, = 5700 anda = 57000. Values ofa are chosen based on
communication noise variance of the transmission of each elemeedalistic parameters for transmitted signal power, receiver noise and
of the observation vector from theé!" to the i*" sensor, is a frequency of operation. Aa gets smaller, the quality of the channel
function of the transmission environment and receiver/transmittéegrades { N R.... is proportional toa). We can see from Table Il
design parameters. Authors in [9] showed that for a uniform quantizd¥at asc gets smaller, the optimal solution deviates more considerably
and BPSK modulation, using a distance-dependent path loss modieim the solution of the perfect communication case. For instance at
communication noise variance will be as follows: a = 570, Aoy is 18° instead 0f90° of the perfect communication

) 7 , 4N 1 case. The results highlight sensing and communication trade-offs in
Tcommiij = 15 T4 % —5— X Q(VSNRrecij)  (15)  sensor networks.

whereq is the quantization step size and is the number of bits per Observation Parameters
transmission of each element of the observation vector. We assume f ] 0.0008(r — 15.625)7 + 0.1528
that all the sensors use the samendNy. Q(1) = &= I e Tdt 7 S
. . . H . Q 0115
for an arbltre_\ryu. SNRyec,i,j is the average _rece_lved Slgna! to Noise Communication Parameters
Ratio and will have the following relationship wit ;, the distance q 0.0018
separating theé!* and ;" sensors: N 15
a np 2
SNRT‘ec,i,j = ﬁ (16) TABLE |
' SYSTEM PARAMETERS
where d; ; = \/r? +r2 — 2rirjcos(6; — 0;) andn, > 0 is the
path loss exponent which depends on the environment. Furthermore,
a > 0 is a function of the transmitted signal power, receiver noise, _
frequency of operation and the communication environment [20]. We ‘ Z%rr;e;t — _Dgitgnceff%e?%%em sa_th;?)ﬁf)
assume the same andn,, for all the communication links. Lo | 15625 152 A1 15625
3) Perfect Communicationit can be shown that the maximization ro,opt | 15.625 15.2 14.1 15.625
problem of Eg. 8 is equivalent to the following using Eq. 11 [3]: Aopt 90° 18° 70.56° 90°
o | N L 2 TABLE Il
Mazimize 5 [Z¢:1 m} + OPTIMAL LOCATIONS FOR TWO SENSORS

(1-?

T Dacicien fi(n)lfj(rj>sm2(9i —0;)+ @7

(1-2 1 EN 1 . 2
. o —sin"(0;)
v filry) =2 filr) IV. DECENTRALIZED MOBILE SENSORNETWORK AND
wherery,re,...,rn andfs, ..., Oy are the optimization variables IMPERFECTCOMMUNICATION

and 6, is taken zero. For instance, consider two sensors with the-l-he previous section provided insight on the impact of communi-

samef functions. It can be easily shown that the optimal IOCat'Onc?ation on the optimal locations of the sensors. In this section we con-

will be as follows: 71 ,0pt = 72.0pt = 7as @NA01,0pt — 02,00t = 5. giger a mobile network that seeks to achieve the optimal configuration

The sweet qut radius;, _rgpresents the_dlstance from sensor tfhrough local decentralized motion planning. We investigate the effect

target that achieves the minimum of functlgﬁ(}r). ) of imperfect communication on such networks. We further propose

4) Imperfect Communicationin this case, Eq. 10 will be as o 550rithm that extends the work developed in [3] to improve the

follows using Eq. 11 and 14: performance by taking communication effects into account in the
Maximize motion-planning process of each sensor.

N 1 (
Zj det(32;, T(0:)(Di(ri) + Uja) = T"(6:)) A. Decentralized Mobile Sensor Network
To see the impact of communication more clearly, consider the caséBefore introducing the impact of imperfect communication, we will
of two sensors. After much algebraic manipulation, Eq. 18 is givditst discuss related work on decentralized motion planning neglecting
by (assumingfi = fo = f): communication impacts.
The objective in cooperative estimation is to determine the sensor

“/(f<T1>+f(r2>>2j\‘74§c::z7:r(ljiﬁ)(f(n)+f(r2)) motions whi_ch minimi_ze fused estimation error. Fu_rther_more_, we sgek
VP2 (V2 (r2) ¥ 0hgmm T 2omm (VD F (r2)) (19) a depentrahzed solutl_on such tha_t each sensor |de_nt|f|es its optimal
location for the next time step. Given that the gradient provides the
(=1)?sin®(A) f (r1) F(r2) 4020 locally optimal direction of movement, authors in [3] use a gradient-
12D O+ omm + 0 eomm T+ (12)) based descent algorithm which defines the optimal control action as
where A = 0, — 0, and 02, = Gfomm,1,2 is a function of the one which will position each sensor to minimize a local measure

optimization variables through Eqg. 15 and 16. The optimal solutidanction in the following time step.

of the case of perfect communication, i.£. angle difference and  They further reduce the gradient descent algorithm to a discrete
sweet spot radius, may not be the optimal solution for this case agradient search algorithm by restricting the possible control actions
more. Depending on the quality of the channel, sensors may hduve each sensor to a finite, discrete set of motions. Their algo-
to compromise sensing quality for better communication, sacrificinghm demonstrated performance improvement over other existing
either the 7 angle and/or the sweet spot radius. This is what weecentralized motion-planning algorithms with low computational

refer to as “sensing/communication trade-offs”. To see this, Tabtemplexity. Here we briefly describe the algorithm (for more details,

Il shows the optimal solution to Eq. 19, found using a brute-forcgee [3]).



Each sensor takes a local measurement as described by Eq. 2 _-
and uses a local Kalman filter [21] to improve its local estimate. e It
Let mest,j[k}.and Z; K] represent the Iogal estimatg of th@" 10/.. ©
sensor and its corresponding error covariance matrix after Kalman '
filtering at time k. Each sensor then transmits its local information 5r ot
and receives the estimates of others. For this section we assume | t
perfect communication. Therefore, ti sensor will have the exact S © »
copies ofz.s:[k] and Z[k] of other sensors. It then fuses all the 8 gl g 'F”I'rt‘z'g::ssgrf'fgs
information to improve its performance by using a BLUE estimator. > - - - - Sensor Trajectory
Let fused,;j[k] and Zr.sea,;[k] represent the estimate of the target -10r [J Initial Target Pos.
and the corresponding error covariance matrix after fusion aj‘the - i‘”a' Target Pos.
X —15+}+ arget Trajectory
sensor. We will have, ®.-. -
N -20F !
-1 -1
Zyusea k] = (Y 2 M) (20) :
im1 -10 o’ 10 20
X Position

To plan its next move, thg'" sensor takes the following steps:
1) It useszsuseq,;[k] and @ to predict the next state of the target
(if an estimate ofQ) is not available, it assumes that the statg
of the target has not changed):

Fig. 2. Performance of the already-existing decentralized algorithm, case of
erfect communicationN. = 3

Tpredicte 'k"_l:xuse k+5 21 . - . . . . .
predicted | J = @ruseas[H] G qualities into account. Information on the quality of the link is

Wherezprcaictea,j [k + 1] is the prediction of theg*" sensor of available in the physical layer. Since motion planning is performed
the state of the target andis a sample of zero mean whitein the higher application layer, this requires proper interface be-
Gaussian noise generated using covariance mérix tween the two layers. Existing motion-planning algorithms do not
Using the received local error covariances of other sensorstdke communication issues into account. Using such algorithms in
then predicts the estimation error covariances of other nodesthe presence of non-ideal communication links can result in poor
propagating the corresponding Kalman filters one step aheagerformance as each sensor will now receive noisy versions,ofk]
L, and Z[k]. To illustrate this, we add non-ideal communication links

Zpredgicieailk +1] = BP(Z[K]) ¥j#i - (22) the[sgmulation setup of Fig. 2. Since communication impacts are
where Z,,cdicted,j,i[k + 1] is thejth node’s prediction of the not taken into account in the motion-planning algorithm, we consider
local error covariance of thé¢'" sensor.EP(.) stands for a scenarios that have a distance-dependent packet drop mechanism in
function that produces a prediction of the next error covarianagder to limit the amount of received estimation noise. This means
using Kalman filtering. that ford; ; > deriticar, theit" sensor will discard the data received
For every possible motion vecton, the j*" node then predicts form the j** sensor. Scenario#1 refers to the case where 5700
its own error covariance by progressing its Kalman filter. Letvhen received packets are kept. Scenario#2 refers to an ideal case
Zpredicted,j k41, m] represent the prediction of thé" sensor where received packets are noise-free if they are kept in the receiver
of its own error covariance as a function of. and scenario#3 refers to the case where= 570. Communication
Using these predictions, th#" node produces the following parameters are as summarized in Table | d06:i..; = 20m. Fig.
cost to minimize: 3 shows sensor trajectories fof = 2, scenario#1 and for 50 time

2)

3)

MotionCost,[k,m] = det(Z-1 Tk +1,m]+ steps. As can be seen, the algorithm does not converge and the sensors
T -1 pre[‘chi]])fl (23) are acting independently. Fig. 4 shows the determinant of the error
i=1,i#j “predicted,j,i

covariance of one of the sensors (after fusion) for scenario#1 and 2.
For comparison, the determinant of the error covarianceNMos 1
and N = 2 with perfect communication are also plotted. At the
beginning the sensors can communicate and, due to the low level
of communication noise for these two scenarios, can benefit from
(24) cooperative sensing for a short period of time. However, since the
In this manner, the task of motion planning is given to each senst§tcal information processing and motion planning algorithms of each
in place of a central computation node. sensor do not take communication effects into account, the sensors
To see the performance of the decentralized algorithm for t§@n not be guided toward finding the optimum locations. Instead,
observation parameters of Table | under perfect communication, Figey move in the opposite directions of the optimum trajectories,
2 shows sensor trajectories for 50 time steps. It shows the convergeW&éch results in the sensors acting independently (see Fig. 3). The

of sensors to their optimal locations (defined by the solution of E§amMe situation happens after a few iterations as well. Therefore, the
17) whenN = 3. sensors can not benefit from networked sensing. Fig. 4 also shows

the performance for scenario#2, the ideal case in which the received
B. Impact of Imperfect Communication packets are noise-free if not dropped in the receiver. We can see that
We observed in Section Il that to optimize the performance in thee network shows a similar behavior. It can not find the optimum
presence of imperfect communication, the network may need to trddeations and can not benefit from cooperative sensing. Fig. 5 shows
sensing quality for better communication performance. This meatie determinant of the error covariance of one of the sensors (after
that the local motion-planning algorithm should take communicatidnsion) for scenario#3. In this scenari®,= 570, which represents a

MotionCost;[k,m] is the cost used by thg'" sensor in
planning its motion at time:. Finally it chooses the motion
vector that minimizes the cost:

m* = argmin MotionCost;[k, m]



weaker channel. It can be seen that since the communication noise is

not accounted for in sensor fusion and motion planning algorithm&; 10° ‘

the estimation error can get considerably high when received packeﬁs —N=1

are not dropped. The trajectories for scenario#3 are similar to th& - = =N=2, perfect comm.
21l@ —O—N=2, scenario#1
—+— N=2, scenario#2

of scenario#1 of Fig. 3. It should be noted that in the absence of 4
packet drop mechanism, the estimation error would have been evgo,n10
higher due to the lack of a proper interface of the physical and thg
application layers. To see this, Fig. 5 also shows a sample of the
estimation error for scenario#4. Scenario#4 refers to the case Wh%elO_z
all the packets are kept in the receiver ane= 5700. Although this  ©
is a stronger channel, the estimation error can get considerably high
since the sensors move away from each other. 2
In general, even for the cases that the sensors start out closer, “%310_3»
can easily end up performing individual estimation. This behaviorE
of the network is also independent of the valuedofiticai. This g
is due to the fact that the motion-planning algorithm is not takings
communication effects into account. This motivates designing dece 10~ i i i i
tralized motion-planning algorithms that are more robust to commu- 10 20 30 40 50
nication imperfection. The next section will show how to modify the
aforementioned decentralized algorithm to include communicatiéif- 4. Performance of the already-existing decentralized algorithm, case of
impacts, creating the possibility of sensing/communication trade-oﬂ%'oerfeCt communication)' = 2, scenario#1 and scenario#2
when planning the next move.

~

o) % 10 :
.- S —N=1
15+ s T @
at S - = =N=2, perfect comm.
,n g ::n‘|t|a|ISSensor§os. 5 2 , o— N=2, scenario#3
10+ y inal Sensor Pos. " 610% | _ . ]
K - - - - Sensor Trajectory ,' g N=2, scenario#4
' [J Initial Target Pos. e <
5 B Final Target Pos. ' =
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Fig. 5. Performance of the already-existing decentralized algorithm, case of

Fig. 3. Performance of the already-existing decentralized algorithm, Caselrgperfect communication¥ = 2, scenario#3 and scenario#4

imperfect communicationN'. = 2, scenario#1

In practice physical layer can estimatg,,,,, ; ; by measuring the

C. A DegenFraIized Motiqn-PIanning Algorithm (?onsidering BOtI"r'eceived Signal to Noise Ratio. Then when planning the next move,
Communication and Sensing: A Cross Layer Design Approach Eq. 23 should be modified as follows:

To improve the performance in the presence of imperfect commu-
nication, we modify the algorithm to allow for an interface of appli- MotionCost;[k, m| = det [Z;rledicted,j [k +1,m]+
cation and physical layers. Physical layer will pass information on the 7 k 7t
. . . . g . . s redicted,j,i 1 U’reicﬁ zk 17
quality of the link to the application layer. More specifically, it will 2izi Gpredicteasilk +1] + Upredictea.qilk +1,m]) (26)
pass knowledge of the communication noise varian@égmm,i,j [k]. B N
Application layer of each sensor then uses this information for both'€"® Zpredicted.j.ilk + 1] = EP(Z;;[K]) and Upredictea.j.i[k +

- th ) . . . .
fusion and motion planning. At the time of local fusion, Eq. 2(}’m] s the j isnsors F')redlctlon_ Of. the-commur'ncatlon error
covariance of the*” sensor’s transmission given motion veciar

becomes: ) . o
N Typically each sensor also transmits its position as well. In that case,
1 - C—1y—1 the j** sensor receives noisy estimates of positions of other nodes
Zfused,j[k] = (Z(Z“W +Ujalk) ) (25) from which it can estimate its distances to other sensors for each

=1 motion vector. It can then use the model described by Eq. 15 to get

whereZ; ;[k] is the noisy version of;[k] received by thg'" sensor. Uy, cdictea,j i |k + 1,m]. If the estimates of positions of other nodes
Eq. 25 prevents noisy samples from degrading fusion performaneee not available, the received observation estimates have implicit



information on the positions of other nodes and can be used for
prediction. Fig. 6-10 show the performance of the proposed algorlthlﬁ 100
for the parameters of Table I. Fig. 6 shows sensor trajectories fcg
50 time steps,N = 2 and o = 570. We can see convergence

of the sensors to their optlmal locations. After 50 time steps, w;éf’_
have A[50] = 13.5°, m1[50] = 16 and r2[50] = 16.1. Comparing 310
these values with the corresponding optimal ones in Table II, sho
convergence of the decentralized algorithm to the optimal locationsg
We can see that by accounting for communication links in th
application layer, we improve the performance considerably. Fig. 73 10
10 show the determinant of the error covariance of one of the sensadgs
(after fusion) as a function of time, for two different channels anc%
for N = 2, 3, 4 and 5 respectively. We can see that in all theg
figures, fora = 5700, the error stays very close to that of the“ 10
ideal communication from the beginning. Far= 570, the sensors g
start out acting individually but can find the optimum conflguratlonE
quickly resulting in the error reaching very close to that of the |dea]y
communication case after a few time steps. The convergence g%slo
faster as the quality of the link improves. Convergence time is also a
function of the initial positions of the sensors and may be different for
different sensors of the network. The error is always bounded by tHag. 7.

—N=1
- = =N=2, perfect communication
—*—N=2, alpha=570

< N=2, alpha=5700

Performance of the proposed decentralized algorithm, case of

20 | 30 40 50

of a single sensor independent of the quality of the link. The resuifgPerfect communicationy = 2

emphasizes the importance of cross-layer feedback in decentralized
motion-planning.

To see the performance of the proposed algorithm when the targﬁtlo
is moving faster, we next simulate the proposed algorithm for th
following target motion:zqsi[k + 1] = Axjase[k] + w[k]. Fig. §
11, 12 and 13 show the performance of the proposed decentralizgd
algorithm for A = .715, Q = .11, with the rest of the parameters as o 10

. . o
summarized in Table I. Fig. 11 shows how sensors track the targ
for N =2, a = 570 and 50 time steps. Fig. 12 ans 13 show theT
determinant of the error covariance of one of the sensors (after fu3|o§)
as a function of time, for two different channels and for = 8 107
and 4 respectively. Fig. 11 shows that using the proposed algorithrg,
the sensors can track the target considerably well. Fig. 12 ans :@
further demonstrate that the error reaches very close to that of t
ideal communication case. We can see that the network benefits frq:_mlO
cooperative sensing for target tracking.

—N=1

—+— N=2, perfect communication
= = =N=3, perfect communication
—©6—N=3, alpha=570

< N=3, alpha=5700

E
S
P
18® % 10_4 i i i i
\
~ ©
6l e 0 10 20 K 30 40 50
SS (N
~ ~’ \$
14+
Fig. 8. Performance of the proposed decentralized algorithm, case of
125 )& imperfect communicationV = 3
'\
§ 10} AN D!
= Mo - .
g gl N V. SUMMARY
>
ol (O Initial Sensor Pos.
@ Final Sensor Pos. In this paper we considered the impact of imperfect communication
4 = =~ Sensor Trajectory on the performance of a decentralized mobile sensor network. We
[J Initial Target Pos. h d N d . de-offs i h K
B Final Target Pos. showe cqrr_]munlcatlon_an sensing tra_e-o s in suc networks
2r Target Trajectory by determining the optimal sensor locations in the presence of
# non-ideal communication links. To improve the performance, we
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