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Abstract— In this paper we characterize the impact of imperfect com-
munication on the performance of a decentralized mobile sensor network.
We first examine and demonstrate the trade-offs between communication
and sensing objectives, by determining the optimal sensor configurations
when introducing imperfect communication. We further illustrate the
performance degradation caused by non-ideal communication links in
a decentralized mobile sensor network. To address this, we propose a
decentralized motion-planning algorithm that considers communication
effects. The algorithm is a cross-layer design based on the proper interface
of physical and application layers. Simulation results will show the
performance improvement attained by utilizing this algorithm.

I. I NTRODUCTION

There has recently been considerable interest in sensor networks
[1], [2]. Such networks have a wide range of applications such as
environmental monitoring, surveillance and security, smart homes and
factories, target tracking and military systems. A team of mobile
agents equipped with sensing, wireless communication and local
processing capabilities can further take advantage of the mobility to
achieve sensor configurations that result in better networked sensing.
To address and overcome technological challenges of such networks,
different and non-conventional designs and strategies should be
used. Such designs lie at the intersection of multiple disciplines
like control, communication and computation, necessitating cross-
disciplinary approaches.

Decentralized control of sensor motions is a key issue in such
networks and has gotten considerable interest [3], [4], [5]. Most of the
current research in this area, however, assumes ideal communication
links, considering only sensing objectives. Communication plays
a key role in the overall performance of such networks as each
sensor relies on improving its estimate by processing the information
received from others.

Considering the impact of communication channels on wireless
estimation/control is an emerging area of research. Authors in [6], [7],
[8] have looked at the impact of communication channels on Kalman
filtering over a wireless link and the conditions required for stability.
Authors in [9], [10], [11], [12], [13], [14] have looked at the impact
of some aspects of a communication link like noise, quantization,
fading, medium access and packet loss on wireless control of a mobile
sensor. Authors in [15] have derived the minimum required rate for
maintaining stability of control over a communication channel.

Considering the effect of communication on motion planning in
a decentralized mobile network and addressing the introduced com-
munication and sensing trade-offs, however, have not been studied
before. It is the goal of this paper to investigate the relationship
between sensing and communication in mobile sensor networks and
demonstrate how the mobility can be utilized to achieve better
overall performance. We show that without a proper interface of
physical and application layers, the performance of the network
can degrade considerably when considering non-ideal communication
links. To improve the performance, we propose a decentralized

motion-planning algorithm that considers both sensing and commu-
nication objectives. The algorithm modifies the local information-
processing and motion-planning functions of each sensor to account
for communication channels. Finally, our simulation results show the
performance improvement gained by using this algorithm.

II. SYSTEM MODEL

ConsiderN mobile sensors that are cooperatively estimating the
state of a target with the following dynamics:

x[k + 1] = x[k] + w[k] (1)

wherex[k] ∈ <n is an n × 1 vector representing the state of the
target at timek andw[k] is the process noise.w[k] is assumed zero
mean, Gaussian and white withQ representing its covariance matrix.
Let yj [k] represent the observation of thejth sensor at timek:

yj [k] = x[k] + vj [k] (2)

where the observation noise,vj [k], is zero mean Gaussian noise with
Rj [k] representing its covariance matrix:Rj [k] = vj [k]vt

j [k] with
“superscriptt” representing the transpose of a vector/matrix.

A. Sensor Fusion and Decentralized Motion Planning

Each node transmits its local measurement and measurement error
covariance to other nodes. Let̂yi,j [k] and R̂i,j [k] represent the
measurement of thejth sensor and its corresponding error covariance
matrix received at theith sensor respectively. We will have the
following for 1 ≤ i, j ≤ N ,

ŷi,j [k] = yj [k] + ci,j [k] ci,i[k] = 0n×1

R̂i,j [k] = Rj [k] + Li,j [k] Li,i[k] = 0n×n
(3)

where ci,j [k] ∈ <n and Li,j [k] ∈ <n×n contain communication
noises occurred in the transmission of each element ofyj [k] and
Rj [k] respectively and0n×1 and0n×n represent the zero vector and
matrix respectively.Ui,j [k] represents covariance matrix ofci,j [k]:

Ui,j [k] = ci,j [k]ct
i,j [k] (4)

Each sensor would then fuse its own measurement with the received
ones to reduce its measurement uncertainty. We assume that each
sensor uses a Best Linear Unbiased Estimator (BLUE) [16] to process
local and received information. It then makes a local decision about
where to move next to minimize its local fused estimation error. Let
pj [k] ∈ <2 represent the position of thejth sensor at timek. The
jth sensor decides its next move as follows:

pj [k + 1] = ξ(pj [k], ŷj,1[k], R̂j,1[k], . . . , ŷj,N [k], R̂j,N [k]) (5)

where ξ(·) represents the motion-planning function used locally at
each node.



In order to provide a measure for evaluating the overall perfor-
mance, in the next section we will first find optimal sensor config-
urations for networked sensing. To highlight communication/sensing
trade-offs, we show how the optimal locations change when consid-
ering imperfect communication. This analysis provides the basis of
comparisons and conclusions made later in this paper.

III. PROVIDING A BENCHMARK: OPTIMAL SENSING LOCATIONS

In this section we examine sensing and communication trade-offs
by finding the optimal locations of the sensors in the presence of
imperfect communication. This investigation will serve two purposes:

1) To give insight on how communication impacts sensing,
2) To provide a benchmark for evaluating the performance of the

decentralized network in the subsequent sections.

We are interested in finding optimal sensor locations:pj [k]. The
observation and communication noise covariances are functions of
the locations of the sensors and target. Letg(·) and h(·) represent
these functions respectively. Then,

Rj [k] = g(pj [k], pT [k]) 1 ≤ j ≤ N
Ui,j [k] = h(pi[k], pj [k]) 1 ≤ i, j ≤ N

(6)

wherepT [k] represents target location at thekth time instant. The
optimal locations considering only communication costs may differ
from the optimal locations considering only sensing costs. This results
in a trade-off between communication and sensing. We will consider
the nature of these trade-offs in this section. The time indexk will
be implied except when explicitly necessary.

A. Case of Perfect Communication

First we will look at the optimal locations under perfect communi-
cation to focus on sensing costs. LetΨj represent the error covariance
matrix of the jth sensor after processing the information received
from others. We will have the following using a BLUE estimator:

Ψj = (

N∑
i=1

R−1
i )−1 (7)

Note that in the absence of communication noise, each sensor has the
same fused error covariance,Ψj . We take the determinant ofΨj to
be the cost to minimize. Then the optimal locations are the solution
to the following optimization problem:

Maximize det(Ψ−1
j ) → Maximize det(

N∑
i=1

R−1
i ) (8)

where sensor locations,p1, p2, . . . , pN , are the optimization variables
and Ri for 1 ≤ i ≤ N are functions of sensor locations as defined
in Eq. 6.

B. Case of Imperfect Communication

In this case, we will have the following error covariance matrix
after fusion at thejth sensor:

Ψj =

[
N∑

i=1

(Ri + Uj,i)
−1

]−1

(9)

where Ri and Uj,i are functions of the optimization variables:
p1, p2, . . . , pN , as indicated by Eq. 6. In this scenario, each sensor
will have a different local cost function. Therefore, there are different

ways of formulating the optimization problem. One possible way is
to optimize an average measure,

Maximize
∑

j
det(Ψ−1

j ) →
Maximize

∑
j
det(

∑N

i=1
(Ri + Uj,i)

−1)
(10)

To see communication and sensing trade-offs from Eq. 8 and 10,
we have to be more specific about the task of the network and
define the functiong in Eq. 6. Therefore in the remainder of the
paper, we consider a target moving in the plane, and its state is
defined to be its position, i.e.x = pT ∈ <2. The network will
then be estimating the position of the target jointly. The conclusions
drawn from this example are, nevertheless, applicable to other sensor
network examples as well.

C. Cooperative Sensing for Target Location Estimation

1) Observation Parameters:To model observation noise of each
sensor, we choose a typically used sonar model [18], [19], which
results in the following measurement noise covariance,Rj :

Rj = T (θj)Dj(rj)T
t(θj) (11)

whereT (θj) is the rotation matrix:

T (θj) =

[
cos(θj) sin(θj)
−sin(θj) cos(θj)

]
(12)

and

Dj(rj) =

[
fj(rj) 0

0 γfj(rj)

]
(13)

whererj is the distance of thejth sensor to the target andθj is the
corresponding angle in the global reference frame, as illustrated in
Fig. 1. The functionfj , the model for the range noise variance of
the jth sensor, depends onrj and γ is a scaling constant. Eq. 11
describes functiong of Eq. 6 sincerj and θj are functions of the
locations of the target,pT , and thejth sensor,pj . A common model
for f is quadratic, with the minimum achieved at a particular distance
from the target, namely the “sweet spot” of the sensor [3].

di,j

ri

rj

pj

θi

θj
pi

pT

Sensor

Target

Fig. 1. Illustration of System Variables

2) Communication Parameters:We consider an AWGN channel
and a distance-dependent path loss model to describe the communi-
cation link [20]. Communication noises of the received observation
vector are taken to be zero mean and i.i.d, which results in

Ui,j = σ2
comm,i,jI2 (14)



with I2 representing a2 × 2 unit matrix. We assume symmetric
uplink and downlink, which impliesUi,j = Uj,i. σ2

comm,i,j , the
communication noise variance of the transmission of each element
of the observation vector from thejth to the ith sensor, is a
function of the transmission environment and receiver/transmitter
design parameters. Authors in [9] showed that for a uniform quantizer
and BPSK modulation, using a distance-dependent path loss model,
communication noise variance will be as follows:

σ2
comm,i,j =

q2

12
+ q2 × 4Nb − 1

3
×Q(

√
SNRrec,i,j) (15)

whereq is the quantization step size andNb is the number of bits per
transmission of each element of the observation vector. We assume
that all the sensors use the sameq andNb. Q(µ) = 1√

2π

∫∞
µ

e−
t2
2 dt

for an arbitraryµ. SNRrec,i,j is the average received Signal to Noise
Ratio and will have the following relationship withdi,j , the distance
separating theith and jth sensors:

SNRrec,i,j =
α

d
np

i,j

(16)

where di,j =
√

r2
i + r2

j − 2rirjcos(θi − θj) and np > 0 is the
path loss exponent which depends on the environment. Furthermore,
α ≥ 0 is a function of the transmitted signal power, receiver noise,
frequency of operation and the communication environment [20]. We
assume the sameα andnp for all the communication links.

3) Perfect Communication:It can be shown that the maximization
problem of Eq. 8 is equivalent to the following using Eq. 11 [3]:

Maximize 1
γ

[∑N

i=1
1

fi(ri)

]2

+

(1−γ)2

γ2

∑
2≤i<j≤N

1
fi(ri)fj(rj)

sin2(θi − θj)+
(1−γ)2

γ2
1

f1(r1)

∑N

i=2
1

fi(ri)
sin2(θi)

(17)

wherer1, r2, . . . , rN and θ2, . . . , θN are the optimization variables
and θ1 is taken zero. For instance, consider two sensors with the
samef functions. It can be easily shown that the optimal locations
will be as follows:r1,opt = r2,opt = rss and θ1,opt − θ2,opt = π

2
.

The sweet spot radius,rss, represents the distance from sensor to
target that achieves the minimum of functionf(r).

4) Imperfect Communication:In this case, Eq. 10 will be as
follows using Eq. 11 and 14:

Maximize∑
j
det(

∑N

i=1
T (θi)(Di(ri) + Uj,i)

−1T t(θi))
(18)

To see the impact of communication more clearly, consider the case
of two sensors. After much algebraic manipulation, Eq. 18 is given
by (assumingf1 = f2 = f ):

Maximize
γ(f(r1)+f(r2))2+σ2

comm(γ+1)(f(r1)+f(r2))

γf2(r1)(γf2(r2)+σ4
comm+σ2

comm(γ+1)f(r2))
+

(γ−1)2sin2(∆)f(r1)f(r2)+σ4
comm

γf2(r1)(γf2(r2)+σ4
comm+σ2

comm(γ+1)f(r2))

(19)

where ∆ = θ1 − θ2 and σ2
comm = σ2

comm,1,2 is a function of
optimization variables through Eq. 15 and 16. The optimal solution
of the case of perfect communication, i.e.π

2
angle difference and

sweet spot radius, may not be the optimal solution for this case any
more. Depending on the quality of the channel, sensors may have
to compromise sensing quality for better communication, sacrificing
either the π

2
angle and/or the sweet spot radius. This is what we

refer to as “sensing/communication trade-offs”. To see this, Table
II shows the optimal solution to Eq. 19, found using a brute-force

search, for the parameters of Table I and for three different channels,
α = 570, α = 5700 andα = 57000. Values ofα are chosen based on
realistic parameters for transmitted signal power, receiver noise and
frequency of operation. Asα gets smaller, the quality of the channel
degrades (SNRrec is proportional toα). We can see from Table II
that asα gets smaller, the optimal solution deviates more considerably
from the solution of the perfect communication case. For instance at
α = 570, ∆opt is 18◦ instead of90◦ of the perfect communication
case. The results highlight sensing and communication trade-offs in
sensor networks.

Observation Parameters
f 0.0008(r − 15.625)2 + 0.1528
γ 5
Q .01I2

Communication Parameters
q 0.0018

Nb 15
np 2

TABLE I
SYSTEM PARAMETERS

Perfect Distance-Dependent Path Loss
Comm α = 570 α = 5700 α = 57000

r1,opt 15.625 15.2 14.1 15.625
r2,opt 15.625 15.2 14.1 15.625
∆opt 90◦ 18◦ 70.56◦ 90◦

TABLE II
OPTIMAL LOCATIONS FOR TWO SENSORS

IV. D ECENTRALIZED MOBILE SENSORNETWORK AND

IMPERFECTCOMMUNICATION

The previous section provided insight on the impact of communi-
cation on the optimal locations of the sensors. In this section we con-
sider a mobile network that seeks to achieve the optimal configuration
through local decentralized motion planning. We investigate the effect
of imperfect communication on such networks. We further propose
an algorithm that extends the work developed in [3] to improve the
performance by taking communication effects into account in the
motion-planning process of each sensor.

A. Decentralized Mobile Sensor Network

Before introducing the impact of imperfect communication, we will
first discuss related work on decentralized motion planning neglecting
communication impacts.

The objective in cooperative estimation is to determine the sensor
motions which minimize fused estimation error. Furthermore, we seek
a decentralized solution such that each sensor identifies its optimal
location for the next time step. Given that the gradient provides the
locally optimal direction of movement, authors in [3] use a gradient-
based descent algorithm which defines the optimal control action as
the one which will position each sensor to minimize a local measure
function in the following time step.

They further reduce the gradient descent algorithm to a discrete
gradient search algorithm by restricting the possible control actions
for each sensor to a finite, discrete set of motions. Their algo-
rithm demonstrated performance improvement over other existing
decentralized motion-planning algorithms with low computational
complexity. Here we briefly describe the algorithm (for more details,
see [3]).



Each sensor takes a local measurement as described by Eq. 2
and uses a local Kalman filter [21] to improve its local estimate.
Let xest,j [k] and Zj [k] represent the local estimate of thejth

sensor and its corresponding error covariance matrix after Kalman
filtering at timek. Each sensor then transmits its local information
and receives the estimates of others. For this section we assume
perfect communication. Therefore, thejth sensor will have the exact
copies ofxest[k] and Z[k] of other sensors. It then fuses all the
information to improve its performance by using a BLUE estimator.
Let xfused,j [k] and Zfused,j [k] represent the estimate of the target
and the corresponding error covariance matrix after fusion at thejth

sensor. We will have,

Zfused,j [k] = (

N∑
i=1

Z−1
i [k])−1 (20)

To plan its next move, thejth sensor takes the following steps:

1) It usesxfused,j [k] andQ to predict the next state of the target
(if an estimate ofQ is not available, it assumes that the state
of the target has not changed):

xpredicted,j [k + 1] = xfused,j [k] + s (21)

wherexpredicted,j [k +1] is the prediction of thejth sensor of
the state of the target ands is a sample of zero mean white
Gaussian noise generated using covariance matrixQ.

2) Using the received local error covariances of other sensors, it
then predicts the estimation error covariances of other nodes by
propagating the corresponding Kalman filters one step ahead:

Zpredicted,j,i[k + 1] = EP (Zi[k]) ∀j 6= i (22)

whereZpredicted,j,i[k + 1] is the jth node’s prediction of the
local error covariance of theith sensor.EP (·) stands for a
function that produces a prediction of the next error covariance
using Kalman filtering.

3) For every possible motion vector,m, thejth node then predicts
its own error covariance by progressing its Kalman filter. Let
Zpredicted,j [k+1, m] represent the prediction of thejth sensor
of its own error covariance as a function ofm.
Using these predictions, thejth node produces the following
cost to minimize:

MotionCostj [k, m] = det(Z−1
predicted,j [k + 1, m]+∑N

i=1,i6=j
Z−1

predicted,j,i[k + 1])−1 (23)

MotionCostj [k, m] is the cost used by thejth sensor in
planning its motion at timek. Finally it chooses the motion
vector that minimizes the cost:

m∗ = argmin MotionCostj [k, m] (24)

In this manner, the task of motion planning is given to each sensor,
in place of a central computation node.

To see the performance of the decentralized algorithm for the
observation parameters of Table I under perfect communication, Fig.
2 shows sensor trajectories for 50 time steps. It shows the convergence
of sensors to their optimal locations (defined by the solution of Eq.
17) whenN = 3.

B. Impact of Imperfect Communication

We observed in Section III that to optimize the performance in the
presence of imperfect communication, the network may need to trade
sensing quality for better communication performance. This means
that the local motion-planning algorithm should take communication
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Fig. 2. Performance of the already-existing decentralized algorithm, case of
perfect communication,N = 3

link qualities into account. Information on the quality of the link is
available in the physical layer. Since motion planning is performed
in the higher application layer, this requires proper interface be-
tween the two layers. Existing motion-planning algorithms do not
take communication issues into account. Using such algorithms in
the presence of non-ideal communication links can result in poor
performance as each sensor will now receive noisy versions ofxest[k]
and Z[k]. To illustrate this, we add non-ideal communication links
to the simulation setup of Fig. 2. Since communication impacts are
not taken into account in the motion-planning algorithm, we consider
scenarios that have a distance-dependent packet drop mechanism in
order to limit the amount of received estimation noise. This means
that fordi,j > dcritical, the ith sensor will discard the data received
form the jth sensor. Scenario#1 refers to the case whereα = 5700
when received packets are kept. Scenario#2 refers to an ideal case
where received packets are noise-free if they are kept in the receiver
and scenario#3 refers to the case whereα = 570. Communication
parameters are as summarized in Table I anddcritical = 20m. Fig.
3 shows sensor trajectories forN = 2, scenario#1 and for 50 time
steps. As can be seen, the algorithm does not converge and the sensors
are acting independently. Fig. 4 shows the determinant of the error
covariance of one of the sensors (after fusion) for scenario#1 and 2.
For comparison, the determinant of the error covariance forN = 1
and N = 2 with perfect communication are also plotted. At the
beginning the sensors can communicate and, due to the low level
of communication noise for these two scenarios, can benefit from
cooperative sensing for a short period of time. However, since the
local information processing and motion planning algorithms of each
sensor do not take communication effects into account, the sensors
can not be guided toward finding the optimum locations. Instead,
they move in the opposite directions of the optimum trajectories,
which results in the sensors acting independently (see Fig. 3). The
same situation happens after a few iterations as well. Therefore, the
sensors can not benefit from networked sensing. Fig. 4 also shows
the performance for scenario#2, the ideal case in which the received
packets are noise-free if not dropped in the receiver. We can see that
the network shows a similar behavior. It can not find the optimum
locations and can not benefit from cooperative sensing. Fig. 5 shows
the determinant of the error covariance of one of the sensors (after
fusion) for scenario#3. In this scenario,α = 570, which represents a



weaker channel. It can be seen that since the communication noise is
not accounted for in sensor fusion and motion planning algorithms,
the estimation error can get considerably high when received packets
are not dropped. The trajectories for scenario#3 are similar to that
of scenario#1 of Fig. 3. It should be noted that in the absence of a
packet drop mechanism, the estimation error would have been even
higher due to the lack of a proper interface of the physical and the
application layers. To see this, Fig. 5 also shows a sample of the
estimation error for scenario#4. Scenario#4 refers to the case where
all the packets are kept in the receiver andα = 5700. Although this
is a stronger channel, the estimation error can get considerably high
since the sensors move away from each other.

In general, even for the cases that the sensors start out closer, they
can easily end up performing individual estimation. This behavior
of the network is also independent of the value ofdcritical. This
is due to the fact that the motion-planning algorithm is not taking
communication effects into account. This motivates designing decen-
tralized motion-planning algorithms that are more robust to commu-
nication imperfection. The next section will show how to modify the
aforementioned decentralized algorithm to include communication
impacts, creating the possibility of sensing/communication trade-offs
when planning the next move.
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Fig. 3. Performance of the already-existing decentralized algorithm, case of
imperfect communication,N = 2, scenario#1

C. A Decentralized Motion-Planning Algorithm Considering Both
Communication and Sensing: A Cross Layer Design Approach

To improve the performance in the presence of imperfect commu-
nication, we modify the algorithm to allow for an interface of appli-
cation and physical layers. Physical layer will pass information on the
quality of the link to the application layer. More specifically, it will
pass knowledge of the communication noise variances,σ2

comm,i,j [k].
Application layer of each sensor then uses this information for both
fusion and motion planning. At the time of local fusion, Eq. 20
becomes:

Zfused,j [k] = (

N∑
i=1

(Ẑj,i[k] + Uj,i[k])−1)−1 (25)

whereẐj,i[k] is the noisy version ofZi[k] received by thejth sensor.
Eq. 25 prevents noisy samples from degrading fusion performance.
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In practice physical layer can estimateσ2
comm,i,j by measuring the

received Signal to Noise Ratio. Then when planning the next move,
Eq. 23 should be modified as follows:

MotionCostj [k, m] = det
[
Z−1

predicted,j [k + 1, m]+
∑

i6=j
(Zpredicted,j,i[k + 1] + Upredicted,j,i[k + 1, m])−1

]−1

(26)
where Zpredicted,j,i[k + 1] = EP (Ẑj,i[k]) and Upredicted,j,i[k +
1, m] is the jth sensor’s prediction of the communication error
covariance of theith sensor’s transmission given motion vectorm.
Typically each sensor also transmits its position as well. In that case,
the jth sensor receives noisy estimates of positions of other nodes
from which it can estimate its distances to other sensors for each
motion vector. It can then use the model described by Eq. 15 to get
Upredicted,j,i[k + 1, m]. If the estimates of positions of other nodes
are not available, the received observation estimates have implicit



information on the positions of other nodes and can be used for
prediction. Fig. 6-10 show the performance of the proposed algorithm
for the parameters of Table I. Fig. 6 shows sensor trajectories for
50 time steps,N = 2 and α = 570. We can see convergence
of the sensors to their optimal locations. After 50 time steps, we
have∆[50] = 13.5◦, r1[50] = 16 and r2[50] = 16.1. Comparing
these values with the corresponding optimal ones in Table II, shows
convergence of the decentralized algorithm to the optimal locations.
We can see that by accounting for communication links in the
application layer, we improve the performance considerably. Fig. 7-
10 show the determinant of the error covariance of one of the sensors
(after fusion) as a function of time, for two different channels and
for N = 2, 3, 4 and 5 respectively. We can see that in all the
figures, for α = 5700, the error stays very close to that of the
ideal communication from the beginning. Forα = 570, the sensors
start out acting individually but can find the optimum configuration
quickly resulting in the error reaching very close to that of the ideal
communication case after a few time steps. The convergence gets
faster as the quality of the link improves. Convergence time is also a
function of the initial positions of the sensors and may be different for
different sensors of the network. The error is always bounded by that
of a single sensor independent of the quality of the link. The results
emphasizes the importance of cross-layer feedback in decentralized
motion-planning.

To see the performance of the proposed algorithm when the target
is moving faster, we next simulate the proposed algorithm for the
following target motion:xfast[k + 1] = Axfast[k] + w[k]. Fig.
11, 12 and 13 show the performance of the proposed decentralized
algorithm forA = .7I2, Q = .1I2 with the rest of the parameters as
summarized in Table I. Fig. 11 shows how sensors track the target
for N = 2, α = 570 and 50 time steps. Fig. 12 ans 13 show the
determinant of the error covariance of one of the sensors (after fusion)
as a function of time, for two different channels and forN = 2
and 4 respectively. Fig. 11 shows that using the proposed algorithm,
the sensors can track the target considerably well. Fig. 12 ans 13
further demonstrate that the error reaches very close to that of the
ideal communication case. We can see that the network benefits from
cooperative sensing for target tracking.
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Fig. 6. Performance of the proposed decentralized algorithm, case of
imperfect communication,N = 2, α = 570
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Fig. 7. Performance of the proposed decentralized algorithm, case of
imperfect communication,N = 2
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Fig. 8. Performance of the proposed decentralized algorithm, case of
imperfect communication,N = 3

V. SUMMARY

In this paper we considered the impact of imperfect communication
on the performance of a decentralized mobile sensor network. We
showed communication and sensing trade-offs in such networks
by determining the optimal sensor locations in the presence of
non-ideal communication links. To improve the performance, we
proposed a decentralized motion-planning algorithm that takes both
communication and sensing objectives into account. The algorithm
was a cross-layer design and highlighted the importance of sharing
the information of physical layer with the application layer. Finally
simulation results showed the performance improvement gained by
using this algorithm.
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Fig. 9. Performance of the proposed decentralized algorithm, case of
imperfect communication,N = 4
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Fig. 10. Performance of the proposed decentralized algorithm, case of
imperfect communication,N = 5
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