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In the context of parameter estimation and model selection, it is only quite
recently that a direct link between the Fisher information and information-
theoretic quantities has been exhibited. We give an interpretation of this
link within the standard framework of information theory. We show that
in the context of population coding, the mutual information between the
activity of a large array of neurons and a stimulus to which the neurons
are tuned is naturally related to the Fisher information. In the light of this
result, we consider the optimization of the tuning curves parameters in
the case of neurons responding to a stimulus represented by an angular
variable.

1 Introduction

A natural framework to study how neurons communicate, or transmit in-
formation, in the nervous system is information theory (see, e.g., Blahut,
1988; Cover & Thomas, 1991). In recent years the use of information theory
in neuroscience has motivated a large amount of work (e.g., Laughlin, 1981;
Linsker, 1988; Barlow, Kaushal, & Mitchison, 1989; Bialek, Rieke, de Ruyter
van Steveninck, & Warland, 1991; Van Hateren, 1992; Atick, 1992; Nadal
& Parga, 1994). A neurophysiologist often asks in an informal sense how
much information the spike train of a single neuron, or of a population of
neurons, provides about an external stimulus. For example, a high activity
of a CA3 hippocampal neuron may tell with good precision where a rat
is in an environment. Information theory provides mathematical tools for
measuring this “information” or “selectivity”: signals are characterized by
a probability distribution, and the spike train of a neuron, or of a popula-
tion, is characterized by a probability distribution conditioned by the signal.
The mutual information between the signal and the neural representation
is then a measure of the statistical dependency between the signal and the
spike train(s).

† Laboratory associated with CNRS, ENS, and universities Paris 6 and Paris 7.

Neural Computation 10, 1731–1757 (1998) c© 1998 Massachusetts Institute of Technology



1732 Nicolas Brunel and Jean-Pierre Nadal

A related domain, which also belongs to information theory, is the field
of statistical parameter estimation. Here one typically has a sample of ob-
servations drawn from a distribution that depends on a parameter, or a set
of parameters, that one wishes to estimate. The Cramer-Rao inequality then
tells us that the mean squared error of any unbiased estimator of the under-
lying parameter(s) is lower bounded by the inverse of a quantity, which is
defined as the Fisher information (Blahut, 1988). This means that the Fisher
information is a measure of how well one can estimate a parameter from
an observation with a given probability law. Thus in this sense it is also an
“information” quantity.

In spite of the similar intuitive meanings of these two quantities, an ex-
plicit relationship between the Fisher information and information-theoretic
quantities has been derived only recently (Clarke & Barron, 1990; Rissanen,
1996), in the limit of a large number of observations. This link was exhib-
ited first in the context of parameter estimation (Clarke & Barron, 1990)
for the case of statistically independent and identically distributed obser-
vations. Then it was generalized to a broader context within the framework
of stochastic complexity, with, as a result, a refined “minimum description
length” criterion for model selection (Rissanen, 1996).

The first goal of this article is to show that within the framework of
information theory, this link manifests itself very naturally in the context of
neural coding:

• In the limit of a large number of neurons coding for a low-dimensional
stimulus (population coding), the mutual information between the ac-
tivities of the neuronal population and the stimulus becomes equal to
the mutual information between the stimulus and an efficient gaus-
sian estimator, under appropriate conditions, detailed in section 3.
Here “efficient” means that the variance of this estimator reaches the
Cramer-Rao bound. Since this variance is related to the Fisher infor-
mation, the equality provides a quantitative link between mutual and
Fisher informations.

• This equality is also shown to hold for a single cell in the case of a
gaussian noise with vanishing variance.

• The mutual information between the stimulus and an efficient gaussian
estimator reaches the mutual information between stimulus and the
neuronal activities asymptotically from below.

In the light of this relationship between Fisher and mutual information,
we examine in section 5 several issues related to population codes, using
neurons coding for an angular variable with a triangular or bell-shaped
tuning curve. Such neurons are common in many neural structures. Cells
of the postsubiculum (Taube, Muller, & Ranck, 1990) and anterior thalamic
nuclei (Taube, 1995) of the rat are tuned to its head direction. Cells in MT
cortex (Maunsell & Van Essen, 1983) of the monkey are tuned to the direction
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of perceived motion. Cells in motor cortex of the monkey (Georgopoulos,
Kalaska, Caminiti, & Massey, 1982) are tuned to the direction of the arm.
We study the case of an array of N neurons, firing as a Poisson process in
response to an angular stimulus with a frequency defined by the tuning
curve of the neuron, in an interval of duration t. In many cases, Poisson pro-
cesses are considered to be reasonable approximations of the firing process
of cortical neurons (see, e.g., Softky & Koch, 1993).

We calculate the Fisher information with an arbitrary density of pre-
ferred angles. Next we address the question of the optimization of the tun-
ing curves, making use of the link between mutual information and Fisher
information. The optimal density of preferred angles (i.e., the one that maxi-
mizes the mutual information) is calculated as a function of the distribution
of angles, in section 5.2. As shown by Seung and Sompolinsky (1993), the
Fisher information, in the large N limit, diverges when the tuning width of
the neurons goes to zero. We show in section 5.3 that a finite tuning width
stems from optimization criteria, which consider a finite system in which
only a small number of spikes has been emitted by the whole population.
We illustrate our results using triangular tuning curves in section 5.4.

2 General Framework

2.1 Parameter Estimation and Population Coding. In the general con-
text of parameter estimation, one wishes to estimate a parameter θ from a
set of N observations {xi, i = 1, . . . ,N} ≡ Ex (where the xi’s might be discrete
or continuous). θ may characterize a model P(Ex|θ), which is expected to
be a good description of the stochastic process generating the observations
{xi}. In the simplest case, the xi’s are independent realizations of the same
random variable, and

P(Ex|θ) =
N∏

i=1

p(xi|θ). (2.1)

It may be the case—but this is not necessary—that the true process p∗(x)
belongs to the family under consideration, so that p∗(x) = p(x|θt) where θt
is the true value of the parameter.

In the context of sensory coding, and more specifically population coding
(see, e.g., Seung & Sompolinsky, 1993, Snippe, 1996), θ is a stimulus (e.g,. an
angle), and the information about this stimulus is contained in the activities
{xi, i = 1, . . . ,N} of a population of a large number N of neurons. In the
simplest case xi represents the activity of the ith neuron of the output layer
of a feedforward network with no lateral connection, so that the probability
density function (p.d.f.) P(Ex|θ) is factorized:

P(Ex|θ) =
N∏

i=1

pi(xi|θ). (2.2)
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Here pi(xi|θ) is the (neuron-dependent) p.d.f. of the activity xi at neuron i
when the input stimulus takes the value θ .

If the task of the neural system is to obtain a good estimate of the stimulus
value, the problem is a particular case of parameter estimation where there
exists a true value—the one that generated the observed activity Ex.

2.2 The Cramer-Rao Bound. In general one can find different algo-
rithms for computing an estimate θ̂ (Ex) of θ from the observation of Ex. If
the chosen estimator θ̂ (algorithm) is unbiased, that is, if∫

dNxP(Ex|θ)θ̂(Ex) = θ,

the variance of the estimator,

σ 2
θ =

〈
(θ̂ − θ)2

〉
θ
,

in which 〈 . 〉θ denotes the integration over Ex given θ (a sum in the case of a
discrete state vector) with the p.d.f. P(Ex|θ), is bounded below according to
(Cramer-Rao bound; see, e.g., Blahut, 1988):

σ 2
θ ≥

1
J (θ) (2.3)

where J (θ) is the Fisher information:

J (θ) =
〈
− ∂2 ln P(Ex|θ)

∂ θ2

〉
θ

. (2.4)

For a multidimensional parameter, equation (2.3) is replaced by an inequal-
ity for the covariance matrix, withJ (θ), the Fisher information matrix, being
then expressed in terms of the second derivatives of ln P(Ex|θ) (Blahut, 1988).
For simplicity we will restrict the discussion to the case of a scalar param-
eter, and consider the straightforward extension to the multidimensional
case in section 3.2.

An efficient estimator is one that saturates the bound. The maximum
likelihood (ML) estimator is known to be efficient in the large N limit.

3 Mutual Information and Fisher Information

3.1 Main Result. We now give the interpretation of the Cramer-Rao
bound in terms of information content. First, note that the Fisher informa-
tion (see equation (2.4)) is not itself an information quantity. The terminol-
ogy comes from an intuitive interpretation of the bound: our knowledge
(“information”) about a stimulus θ is limited according to this bound. This
qualitative statement has been turned into a quantitative statement in Clarke
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and Barron (1990) and Rissanen (1996). Here we give a different presentation
based on a standard information-theoretic point of view, which is relevant
for sensory coding, rather than from the point of view of parameter estima-
tion and model selection.

We consider the mutual information between the observable Ex and the
stimulus θ . It can be defined very naturally in the context of sensory cod-
ing because θ is itself a random quantity, generated with some p.d.f. ρ(θ),
which characterizes the environment. The mutual information is defined by
(Blahut, 1988):

I[θ, Ex] =
∫

dθdNxρ(θ) P(Ex|θ) log
P(Ex|θ)
Q(Ex) , (3.1)

where Q(Ex) is the p.d.f. of Ex:

Q(Ex) =
∫

dθρ(θ)P(Ex|θ). (3.2)

Other measures of the statistical dependency between input and output
could be considered, but the mutual information is the only one (up to a
multiplicative constant) satisfying a set of fundamental requirements (Shan-
non & Weaver, 1949).

Suppose there exists an unbiased efficient estimator θ̂ = T(Ex). It has mean
θ and variance 1/J (θ). The amount of information gained about θ in the
computation of that estimator is

I[θ, θ̂ ] = H[θ̂ ]−
∫

dθρ(θ)H[θ̂ |θ ], (3.3)

whereH[θ̂ ] is the entropy of the estimator,

H[θ̂ ] = −
∫

dθ̂ Pr(θ̂) ln Pr(θ̂),

and H[θ̂ |θ ] its entropy given θ . The latter, for each θ , is smaller than the
entropy of a gaussian distribution with the same variance 1/J (θ). This
implies

I[θ, θ̂ ] ≥ H[θ̂ ]−
∫

dθρ(θ)
1
2

ln
(

2πe
J (θ)

)
. (3.4)

Since processing cannot increase information (see, e.g., Blahut, 1988, pp.
158–159), the information I[θ, Ex] conveyed by Ex about θ is at least equal to the
one conveyed by the estimator: I[θ, Ex] ≥ I[θ, θ̂ ]. For the efficient estimator,
this means

I[θ, Ex] ≥ H[θ̂ ]−
∫

dθρ(θ)
1
2

ln
(

2πe
J (θ)

)
. (3.5)
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In the limit in which the distribution of the estimator is sharply peaked
around its mean value (in particular, this implies J (θ)À 1), the entropy of
the estimator becomes identical to the entropy of the stimulus. The right-
hand side (r.h.s.) in the above inequality then becomes equal to IFisher plus
terms of order 1/J (θ), with IFisher defined as

IFisher = H(2)−
∫

dθρ(θ)
1
2

ln
(

2πe
J (θ)

)
. (3.6)

In the above expression, the first term is the entropy of the stimulus,

H(θ) = −
∫

dθρ(θ) ln ρ(θ). (3.7)

For a discrete distribution, this would be the information gain resulting
from a perfect knowledge of θ . The second term is the equivocation due to
the gaussian fluctuations of the estimator around its mean value. We thus
have, in this limit of a good estimator,

I[θ, Ex] ≥ IFisher. (3.8)

The inequality (see equation 3.8), with IFisher given by equation 3.6, gives
the essence of the link between mutual information and Fisher information.
It results from an elementary application of the simple but fundamental
theorem on information processing, and of the Cramer-Rao bound.

If the Cramer-Rao bound was to be understood as a statement on infor-
mation content, I[θ, Ex] could not be strictly larger than IFisher. If not, there
would be a way to extract from Ex more information than IFisher. Hence the
above inequality would be in fact an equality, that is:

I[θ, Ex] = −
∫

dθρ(θ) ln ρ(θ)−
∫

dθρ(θ)
1
2

ln
(

2πe
J (θ)

)
. (3.9)

However, the fact that the equality should hold is not obvious. The Cramer-
Rao bound does not tell us whether knowledge on cumulants other than
the variance could be obtained. Indeed, if the estimator has a nongaussian
distribution, the inequality will be strict; we will give an example in section 4
where we discuss the case of a single output cell (N = 1). In the large N limit,
however, there exists an efficient estimator (the maximum likelihood), and
relevant probability distributions become close to gaussian distributions,
so that one can expect equation 3.9 to be true in that limit. This is indeed
the case, and what is proved in Rissanen (1996) within the framework of
stochastic complexity, under suitable but not very restrictive hypotheses.
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In the appendix, we show, using completely different techniques, that
equation 3.9 holds provided the following conditions are satisfied:

1. All derivatives of G(Ex|θ) ≡ ln P(Ex|θ)/N with respect to the stimulus θ
are of order one.

2. The cumulants (with respect to the distribution P(Ex|θ)) of order n of
aG′θ + bG′′θ are of order 1/Nn−1 for all a, b,n.

The meaning of the second condition is that at a given value of N, the
cumulants should decrease sufficiently rapidly with n. This is in particular
true when xi given θ are independent, as for model 2.2, but holds also in the
more general case when the xi are correlated, provided the above conditions
hold, as we show explicitly in the appendix using an example of correlated
xi.

3.2 Extensions and Remarks.

Multiparameter Case and Model Selection. It is straightforward to extend
equation 3.8 to the case of a K-dimensional stimulus Eθ with p.d.f. ρ(Eθ ),
and to derive the equality equation 3.9 for K ¿ N. The Fisher information
matrix is defined as (Blahut, 1988)

Jij

(
Eθ
)
=
〈
−
∂2 ln P

(
Ex|Eθ

)
∂θi∂θj

〉
Eθ
.

The quantity IFisher for the multidimensional case is then

IFisher = −
∫

dKθ ρ(Eθ) ln ρ(Eθ)−
∫

dKθ ρ(Eθ)1
2

ln
(
(2πe)K

detJ (Eθ)

)
. (3.10)

The second term is now equal to the entropy of a gaussian with covariance
matrix J −1(Eθ ), averaged over Eθ with p.d.f. ρ(Eθ). In the large N limit (K <<

N), one gets as for K = 1 the equality I = IFisher.
One can note that formulas 3.9 and 3.10 are also meaningful in the more

general context of parameter estimation, even when θ is not a priori a ran-
dom variable. Within the Bayesian framework (Clarke & Barron, 1990), it is
natural to introduce a prior distribution on the parameter space, ρ(θ). Typ-
ically, this distribution is chosen as the flattest possible one that takes into
account any prior knowledge or constraint on the parameter space. Then
I tells us how well θ can be localized within the parameter space from the
observation of the data Ex.

Within the framework of MDL (minimum description length) (Rissanen,
1996) the natural prior is the one that maximizes the mutual information—
that is, the one realizing the Shannon capacity. Maximizing I = IFisher with
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respect to ρ, one finds that this optimal input distribution is given by the
square root of the Fisher information:

ρ(θ) =
√J (θ)∫

dθ ′
√J (θ ′)

(for the multidimensional case,J in the above expression has to be replaced
by detJ ). This corresponds to the stimulus distribution for which the neural
system is best adapted.

Biased Estimators. The preceding discussion can be easily extended to
the case of biased estimators, that is, for estimators θ̂ with< θ̂ >θ= m(θ) 6= θ .
The Cramer-Rao bound in such a case reads

σ 2
θ(

dm
dθ

)2 ≥
1
J (θ) . (3.11)

This is a form of the bias-variance compromise. One can thus write an
inequality similar to equation 3.4, replacing J by J /(dm/dθ)2. In the limit
where the estimator is sharply peaked around its mean value m(θ), one has
ρ(θ)dθ ∼ P(θ̂)dθ̂ , and θ̂ ∼ m(θ), so that

H[θ̂ ] = H[θ ]+
∫

dθρ(θ) log |dm
dθ
|.

Upon inserting H[θ̂ ] in the r.h.s. of the inequality 3.4, the terms dm
dθ cancel.

The bound, equation 3.8, is thus also valid even when the known efficient
estimator is biased.

The Cramer-Rao bound can also be understood as a bound for the dis-
criminability d′ used in psychophysics for characterizing performance in a
discrimination task between θ and θ + δθ (see, e.g., Green & Swets, 1966).
As discussed in Seung and Sompolinsky (1993),

d′ ≤ δθ
√
J (θ), (3.12)

with equality for an efficient estimator, and with d′ properly normalized
with respect to the bias:

d′2 =
(
δθ dm

dθ

)2

σ 2
θ

. (3.13)

4 The Case of a Single Neuron

4.1 A Continuous Neuron with Vanishing Output Noise. We consider
the case of a single neuron characterized by a scalar output V with a deter-
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ministic function of the input (stimulus) θ plus some noise, with a possibly
stimulus-dependent variance,

V = f (θ) + z σ
√

g(θ), (4.1)

where f and g are deterministic functions, and σ is a parameter giving the
scale of the variance of the noise, and z is a random variable with an arbitrary
(that is, not necessarily gaussian) distribution Q(z)with zero mean and unit
variance. We are interested in the low noise limit, σ → 0. It is not difficult
to write the Fisher information J (θ) and the mutual information I[θ,V] in
the limit of vanishing σ . One gets, for sufficiently regular Q(.),

I[θ,V] = H(2)+
∫

dθρ(θ)
1
2

log
f
′2(θ)

σ 2g(θ)
− H(Z), (4.2)

whereH(Z) is the entropy of the z-distribution Q:

H(Z) = −
∫

dzQ(z) log Q(z). (4.3)

For the Fisher information one finds

J (θ) = f
′2(θ)

σ 2g(θ)

∫
dz

Q
′2(z)

Q(z)
, (4.4)

so that

IFisher[θ,V] = H(2)+
∫

dθρ(θ)
1
2

log
f
′2(θ)

σ 2g(θ)
+ 1

2
log

∫
dz

Q
′2(z)

Q(z)
.(4.5)

If the noise distribution Q is the normal distribution, one has H(Z) =
1
2 log 2πe, and the integral in equation 4.4 is equal to 1, so that one has
I = IFisher. Otherwise one can easily check that I > IFisher, in agreement with
the general result (see equation 3.8).

4.2 Optimization of the Transfer Function. The maximization of the
mutual information with respect to the choice of the transfer function f
has been studied in the case of a stimulus-independent additive noise, that
is, g ≡ 1, by Laughlin (1981) and Nadal and Parga (1994). The expression
for the mutual information, equation 4.2, with g = 1, has been computed
by Nadal and Parga (1994). What is new here is the link with the Fisher
information.

The mutual information is maximized when f is chosen according to the
“equalization rule,” that is, when the (absolute value of) the derivative of f
is equal to the p.d.f. ρ: the activity V is then uniformly distributed between
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its min and max values. In the more general case in which g depends on the
stimulus, the maximum of I is reached when f̂ , defined by

f̂ ′ ≡ f ′/
√

g,

satisfies the equalization rule,

f̂ = A
∫ θ

dxρ(x) + B, (4.6)

where A and B are arbitrary given parameters (for g = 1, they define the
min and max values of f ). An interesting case is g = f , which is relevant
for the analysis of a Poisson neuron in the large time limit (see the next
subsection). In this case f ′/√g = 2

√
f
′
, and the maximum of I is reached

when the square root of f satisfies the equalization rule.
The fact that the mutual information is related to the Fisher information

in the case of a single neuron with vanishing noise means that maximizing
information transfer is identical to minimizing the variance of reconstruc-
tion error. In fact, two different qualitative lines of reasoning were known to
lead to the equalization rule: one related to information transfer (the output
V should have a uniform distribution; see, e.g., Laughlin, 1981) and one
related to reconstruction error. (The slope of the transfer function should
be as large as possible in order to minimize this error, and this, with the
constraint that f is bounded, leads to the compromise | f ′| = ρ. A large er-
ror can be tolerated for rare events.) We have shown here the formal link
between these two approaches, using the link between mutual and Fisher
information.

4.3 A Poisson Neuron. A related case is the one of a single neuron emit-
ting spikes according to a Poisson process (in the next section we will con-
sider a population of such neurons). The probability for observing k spikes
in the interval [0, t] while the stimulus θ is perceived, is

p(k|θ) = (ν(θ)t)k

k!
exp(−ν(θ)t), (4.7)

where the frequency ν is assumed to be a deterministic function ν(θ) (the
tuning curve) of the stimulus θ :

θ → ν = ν(θ). (4.8)

If the stimulus is drawn randomly from a distribution ρ(θ), the frequency
distribution P(ν) is given by

P(ν) =
∫

dθρ(θ) δ( ν − ν(θ)). (4.9)
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The information-processing ability of such model neuron has been studied
in great detail by Stein (1967). The results of interest here are as follows.

At short times, the mutual information between the stimulus and the cell
activity is, at first order in t (Stein 1967),

I(t) ∼ t
∫

dνP(ν)ν log
ν

µ
≡ I1(t), (4.10)

whereµ is the mean frequency. One can easily check that I1(t) ≥ I(t) for any
duration t. In fact at long times, information increases only as log t: in the
large time limit, one gets (Stein 1967)

I(t) =
∫

dνP(ν) log

(
P(ν)

√
2πeν

t

)
. (4.11)

From this expression, one gets that the optimal tuning curve is such that√
ν is uniformly distributed between its extreme values νmin and νmax. We

can now analyze this result in view of the relationship between Fisher and
mutual information. Making the change of variable ν → θ , with

ρ(θ)dθ = P(ν)dν,

together with equation 4.8, one can rewrite the mutual information at large
times precisely as

I(t) = IFisher, (4.12)

where IFisher is defined as in equation 3.6 with J (θ) the Fisher information
associated with this single neuron:

J (θ) = t
ν
′2(θ)

ν(θ)
. (4.13)

This result can be understood in the following way. In the limit of large t,
the distribution of the number of emitted spikes divided by t, V ≡ k/t tends
to be a gaussian, with mean ν(θ) and variance ν(θ)/t, so that the properties of
the spiking neuron become similar to those of a neuron having a continuous
activity V, given by

θ → V = ν(θ) + z
√
ν(θ)/t,

where z is a gaussian random variable with zero mean and unit variance.
This is a particular case of equation 4.1, with σ = 1/

√
t, f (.) = g(.) = ν(.).
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5 Population of Direction-Selective Spiking Neurons

5.1 Fisher Information. We now illustrate the main statement of section
3 in the context of population coding. We consider a large number N of
neurons coding for a scalar stimulus, (e.g., an angle). Equation 3.9 tells us
that to compute the mutual information, we first have to calculate the Fisher
information.

When the activities {xi} of the neurons given θ are independent, P(Ex|θ) =
5pi(xi|θ), the Fisher information can be written

J (θ) =
N∑

i=1

〈
1

p2
i (xi|θ)

(
∂pi(xi|θ)
∂θ

)2
〉

i,θ

, (5.1)

where 〈.〉i,θ is the integration over xi with the p.d.f. pi(xi|θ).
We restrict ourselves to the case of neurons firing as a Poisson process

with rate νi(θ) in response to a stimulus θ ∈ [−π, π ]. νi(θ) therefore represent
the tuning curve of neuron i. We make the following assumptions: νi(θ) has
a single maximum at the preferred stimulus θi; the tuning curve depends on
only the distance between the current stimulus and the preferred one and
is a periodic function of this distance,

νi(θ) = φ(θ − θi), (5.2)

through the same function φ. The locations of the preferred stimuli of the
neurons are independently and identically distributed (i.i.d.) variables in
the interval θ ∈ [−π, π ] with density r(θ).

Since our model neurons fire as a Poisson process, the information con-
tained in their spike trains in an interval of duration t is fully contained
in the number of spikes xi emitted by each neuron in this interval. For a
Poisson process we have the law

pi(xi|θ) = (νi(θ)t)xi

xi!
exp(−νi(θ)t). (5.3)

From equations 5.1 and 5.3 we can easily calculate the Fisher information:

J (θ) = t
N∑

i=1

ν ′i(θ)2

νi(θ)
.

For N large we can replace the sum by the average over the distribution of
preferred stimuli, that is,

J (θ) = tN
∫ π

−π
dθ ′r(θ ′)

φ′(θ − θ ′)2
φ(θ − θ ′) .
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Figure 1: Triangular tuning curve corresponding to a minimal frequency νmin =
0.5 Hz, νmax = 40 Hz, a receptive field half-width a = 40 degrees, a preferred
angle θi = 60 degrees.

For an isotropic distribution r(θ) = 1/(2π) we recover the result of Seung
and Sompolinsky (1993).

To understand how the Fisher information depends on other parameters
of the tuning curve φ, we redefine

φ(θ − θi) = {νmin + (νmax − νmin)8

( |θ − θi|
a

)
,

where νmin and νmax are the minimal and maximal frequency, a is the width
of the tuning curve, and 8 is a decreasing function of |θ − θi|/a such that
8 = 1 for the preferred stimulus θ = θi, and 8 = 0 for stimuli far from the
preferred stimulus, |θ − θi| À a. In terms of these parameters we have

J (θ) = tN
(νmax − νmin)

a

∫
dzr(θ + az)

8′(z)2
νmin

νmax−νmin
+8(z) .

The particular case of a triangular tuning curve,

8(x) =
{
(1− |x|) x ∈ [−1, 1]
0. |x| > 1, (5.4)

is shown in Figure 1. It will be considered in more detail below. For this
tuning curve, and for a uniform distribution of preferred stimuli, the Fisher
information has the simple form,

J (θ) = tN
(νmax − νmin)

πa
ln
νmax

νmin
. (5.5)
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Thus, as already noted by Seung and Sompolinsky (1993), the Fisher
information diverges in different extreme cases: when the maximal fre-
quency νmax goes to infinity and when the tuning width a goes to zero.
Moreover, functions 8 can be found such that the Fisher information di-
verges (e.g., 8(x) = √1− x2) for any value of νmin, νmax, and a. Thus, the
optimization of the Fisher information with respect to these parameters is an
ill-defined problem without additional constraints. Note that in these cases,
the equation relating the Fisher information to the mutual information is no
longer valid.

There is, however, a well-defined optimization problem, which is the
optimization with respect to the distribution of preferred orientations. It is
considered in section 5.2. Then we show how finite size effects transform
the problem of the optimization of both Fisher and mutual information
with respect to the tuning width a into a well-defined problem. Last, we
present some numerical estimates of these quantities, inserting some real
data (Taube et al., 1990) in equation 3.9.

5.2 Optimization over the Distribution of Preferred Orientations. We
ask which distribution of preferred orientations r(θ) optimizes the mutual
information I. Obviously the optimal r will depend on the distribution of
orientations ρ(θ). Optimizing equation 3.9 with respect to r(θ ′) subject to
the normalization constraint

∫
r(θ ′)dθ ′ = 1 gives∫

dθ
ρ(θ)∫

dθ ′′r(θ ′′)ψ(θ − θ ′′)ψ(θ − θ
′) = ct for all θ ′,

in which we have defined

ψ(x) = φ′(x)2

φ(x)
. (5.6)

This condition is satisfied when

ρ(θ) =
∫

dθ ′r(θ ′)ψ(θ − θ ′)∫
dθ ′ψ(θ ′)

. (5.7)

Thus, the optimal distribution of preferred stimuli is the one that, convolved
with ψ (i.e., a quantity proportional to the Fisher information), matches the
distribution of stimuli. Of course in the particular case of ρ(θ) = 1/(2π), we
obtain ropt(θ) = 1/(2π). Note that equation 5.7 is also valid for unbounded
stimulus values.

This result (equation 5.7) is specific to the optimization of the mutual
information. Different results would be obtained for, say, the maximization
of the average of the Fisher information or the minimization of the average
of its inverse. In fact, there is no optimum for the mean Fisher information,
since it is linear in r(.).
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Figure 2: (Left) SD of the reconstruction error after a single spike, as a function of
a. (Right) Mutual information between the spike and the stimulus as a function
of a. Note that minimizing the SD of the reconstruction error is in this case
different from maximizing the mutual information.

5.3 Finite Size Effects: The Case of a Single Spike. We have seen that
the Fisher information, in the large N limit, diverges when the tuning width
a goes to zero. To investigate whether this property is specific to the large N
limit, we study the case of a finite number of neurons in a very short time
interval in which a single spike has been emitted by the whole population
in response to the stimulus θ . In this situation, it is clear that the optimal
estimator of the stimulus (the ML estimate in that case) is given by the
preferred stimulus of the neuron that emitted the spike. For finite N, the
Cramer-Rao bound in general is not saturated, and we have to calculate
directly the performance of the estimator. It is a simple exercise to calculate
the standard deviation (SD) of the error made by such an estimate for a
triangular tuning curve given in equation 5.4,

SD(error) =
√

4π3νmin + a3(νmax − νmin)

6(2πνmin + a(νmax − νmin))

which always has a minimum for 0 < a < π . We show in Figure 2 the
SD of the reconstruction error after a single spike as a function of a, for
νmax/νmin = 80.

It has a minimum for a about 50 degrees, for which the SD of the error is
about 35 degrees.
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The mutual information, on the other hand, is

I = 1
πν̄

[
a

νmax − νmin

(
ν2

max

2
log

(νmax

ν̄

)

− ν
2
min

2
log

(νmin

ν̄

)
− 1

4

(
ν2

max − ν2
min

))
+

+ (π − a)νmin log
(νmin

ν̄

)]
where

ν̄ = νmin + a
2π
(νmax − νmin)

It also has a maximum for positive a. The width that maximizes I is different
from the width that minimizes the SD of the reconstruction error, as shown
in Figure 2. This is the case in general for nongaussian tuning curves. In
this case, the half-width maximizing the mutual information is around 20
degrees. Note that in a wide range of a, the first spike brings about 2 bits of
information about the stimulus.

Thus, a finite optimal a stems from the constraint of already minimizing
the error when only a small number of spikes have been emitted by the
whole neuronal array. It implies that the largest receptive fields are most
useful at very short times when only a rough estimate is possible, while
smaller receptive fields will be most useful at larger times, when a more
accurate estimate can be obtained.

5.4 Application to the Analysis of Empirical Data. In this section we
use the experimental data of Taube et al. (1990) to show how equation 3.9
can be used to estimate both Fisher and mutual information conveyed by
large populations of neurons on an angular stimulus (in this case the head
direction of a rat). Taube et al. (1990) have shown that in the postsubiculum
of rats, tuning curves can be well fitted by triangular tuning curves and
that the distribution of preferred orientations is consistent with a uniform
distribution. They also determined the distribution of the parameters of the
tuning curve, νmax, a and the signal-to-noise ratio (SNR) α = νmax/νmin over
the recorded neurons. These data indicate that these parameters have an
important variability from neuron to neuron. Equation 5.5, in the case of
such inhomogeneities, has to be replaced by

J (θ) = tN
π

∫
dνmaxdadα Pr(νmax, a, α)

νmax

a

(
1− 1

α

)
lnα. (5.8)

in which Pr(νmax, a, α) is the joint probability of parameters νmax, a and α.
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Figure 3: (Left) Minimal reconstruction error as given by the Cramer-Rao bound
for N = 1000 (full curve), N = 5000 (dashed curve) postsubiculum neurons, us-
ing data from Taube et al. (1990) as a function of time. (Right) Mutual information
for N = 1000 (full curve), N = 5000 (dashed curve), using the same data and
equation 3.10.

Under global constraints, one may expect each neuron to contribute in the
same way to the information, that is, (νmax/a)(1− 1/α) lnα is constant. This
would imply that the width a increases with νmax. Figure 9 of Taube et al.
(1990) shows that there is indeed a trend for higher firing rate cells to have
wider directional firing ranges.

We can now insert the distributions of parameters measured in Taube
et al. (1990) in equation 5.8 to estimate the minimal reconstruction error
that can be done on the head direction using the output of N postsubicu-
lum neurons during an interval of duration t. It is shown in the left part
of Figure 3. Since we assume that the number of neurons is large, the
mutual information conveyed by this population can be estimated using
equation 3.9. It is shown in the right part of the same figure. In the case
of N = 5000 neurons, the error is as small as one degree even at t = 10
ms, an interval during which only a small proportion of selective neu-
rons has emitted a spike. Note that one degree is the order of magni-
tude of the error made typically in perceptual discrimination tasks (see,
e.g., Pouget & Thorpe 1991). During the same interval, the activity of the
population of neurons carries about 6.5 bits about the stimulus. Doubling
the number of neurons or the duration of the interval divides the minimal
reconstruction error by

√
2 and increases the mutual information by 0.5

bit.
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6 Conclusion

In this article we have exhibited the link between Fisher information and
mutual information in the context of neural coding. This link was first de-
rived in the context of Bayesian parameter estimation by Clarke and Barron
(1990) and then in the context of stochastic complexity by Rissanen (1996).
We have shown that the result of Rissanen applies to population coding—
that is, when the number of neurons is very large compared to the dimen-
sion of the stimulus. Our derivation of the link uses completely different
techniques. The result is that the mutual information between the neural
activities and the stimulus is equal to the one between the stimulus and an
ideal gaussian unbiased estimator whose variance is equal to the inverse
of the Fisher information. The result is true not only for independent ob-
servations, but also for correlated activities (see Rissanen, 1996, and the
appendix). This is important in the context of neural coding since noise in
different cells might in some cases be correlated due to common inputs or
to lateral connections.

This result implies that in the limit of a large number of neurons, max-
imization of the mutual information leads to optimal performance in the
estimation of the stimulus. We have thus considered the problem of opti-
mizing the tuning curves by maximizing the mutual information over the
parameters defining the tuning curves: optimization of the choice of pre-
ferred orientations, widths of the tuning curves. In the simple model we
have considered, the optimal value for the width is zero, as in Seung and
Sompolinsky (1993). However, we have shown that finite size effects neces-
sarily lead to a nonzero optimal value, independent of the decoding scheme.

We have discussed in detail the case of a one-dimensional stimulus (an
angle). A similar relationship between mutual information and the Fisher
information matrix holds for any dimensionality of the stimulus, as long as
it remains small compared to the number of neurons. It would be straight-
forward to consider in the more general case the optimization of the tuning
curves. Zhang, Ginzburg, McNaughton, and Sejnowski (1998) have com-
puted the Fisher information matrix for two- and three- dimensional stim-
uli. Their results imply that optimal tuning curve parameters will depend
strongly on the dimensionality of the stimulus.

We have briefly discussed the cases of a finite number of neurons and
the short time limit. In this case maximization of the mutual information
leads in general to different results than does minimization of the variance
of reconstruction error, as found also in networks with the same number of
input and output continuous neurons (Ruderman, 1994). We are currently
working on these limits for which many aspects remain to be clarified.

We have not addressed the problem of decoding. In the asymptotic limit,
the maximum likelihood (ML) decoding is optimal. Recently Pouget and
Zhang (1997) showed that a simple recurrent network can perform the com-
putation of the ML estimate. This suggests that the optimal performance,
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from the point of view of both information content and decoding, can be
reached by a simple cortical architecture.

Appendix

Our goal is to derive equation 3.10, that is, to compute the mutual informa-
tion I = I[P, ρ] between the random variables Ex and θ , working in the large
N limit. We recall that Ex can be seen as either a set of N observations related
to the measurement of an unknown parameter θ or the set of responses of
N neurons to a stimulus θ . The mutual information I is defined by

I =
∫

dθρ(θ)
〈

ln
P(Ex|θ)
Q(Ex)

〉
θ

, (A.1)

where Q(Ex) is the p.d.f. of Ex:

Q(Ex) =
∫

dθρ(θ)P(Ex|θ). (A.2)

In equation A.1, 〈 . 〉θ denotes the integration over Ex given θ with the p.d.f.
P(Ex|θ). We define

G(Ex|θ) ≡ 1
N

ln P(Ex|θ). (A.3)

We will make the following hypothesis:

1. All derivatives of G with respect to the stimulus θ are of order 1 in the
large N limit.

2. The cumulants of order n of xG′θ +yG′′θ are of order 1/Nn−1 in the large
N limit.

Both properties are verified for the factorized models (see equations 2.1 and
2.2), but also in some cases in which xi given θ are correlated variables, as
we show at the end of the appendix.

The large N limit allows us to use the saddle-point method (Bhattacharya
& Rao, 1976; Parisi, 1988) for the computation of integrals over θ , in par-
ticular for the computation of the p.d.f. Q(Ex), using the fact that P(Ex|θ) will
appear to be sharply peaked around its most probable value, the maximum
likelihood (ML) estimator of θ . We will use standard cumulant expansions
for the integration over Ex in the equivocation part of I, and this will eventu-
ally lead to the announced result, equation 3.10.

Distribution of Ex. The p.d.f. Q(Ex) can be written

Q(Ex) =
∫

dθρ(θ) exp NG(Ex|θ). (A.4)
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For large N, the integral is dominated by the maxima of the integrand. These
are defined by the solutions of

G′θ (Ex|θ) = 0, (A.5)

which satisfy G′′θ (Ex|θ) < 0. Above we have denoted by G′θ (resp. G′′θ ) the first
(resp. second) partial derivative of G with respect to θ . Let us assume that
G(Ex|θ) has a single global maximum at θm(Ex). The Taylor expansion around
θm(Ex) is

G(Ex|θ) = G(Ex|θm(Ex))+ 1
2

G′′θ (Ex|θm(Ex))(θ − θm(Ex))2 + . . .

Using standard saddle-point techniques we find,

Q(Ex) = Qm(Ex)
(

1+O
(

1
N

))
, (A.6)

with

Qm(Ex) ≡ ρm(Ex)
√

2π
N|0(Ex)| , exp [NGm(Ex)] , (A.7)

where

ρm(Ex) ≡ ρ(θm(Ex)), (A.8)

Gm(Ex) ≡ G(Ex|θm(Ex)), (A.9)

and

0(Ex) ≡ G′′θ (Ex|θm(Ex)). (A.10)

Note that θm(Ex) is the ML estimator of θ .

The Mutual Information: Integration over θ . Let us start with the fol-
lowing expression of the mutual information:

I = −
∫

dθρ(θ) ln ρ(θ)+
∫

dNx Q(Ex)
∫

dθ Q(θ |Ex) ln Q(θ |Ex),

with Q(θ |Ex) = P(Ex|θ)ρ(θ)
Q(Ex) . The first term is the entropy of the input distribu-

tion. The second term can be written

−
∫

dNx Q(Ex) ln Q(Ex)+
∫

dNx
∫

dθ P(Ex|θ)ρ(θ) ln P(Ex|θ)ρ(θ). (A.11)
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In the above expression, the first part is the entropy of Ex in which we can
replace Q(Ex) by Qm(Ex) as given in equation A.7, leading to

−
∫

dNx Qm(Ex)
[

NGm + ln ρm − 1
2

ln
N|0(Ex)|

2π

]
.

The last term in equation A.11 can be written as∫
dNx

∫
dθ A(Ex|θ) exp A(Ex|θ),

with

A(Ex|θ) ≡ ln P(Ex|θ)ρ(θ).
Now ∫

dθA(Ex|θ) exp A(Ex|θ) = ∂λ
∫

dθ exp λA|λ=1,

which is again computed with the saddle-point method,

∫
dθA(Ex|θ) exp A(Ex|θ) = ∂λ

√
2π

λN|0(Ex)| exp λ [NGm + ln ρm]

∣∣∣∣∣
λ=1

= Qm

[
NGm + ln ρm − 1

2

]
.

Finally, putting everything together, the mutual information can be written
as

I = −
∫

dθρ(θ) ln ρ(θ)

+
∫

dNx ρ(θm(Ex))
√

2π
N|0(Ex)| exp [NGm(Ex)]

(
1
2

ln
N|0(Ex)|

2πe

)
. (A.12)

It is interesting to compare equations 3.10 and A.12. As in equation 3.10,
the first term above is the entropyH[θ ] = − ∫ dθρ(θ) ln ρ(θ) of the stimulus
distribution; the second term, the equivocation, is given in equation A.12
by the average over the p.d.f. of Eu of the logarithm of the variance of the
estimator.

The Mutual Information: Integration over Ex. The last difficulty is to
perform in equation A.12 the trace on Ex. One cannot apply the saddle-point
method directly because the number of integration variables is precisely
equal to the number N that makes the exponential large. However, the
difficulty is circumvented by the introduction of a small (compared to N)
auxiliary integration variables, in such a way that the integration over the
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xi’s can be done exactly. Then we again use the fact that N is large to perform
the integration over the auxilary variables to leading order in N.

First we use the relation

F(θm(Ex)) =
∫

dθF(θ)|G′′θ (Ex|θ)|δ
(
G′θ (Ex|θ)

)
in order to deal with θm(Ex), which is valid for an arbitrary function F. We
then use an integral representation of the delta function:

δ
(
G′θ (Ex|θ)

) = ∫ dy
2π

exp
(
iyG′θ (Ex|θ)

)
.

Similarly, in order to deal with G′′θ (Ex|θ), we introduce conjugate variables τ ,
τ̂ . For any function F we can write

F(G′′θ (Ex|θ)) =
∫

dτdτ̂
1

2π
F(τ ) exp

(
iτ̂ (τ − G′′θ (Ex|θ))

)
.

Putting everything together, we get

I = H[θ ]+
∫

dθdydτdτ̂
√|τ |√

N(2π)
3
2

ρ(θ)

×
(

1
2

ln
(

N|τ |
2πe

))
exp

(
iτ̂ τ + K(θ, y, τ̂ )

)
, (A.13)

in which

K(θ, y, τ̂ ) = ln
〈

exp
(
−iτ̂

∂2G(Ex|θ)
∂θ2 + iy

∂G(Ex|θ)
∂θ

) 〉
θ

(recall that 〈. . .〉θ =
∫

dNx exp[NG(Ex|θ)] . . .). We now make the cumulant
expansion

〈
exp A

〉
θ
= exp

(
〈A〉θ +

1
2
(
〈
A2
〉
θ
− 〈A〉2θ )+ · · ·

)
for

A ≡ −iτ̂G′′θ + iyG′θ . (A.14)

The cumulant expansion will be valid if the cumulants of order n of A
with the law exp[NG(Ex|θ)] decrease sufficiently rapidly with n. A sufficient
condition is

assumption: the cumulants of order n of A (n = 1, 2, . . .)

are of order 1/Nn−1. (A.15)
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Using the following identities obtained by deriving twice 1 = 〈1〉θ with
respect to θ ,

0 = 〈G′θ 〉θ
0 = 〈G′′θ 〉θ +N

〈(
G′θ
)2〉

θ
,

one gets

K = iτ̂ J − τ̂
212

2N
− y2J

2N
+ yτ̂Z

N
+O

(
1

N2

)
(A.16)

where J,1,Z are given by

J ≡ − 〈G′′θ 〉θ = N
〈(

G′θ
)2〉

θ

12 ≡ N
(〈(

G′′θ
)2〉

θ
− 〈G′′θ 〉2θ)

Z ≡ N
〈
G′θG′′θ

〉
θ
.

Note that the Fisher information J (θ) is equal to N J, and that12 and Z are
of order 1 because of the assumption A.15.

In these terms we have

I = H[θ ]+
∫

dθdydτdτ̂
√|τ |√

N(2π)
3
2

ρ(θ)

(
1
2

ln
(

N|τ |
2πe

))
exp

(
iτ̂ (τ + J)− τ̂

212

2N
− y2J

2N
+ yτ̂Z

N
+O

(
1

N2

))
.

Our last task is to integrate over the remaining auxiliary variables τ , τ̂ ,
y. Using the fact that 12 − Z2

J > 0, deduced from the Schwartz inequality,

< G′θ (G
′′
θ− < G′′θ >) >

2 ≤ < G′2θ >< (G′′θ− < G′′θ >)
2 >,

the integrations over y and τ̂ are simple gaussian integrations, leading to:

I = H[θ ]+
∫

dθρ(θ)

×
∫

dτ√
2π

√√√√ N

12 − Z2

J

√
|τ |
J

1
2

ln
(

N|τ |
2πe

)
exp

(
−N

2
(τ + J)2

12 − Z2

J

)
.

The integration over τ is with a gaussian weight centered at τ = −J and
with a width going to zero as N goes to infinity:

lim
N→∞

1√
2π

√√√√ N

12 − Z2

J

exp−N
2
(τ + J)2

12 − Z2

J

= δ(τ + J).
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Using the fact that the Fisher information is J (θ) = NJ, we obtain

I = −
∫

dθρ(θ) ln ρ(θ)−
∫

dθρ(θ)
1
2

ln
(

2πe
J (θ)

)
(1+O(1/N)), (A.17)

which is the announced result (equation 3.10).
The conditions (see A.15) of validity of the calculation are satisfied when

xi given θ are independent, as in equations 2.1 and 2.2, but can also be
satisfied when they are correlated. We discuss below these two cases.

Conditional Independence of Activities. In the case of independent neu-
rons, the model in equation 2.2, one can easily check that the cumulant
expansion at order n gives terms of order 1/Nn−1. Indeed, in that case, one
has

G(Ex|θ) = 1
N

∑
i

gi(xi|θ), (A.18)

so that

A = 1
N

∑
i

Ai, with Ai = −iτ̂
∂2gi(xi|θ)
∂θ2 + iy

∂gi(xi|θ)
∂θ

. (A.19)

The cumulant expansion then reads

〈
exp A

〉 = exp
∑

i
log

〈
exp

Ai

N

〉
= exp

∑
i

(
1
N
〈Ai〉 + 1

N2 (
〈
A2

i

〉
− 〈Ai〉2)+O(1/N3)

)
. (A.20)

Thus equation A.16 holds, with J,1,Z given by

J = − 1
N

∑
i

〈
∂2gi

∂θ2

〉
θ

= 1
N

∑
i

〈(
∂gi

∂θ

)2
〉
θ

12 = 1
N

∑
i

(〈(
∂2gi

∂θ2

)2〉
θ

−
〈
∂2gi

∂θ2

〉2

θ

)

Z = 1
N

∑
i

〈
∂gi

∂θ

∂2gi

∂θ2

〉
θ

. (A.21)

Correlated Neurons. The conditions on the cumulants of A, A.15, do not
imply that the xi are independent, but they do have the qualitative mean-
ing that they convey of order N independent observations. To see this, we
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give an example of correlated activities for which the conditions are satis-
fied.

We consider the following simple model. Each xi can be expressed in
terms of the same N independent random variables, ξa, a = 1, . . . ,N, as

xi =
∑

a
Mi,aξa. (A.22)

where M is a θ -independent invertible matrix, and the ξ ’s are, given θ ,
statistically independent variables of arbitrary p.d.f. ρa(ξ |θ), a = 1, . . . ,N.
The factorized case is recovered for M diagonal. In the case where the ρ’s
are gaussian and M is orthogonal, equation A.22 is the principal component
decomposition of the x’s. We show now that the case M invertible with
arbitrary ρ’s satisfies the conditions A.15.

First, it is obvious that the result (see equation 3.10) holds: with the change
of variables Ex → M−1Ex = Eξ , one recovers the case of independent (given
θ ) activities. One can then apply equation 3.10 to I(θ, Eξ). Since P(Eξ |θ) =
P(Ex|θ)|det M|, with M independent of θ , I(θ, Ex) = I(θ, Eξ) and the Fisher
information associated to P(Eξ |θ) is equal to the one associated to P(Ex|θ), so
that equation 3.10 holds for I(θ, Ex). Second, one can check directly that the
conditions A.15 hold. For our model, G is

G(Ex|θ) = − 1
N

ln |det M| + 1
N

∑
a

ln ρa

(∑
i

M−1
a,i xi

∣∣θ) , (A.23)

so that the cumulants of G′θ (Ex|θ)and G′′θ (Ex|θ)with respect to the pdf P(Ex|θ)are
equal to the cumulants of G′θ (Eξ |θ) and G′′θ (Eξ |θ)with respect to the factorized
pdf P(Eξ |θ) =∏a ρa(ξ |θ) for which A.15 holds.
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