Three Major Map Models

Grid-Based:

Collection of discretized obstacle/free-space pixels

Elfes, Moravec,
Thrun, Burgard, Fox, Simmons, Koenig,
Konolige, etc.

Feature-Based:

Collection of landmark locations and correlated uncertainty

Smith/Self/Cheeseman, Durrant-Whyte, Leonard, Nebot, Christensen, etc.

Topological:

Collection of nodes and their interconnections

Kuipers/Byun, Chong/Kleeman, Dudek, Choset, Howard, Mataric, etc.

Three Major Map Models

	Grid-Based	Feature-Based	Topological
Resolution vs. Scale	Discrete localization	Arbitrary localization	Localize to nodes
Computational Complexity	Grid size and resolution	Landmark covariance (N2)	Minimal complexity
Exploration Strategies	Frontier-based exploration	No inherent exploration	Graph exploration

Gmapping

Occupancy Grid: "map" is a grid of "cells": $\left\{x_{i, j}^{m}\right\}$

- $x_{i, j}^{m}=0$ if cell (i, j) is empty; $x_{i, j}^{m}=1$ if cell ((i, j) is occupied
- $p\left(x_{k+1}^{r},\left\{\mathrm{X}_{i, j}^{\mathrm{m}}\right\}_{k+1} \mid \mathrm{X}_{1: k}^{\mathrm{r}},\left\{\mathrm{x}_{\mathrm{i}, \mathrm{j}}^{\mathrm{m}}\right\}_{k,}, \mathrm{y}_{1: k+1}\right)$ (estimate cell occupancy probability)

(a)

(b)

Gmapping:

- Uses a Rao-Blackwellized particle filter for estimator
- Actually computes $p\left(x_{1: T}^{r},\left\{x_{i, j}^{m}\right\} \mid \mathrm{x}_{1: k}^{\mathrm{r}}, \mathrm{x}_{\mathrm{k}}^{\mathrm{m}}, \mathrm{y}_{1: k+1}\right)$

Axioms of Set-Based Probability

Probability Space:

- Let Ω be a set of experimental outcomes (e.g., roll of dice)

$$
\Omega=\left\{A_{1}, A_{2}, \ldots, A_{N}\right\}
$$

- the A_{i} are "elementary events" and subsets of Ω are termed "events"
- Empty set $\{\varnothing\}$ is the "impossible event"
- $S=\{\Omega\}$ is the "certain event"
- A probability space ($\Omega, \mathrm{F}, \mathrm{P}$)
- $\mathrm{F}=$ set of subsets of Ω, or "events", P assigns probabilities to events

Probability of an Event-the Key Axioms:

- Assign to each A_{i} a number, $\mathrm{P}\left(A_{i}\right)$, termed the "probability" of event A_{i}
- $\mathrm{P}\left(A_{i}\right)$ must satisfy these axioms

1. $P\left(A_{i}\right) \geq 0$
2. $\mathrm{P}(S)=1$
3. If events $A, B \in \Omega$ are "mutually exclusive," or disjoint, elements or events $(A \cap B=\{\varnothing\})$, then

$$
\mathrm{P}(A \cup B)=P(A)+P(B)
$$

Axioms of Set-Based Probability

As a result of these three axioms and basic set operations (e.g., DeMorgan's laws, such as $\overline{A \cup B}=\bar{A} \cap \bar{B}$)

- $P(\{\varnothing\})=0$
- $\mathrm{P}(\mathrm{A})=1-\mathrm{P}(\bar{A}) \Rightarrow \mathrm{P}(\mathrm{A})+\mathrm{P}(\bar{A})=1$, where \bar{A} is complement of A
- If $A_{1}, A_{2}, \ldots, A_{N}$ mutually disjoint

$$
\mathrm{P}\left(A_{1} \cup A_{1} \cup \cdots \cup A_{N}\right)=P\left(A_{1}\right)+P\left(A_{1}\right)+\cdots+P\left(A_{N}\right)
$$

For Ω an infinite, but countable, set we add the "Axiom of infinite additivity"

3(b). If A_{1}, A_{2}, \ldots are mutually exclusive,

$$
\mathrm{P}\left(A_{1} \cup A_{1} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{1}\right)+\cdots
$$

We assume that all countable sets of events satisfy Axioms 1, 2, 3, 3(b)

But we need to model uncountable sets...

Continuous Random Variables (CRVs)

Let $\Omega=\mathbb{R}$ (an uncountable set of events)

- Problem: it is not possible to assign probabilities to subsets of \mathbb{R} which satisfy the above Axioms
- Solution:
- let "events" be intervals of \mathbb{R} : $\mathrm{A}=\left\{x \mid x_{l} \leq x \leq x_{u}\right\}$, and their countable unions and intersections.
- Assign probabilities to these events

$$
\mathrm{P}\left(x_{l} \leq x \leq x_{u}\right)=\text { Probability that } x \text { takes values in }\left[x_{l}, x_{u}\right]
$$

- x is a "continuous random variable (CRV).

Some basic properties of CRVs

- If x is a CRV in $[L, U]$, then $\mathrm{P}(L \leq x \leq U)=1$
- If y in $[L, U]$, then $\mathrm{P}(L \leq y \leq x)=1-\mathrm{P}(y \leq x \leq U)$

Probability Density Function (pdf)

E.g.

$$
p\left(x_{l} \leq x \leq x_{u}\right) \equiv \int_{x_{l}}^{x_{u}} p(x) d x
$$

- Uniform Probability pdf:

$$
p(x)=\frac{1}{b-a}
$$

- Gaussian (Normal) pdf:

$$
\begin{aligned}
& p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \\
& \mu=" m e a n " \text { of pdf } \\
& \sigma=\text { "standard deviation" }
\end{aligned}
$$

Most of our Estimation theory will be built on the Gaussian distribution

Expectation

Expectation: (key for estimation)

- Let x be a CRV with distribution $p(x)$. The expected value (or mean) of x is

$$
E[x]=\int_{-\infty}^{\infty} x p(x) d x \quad E[g(x)]=\int_{-\infty}^{\infty} g(x) p(x) d x
$$

Mean Square:

$$
E\left[x^{2}\right]=\int_{-\infty}^{\infty} x^{2} p(x) d x
$$

Variance:

$$
\sigma^{2}=E\left[(x-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) d x \quad \mu(x)=E[x]
$$

Random Processes (continued)

A stochastic system whose state is characterized by a time evolving CRV, $\mathrm{x}(\mathrm{t}), \mathrm{t} \varepsilon[0, \mathrm{~T}]$.

- At each $t, x(t)$ is a CRV
- $\mathrm{x}(\mathrm{t})$ is the "state" of the random process, which can be characterized by

$$
\mathrm{P}\left[x_{l} \leq x(t) \leq x_{u}\right]=\int_{-\infty}^{\infty} p(x, t) d x
$$

Random Processes can also be characterized by: Joint probability

- Joint probability function density function
$\mathrm{P}\left[x_{1 l} \leq x\left(t_{1}\right) \leq x_{1 u} ; x_{2 l} \leq x\left(t_{2}\right) \leq x_{2 u}\right]=\int_{x_{1 l}}^{x_{1 u}} \int_{x_{2 l}}^{x_{2 u}} \overbrace{p\left(x_{1}, x_{2}, t_{1}, t_{2}\right)} d x_{1} d x_{2}$
- A random process $x(\mathrm{t})$ is Stationary if $p(x, t+\tau)=p(x, t)$ for all τ

Correlation function

- Correlation Function

$$
E\left[x\left(t_{1}\right) x\left(t_{2}\right)\right]=\int_{-\infty}^{\infty} x_{1} x_{2} p\left(x_{1}, x_{2}, t_{1}, t_{2}\right) d x_{1} d x_{2} \equiv \rho\left(t_{1}, t_{2}\right)
$$

Joint and Conditional Probability

- $P(X=x$ and $Y=y)=P(x, y)$
- If X and Y are independent then

$$
P(x, y)=P(x) P(y)
$$

Conditional independence

- $P(x \mid y)$ is the probability of x given y

$$
\begin{aligned}
& P(x \mid y)=P(x, y) / P(y) \\
& P(x, y)=P(x \mid y) P(y)
\end{aligned}
$$

- If X and Y are independent then

$$
P(x \mid y)=P(x)
$$

$$
P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

Equivalent to

- $P(x \mid z)=P(x \mid z, y)$
- $P(y \mid z)=P(y \mid z, x)$

Law of Total Probability, Marginals

Discrete case

Continuous case

$$
\begin{array}{cl}
\sum_{x} P(x)=1 & \int p(x) d x=1 \\
P(x)=\sum_{y} P(x, y) & p(x)=\int p(x, y) d y \\
P(x)=\sum_{y} P(x \mid y) P(y) & p(x)=\int p(x \mid y) p(y) d y \\
P(x \mid y)=\sum^{p} p(x \mid y, z) p(z \mid y) & p(x \mid y)=\int p(x \mid y, z) p(z \mid y) d z
\end{array}
$$

Bayes Formula

$$
\begin{aligned}
P(x, y) & =P(x \mid y) P(y)=P(y \mid x) P(x) \\
& \Rightarrow
\end{aligned}
$$

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}
$$

Normalization

$$
\begin{aligned}
P(x \mid y) & =\frac{P(y \mid x) P(x)}{P(y)}=\eta P(y \mid x) P(x) \\
\eta & =P(y)^{-1}=\frac{1}{\sum_{x} P(y \mid x) P(x)}
\end{aligned}
$$

Bayes Rule with Background Knowledge

$$
P(x \mid y, z)=\frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}
$$

Simple Example

- Suppose robot measures z
- What is $\mathrm{P}($ open $\mid \mathrm{z})$?

- $P(o p e n \mid z)$ is diagnostic.
- $P(z \mid o p e n)$ is causal.
- Often causal knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge:
- Causal knowledge can come from a frequentist approach
- Causal knowledge can come from a model.
- $P($ open $\mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z)}$

