Three Major Map Models

Grid-Based:

Collection of discretized obstacle/free-space pixels

Elfes, Moravec, Thrun, Burgard, Fox, Simmons, Koenig, Konolige, etc.

Feature-Based:

Collection of landmark locations and correlated uncertainty

Smith/Self/Cheeseman, Durrant-Whyte, Leonard, Nebot, Christensen, etc.

Topological:

Collection of nodes and their interconnections

Kuipers/Byun, Chong/Kleeman, Dudek, Choset, Howard, Mataric, etc.

Three Major Map Models

Resolution vs. Scale	Discrete localization	Arbitrary localization	Localize to nodes
Computational Complexity	Grid size and resolution	Landmark covariance (N2)	Minimal complexity
	Frontier-based exploration	No inherent exploration	Graph exploration

Gmapping

Occupancy Grid: "map" is a grid of "cells": $\{x_{i,j}^m\}$

- $x_{i,j}^m = 0$ if cell (i,j) is empty; $x_{i,j}^m = 1$ if cell (i,j) is occupied
- $p\left(x_{k+1}^r, \{\mathbf{x}_{i,j}^m\}_{k+1} \middle| \mathbf{x}_{1:k}^r, \{\mathbf{x}_{i,j}^m\}_k, \mathbf{y}_{1:k+1}\right)$ (estimate cell occupancy probability)

Gmapping:

- Uses a Rao-Blackwellized particle filter for estimator
- Actually computes $p\left(x_{1:T}^r, \{x_{i,j}^m\} \middle| \mathbf{x}_{1:k}^r, \mathbf{x}_k^m, \mathbf{y}_{1:k+1}\right)$

Axioms of Set-Based Probability

Probability Space:

- Let Ω be a set of experimental outcomes (e.g., roll of dice)

$$\Omega = \{A_1, A_2, \dots, A_N\}$$

- the A_i are "elementary events" and subsets of Ω are termed "events"
- Empty set {Ø} is the "impossible event"
- S={Ω} is the "certain event"
- A probability space (Ω, F,P)
 - F = set of subsets of Ω , or "events", P assigns probabilities to events

Probability of an Event—the Key Axioms:

- Assign to each A_i a number, $P(A_i)$, termed the "probability" of event A_i
- $P(A_i)$ must satisfy these axioms
 - 1. $P(A_i) \ge 0$
 - 2. P(S) = 1
 - 3. If events $A, B \in \Omega$ are "mutually exclusive," or disjoint, elements or events $(A \cap B = \{\emptyset\})$, then

$$P(A \cup B) = P(A) + P(B)$$

Axioms of Set-Based Probability

As a result of these three axioms and basic set operations (e.g., DeMorgan's laws, such as $\overline{A \cup B} = \overline{A} \cap \overline{B}$)

- $P(\{\emptyset\}) = 0$
- $P(A) = 1-P(\overline{A}) \Rightarrow P(A) + P(\overline{A}) = 1$, where \overline{A} is complement of A
- If $A_1, A_2, ..., A_N$ mutually disjoint

$$P(A_1 \cup A_1 \cup \dots \cup A_N) = P(A_1) + P(A_1) + \dots + P(A_N)$$

For Ω an infinite, but countable, set we add the "Axiom of infinite additivity"

3(b). If $A_1, A_2, ...$ are mutually exclusive,

$$P(A_1 \cup A_1 \cup \cdots) = P(A_1) + P(A_1) + \cdots$$

We assume that all countable sets of events satisfy Axioms 1, 2, 3, 3(b)

But we need to model uncountable sets...

Continuous Random Variables (CRVs)

Let $\Omega = \mathbb{R}$ (an uncountable set of events)

- Problem: it is not possible to assign probabilities to subsets of \mathbb{R} which satisfy the above Axioms
- Solution:
 - let "events" be intervals of \mathbb{R} : $A = \{x \mid x_l \le x \le x_u\}$, and their <u>countable</u> unions and intersections.
 - Assign probabilities to these events

$$P(x_l \le x \le x_u) = Probability that x takes values in [x_l, x_u]$$

• *x* is a "continuous random variable (CRV).

Some basic properties of CRVs

- If x is a CRV in [L, U], then $P(L \le x \le U) = 1$
- If y in [L, U], then $P(L \le y \le x) = 1 P(y \le x \le U)$

Probability Density Function (pdf)

$$p(x_l \le x \le x_u) \equiv \int_{x_l}^{x_u} p(x) dx$$

E.g.

– Uniform Probability pdf:

$$p(x) = \frac{1}{b-a}$$

Gaussian (Normal) pdf:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

 μ ="mean" of pdf σ = "standard deviation"

Most of our Estimation theory will be built on the Gaussian distribution

Expectation

Expectation: (key for estimation)

- Let x be a CRV with distribution p(x). The expected value (or mean) of x is

$$E[x] = \int_{-\infty}^{\infty} x p(x) dx \qquad E[g(x)] = \int_{-\infty}^{\infty} g(x) p(x) dx$$

Mean Square:
$$E[x^2] = \int_{-\infty}^{\infty} x^2 p(x) dx$$

Variance:
$$\sigma^2 = E[(x - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 p(x) dx$$
 $\mu(x) = E[x]$

Random Processes (continued)

A stochastic system whose state is characterized by a time evolving CRV, x(t), $t \in [0,T]$.

- At each t, x(t) is a CRV
- x(t) is the "state" of the random process, which can be characterized by

$$P[x_l \le x(t) \le x_u] = \int_{-\infty}^{\infty} p(x, t) dx$$

Random Processes can also be characterized by:

Joint probability function

Correlation function

Joint probability

$$P[x_{1l} \le x(t_1) \le x_{1u}; x_{2l} \le x(t_2) \le x_{2u}] = \int_{x_{1l}}^{x_{1u}} \int_{x_{2l}}^{x_{2u}} p(x_1, x_2, t_1, t_2) dx_1 dx_2$$

- A random process x(t) is **Stationary** if $p(x,t+\tau)=p(x,t)$ for all τ
- Correlation Function

$$E[x(t_1)x(t_2)] = \int_{-\infty}^{\infty} x_1 \, x_2 \, p(x_1, x_2, t_1, t_2) \, dx_1 dx_2 \equiv \rho(t_1, t_2)$$

Joint and Conditional Probability

- P(X = x and Y = y) = P(x, y)
- If *X* and *Y* are independent then

$$P(x,y) = P(x) P(y)$$

• $P(x \mid y)$ is the probability of x given y

$$P(x | y) = P(x,y) / P(y)$$

$$P(x,y) = P(x | y) P(y)$$

• If *X* and *Y* are independent then

$$P(x \mid y) = P(x)$$

Conditional independence

$$P(x, y | z) = P(x | z)P(y | z)$$

Equivalent to

$$P(x|z) = P(x|z,y)$$

•
$$P(y|z) = P(y|z,x)$$

Law of Total Probability, Marginals

Discrete case

$$\sum_{x} P(x) = 1$$

$$P(x) = \sum_{y} P(x, y)$$

$$P(x) = \sum_{y} P(x \mid y) P(y)$$

$$P(x|y) = \sum_{x} p(x|y,z)p(z|y)$$

Continuous case

$$\int p(x) \, dx = 1$$

$$p(x) = \int p(x, y) \, dy$$

$$p(x) = \int p(x \mid y) p(y) dy$$

$$P(x|y) = \sum p(x|y,z)p(z|y) \quad p(x|y) = \int p(x|y,z)p(z|y)dz$$

Bayes Formula

$$P(x, y) = P(x | y)P(y) = P(y | x)P(x)$$

$$\Rightarrow$$

$$P(x|y) = \frac{P(y|x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

Normalization

$$P(x|y) = \frac{P(y|x) P(x)}{P(y)} = \eta P(y|x) P(x)$$
$$\eta = P(y)^{-1} = \frac{1}{\sum P(y|x)P(x)}$$

Bayes Rule with Background Knowledge

$$P(x \mid y, z) = \frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}$$

Simple Example

- Suppose robot measures z
- What is P(open/z)?

- P(open/z) is diagnostic.
- P(z|open) is causal.
- Often causal knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge:
 - Causal knowledge can come from a frequentist approach
 - Causal knowledge can come from a model.

$$P(open|z) = \frac{P(z|open)P(open)}{P(z)}$$