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Abstract
We formulate a reduced-order strategy for efficiently forecasting complex high-dimensional

dynamical systems entirely based on data streams. The first step of our method involves
reconstructing the dynamics in a reduced-order subspace of choice using Gaussian Process
Regression (GPR). GPR simultaneously allows for reconstruction of the vector field and
more importantly, estimation of local uncertainty. The latter is due to i) local interpolation
error and ii) truncation of the high-dimensional phase space. This uncertainty component
can be analytically quantified in terms of the GPR hyperparameters. In the second step we
formulate stochastic models that explicitly take into account the reconstructed dynamics
and their uncertainty. For regions of the attractor which are not sufficiently sampled for
our GPR framework to be effective, an adaptive blended scheme is formulated to enforce
correct statistical steady state properties, matching those of the real data. We examine
the effectiveness of the proposed method to complex systems including the Lorenz 96, the
Kuramoto-Sivashinsky, as well as a prototype climate model. We also study the performance
of the proposed approach as the intrinsic dimensionality of the system attractor increases
in highly turbulent regimes.

Keywords Data-driven prediction; uncertainty quantification; order-reduction; Gaussian
Process Regression; T21 barotropic climate model; Lorenz 96.

1 Introduction
A broad range of systems are characterized by a high-dimensional phase space and existence
of persistent or intermittent instabilities. These properties are ubiquitous in many complex
systems involving fluid flows such as the atmosphere, ocean, coupled climate system, confined
plasmas, and engineering turbulence at high Reynolds numbers. For these systems short term
prediction, as well as quantification of long-term statistics can be very challenging. The difficulty
is the result of i) intrinsic limitations of typical order-reduction methods for systems exhibiting
unstable dynamics mitigated by strongly nonlinear energy transfers [1, 2, 3], and ii) inevitable
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error in the model equations especially when we do not have a complete understanding of the
underlying physical mechanisms [4, 5, 6, 7].

For such systems it is often beneficial, instead of adopting the typical equation-driven
approach, to consider a data-driven perspective. One of the simplest methods used to forecast
dynamical systems is the vector autoregression model [8, 9], which assumes that the current
state of the system depends linearly on a fixed number of its preceding states and an additional
noise term. These models have been applied to modeling problems in economics, medicine and
soil sciences [10, 11, 12] with success. Nevertheless, they are greatly limited by their ad hoc
parametric structure, which requires significant tuning and testing to be effectively applied
to different systems. Another relevant direction involves the generation of symbolic nonlinear
equations using time series of the system response [13, 14]. However, symbolic regression
is expensive and to this end a sparse identification method has been recently proposed and
demonstrated to work effectively for systems with low-dimensional attractors [15]. For turbulent
systems with high-dimensional structures, physics-constrained nonlinear regression models have
been developed in [16] and [17] and shown to perform robustly. However, these models assume
a stable linear part in the dynamics operator, which is not always the case for the dynamics
within a reduced order subspace [18, 1, 2].

A class of non-parametric methods are inspired by an empirical forecasting technique called
analog forecasting. This approach was introduced in [19] as a method for predicting the time
evolution of observables in dynamical systems based on a historical record of training data. For
any arbitrary current state of the system, an analog, i.e. the state in the historical record which
most closely resembles the current state, is identified. Then, in order to perform prediction, the
historical evolution of the analog state is followed for the desired lead time, and the observable
of interest is predicted based on the corresponding analog value. This method has been applied
in a number of applications with very good results [20, 21, 22]. However, its main drawback is
the difficulty to pick the most skillful analog that will best represent the evolution of the system.
This is because in analog forecasting very little emphasis is placed on the geometrical structure
of the data-points.

Recent approaches [23, 24, 25] have successfully managed to incorporate the geometrical
properties of available data through use of diffusion maps [26, 27]. The basic idea is to represent
the semigroup solution using a basis adapted to the invariant measure. Because of the ‘global’
nature of the basis elements produced by the diffusion maps algorithm, a large number of basis
elements is often necessary to probabilistically evolve initial states with small variance. In
addition, computing these basis elements using diffusion maps is an expensive process especially
for large data sets, as it requires solving an eigensystem whose size is proportional to that of
the training data.

A different perspective for the same problem can be found in [28, 29]. The idea is to utilize
nonlinear diffusion map coordinates and formulate a deterministic dynamical system on the
system manifold. This approach results in a reduced-space data-driven dynamical system which
describes the evolution of states on the attractor. Models formulated this way are able to
effectively take advantage of the low intrinsic dimensionality. Along the same spirit, in [30] the
local dynamics on the attractor are represented with weighted averages of the data-points using
local similarity kernels. However, the resulting low-dimensional attractors are typically noisy
due to truncation errors, observation noise, or under-sampled training data. Therefore, it is
crucial to be able to quantify the error in the evolved dynamics in reduced space. This is the
main goal of this work.

In particular, we propose a generally applicable methodology for forecasting and quantifying
uncertainty in reduced-space states, based on Gaussian process regression (GPR) [31, 32, 33,
34, 35]. The main advantage of employing GPR to reconstruct the reduced-order dynamics is
the simultaneous estimation of the dynamics and the associated error/uncertainty, which can be
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important when reduction dimension is lower than the intrinsic dimension of the system. Using
GPR dynamics we formulate a reduced-order stochastic model taking into account uncertainty
from various sources. We also propose an adaptive blended scheme for systems which are not
sufficiently sampled everywhere. We examine the effectiveness of the proposed method for
different systems and evaluate its performance as the intrinsic dimension of the system attractor
increases in highly turbulent regimes.

This paper is structured as follows. In section 2, we give an overview for Gaussian Process
Regression technique. Section 3 describes the use of GPR to construct stochastic models in
reduced-order space and perform probabilistic forecast. In the same section we present the
decomposition of the error into different components and quantify those in terms of the GPR
hyperparameters. The proposed methodologies are applied to three complex systems in section
4. Finally, section 5 provides a summary and brief discussion of possible future directions.

2 An Overview of Gaussian Process Regression
In this section, we present an overview of Gaussian Process Regression [31], appropriately
formulated for forecasting dynamical systems. GPR works under the probabilistic regression
framework, which takes as input a training data set D = {(yn,xn), n = 1, ..., N} of N pairs of
vector input xn ∈ RL and noisy scalar output yn, and constructs a model that generalizes well
to the distribution of the output at unseen input locations. The noise in the output models
uncertainty due to factors external to x, such as truncation or observation errors. Here we
assume that noise is additive, zero-mean, stationary and normally distributed, such that

y = f(x) + ε, ε ∼ N (0, σ2
noise), (1)

where σ2
noise is the variance of the noise.

The primary idea behind GPR is to use a Gaussian process (GP) to represent f , referred to
as latent variables. The input x plays the role of indexing these latent variables such that any
finite collection {f(x1), ..., f(xk)} with unique indices follow a consistent Gaussian distribution.
In this way, we limit ourselves to only looking at functions whose values correlate with each
other in a Gaussian manner. In Bayesian framework, this is equivalent to putting a GP prior
over functions. Due to the consistency requirement, we are able to make inference on function
values corresponding to unseen inputs conveniently using a finite set of training data.

A major advantage for using the Gaussian prior assumption is that functions can be
conveniently specified by a mean function m(x) and a covariance function k(x,x′):

m(x) = E[f(x)],
k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))],

(2)

where E[·] denotes expectation. The form of the mean function is important only in unobserved
region of the input space and usually set to zero. The properties of the process is then entirely
dictated by the covariance function, which is by definition symmetric and positive semi-definite
when evaluated at any pair of points in the input space. The covariance function typically
contains a number of free parameters called hyperparameters which define the prior distribution
on f(x). The most commonly used is the squared exponential covariance function

k(x,x′) = θ1exp
(
−||x− x′||2

2θ2

)
, (3)

where ||·|| is a norm defined on the input space. Note that this covariance function decays rapidly
when evaluated at increasingly distant pairs of input x and x′, indicating weak correlations
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between f(x) and f(x′). θ1 is a hyperparameter specifying the maximum allowable covariance.
θ2 is a strictly positive hyperparameter defining rate of decay in correlation as points become
farther away from each other. Another hyperparameter θ3, which is not expressed explicitly in
(3), is used to represent the unknown variance σ2

noise of the i.i.d noise ε in (1).
The hyperparameters {θ1, θ2, θ3} are grouped together as a vector θ treated as the realization

of a random vector Θ. The realization that is most coherent with the data set is selected using
training data and then used to make predictions. Methods for estimating these parameters are
described in section 2.2.

2.1 Prediction with GPR
Assuming that the hyperparameters are known, inference is easily made. Denoting the vector of
training latent variables by f and the vector of test latent variables by f∗, we have the following
joint Gaussian distribution:

p(f , f∗) = N
(

0,
[
Kf ,f K∗,f
Kf ,∗ K∗,∗

])
. (4)

K is the symmetric covariance matrix whose ijth entry is the covariance between the ith variable
in the group denoted by the first subscript and the jth variable in the group denoted by the
second subscript (∗ is used in place of f∗ for short), computed using covariance function k(·, ·)
in (3) and corresponding hyperparameters. For convenience, we do not explicitly write out the
conditioning on θ in (4) and other conditional probability expressions that follow in this section.

The conditional probability for the training observations y can then be incorporated to find
the posterior distribution for f∗. Because of the noise assumption, we have

p(y|f) = N (f , σ2
noiseI). (5)

Using Bayes rule, the joint posterior can be written as

p(f , f∗|y) = p(f , f∗)p(y|f)
p(y) , (6)

which can be marginalized to find p(f∗|y):

p(f∗|y) =
∫
p(f , f∗|y)df = 1

p(y)

∫
p(f , f∗)p(y|f) df . (7)

This corresponds to conditioning the joint Gaussian prior distribution on the observations,
resulting in the closed-form Gaussian distribution

p(f∗|y) = N
(
K∗,f (Kf ,f + σ2

noiseI)−1y,K∗,∗ −K∗,f (Kf ,f + σ2
noiseI)−1Kf ,∗

)
, N (f∗,Σf ∗), (8)

for which a detailed derivation/proof can be found in section 4.3.4 of [36]. Since y∗ = f∗ + ε∗,
with ε∗ ∼ N (0, σ2

noiseI) being independent of f∗, the mean and covariance can be directly added
to obtain

p(y∗|y) = N
(
K∗,f (Kf ,f +σ2

noiseI)−1y,K∗,∗−K∗,f (Kf ,f +σ2
noiseI)−1Kf ,∗+σ2

noiseI
)
, N (f∗,Σy∗).

(9)
The computation complexity of (9) appears to be dominated by the matrix inversion term

(Kf ,f + σ2
noiseI)−1. However, if we use the same set of training cases, Kf ,f remains the same and
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the inversion can be easily pre-computed in terms of the Cholesky factors and stored for all
later uses. The overall complexity is then reduced to O(N2). This makes it feasible to use up
to more than ten thousand of training examples to make predictions.

2.2 Evaluation of Hyperparameters
A crucial part of the GPR framework is choosing suitable hyperparameters θ. The parameter
choice has fundamental impact on how well the model fits with data. The best set of parameters
are usually obtained by optimizing over training data using appropriate objective/penalty
functions. In the following, two possible approaches are described.

2.2.1 Maximum a Posteriori Estimates

A complete Bayesian approach involves placing a prior distribution (hyper-prior) h(θ) over the
hyperparameters and marginalize to eliminate the dependence of hyperparameters θ. However,
this process is usually computationally expensive. Instead, the maximum a posteriori (MAP)
estimate is often used as a point estimate for θ. If we assume uniform distributions on the
hyperparameters, the resulting MAP turns into a maximum likelihood estimate (MLE) for θ.
As a function of θ, the log-likelihood for the training data can be written as

LMAP(θ) = log p(y|θ) = log
[
(2π)− k

2 |Ky,y|−
1
2 exp

(
−1

2yTΣyy
)]

= 1
2yT (Ky,y)−1y− 1

2 log |Ky,y| −
N

2 log 2π,
(10)

where N is the size of the training data and Ky,y , Kf ,f + σnoiseI. The partial derivatives with
respect to the hyperparameters can be readily obtained by differentiating (10) and simplifying
with relevant matrix identities

∂LMAP

∂θj
= 1

2yT (Ky,y)−1 ∂Ky,y

∂θj
Ky,yy− 1

2 Tr
(

(Ky,y)−1 ∂Ky,y

∂θj

)
= 1

2 Tr
(

(ααT − (Ky,y)−1)∂Ky,y

∂θj

)
,

(11)

where α , (Ky,y)−1y. The most computationally expensive step in this expression is evaluating
(Ky,y)−1 which requires O(N3) time, but again only needs to be computed once for all θj . Thus
the overall time requirement for computing the analytical derivative of the log likelihood is only
O(N2) per hyperparameter, making it realistic to implement a gradient-based optimization
algorithm. For the examples in this work we implement a conjugate gradient (CG) optimizer to
perform searches for the optimal hyperparameters.

2.2.2 Cross-validation

An alternative approach that emphasizes more on empirical performance for the selection of
hyperparameters is the cross-validation method. The whole data set is split into a training set
and a validation set, and the prediction performance of GPR models built with the training
set is measured on the validation set. The process is usually repeated for a large number of
different partitions of training and validation data in order to obtain an unbiased measure
overall. The special case of using one data point for validation and all others for training is
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called Leave-one-out (LOO) cross-validation. In LOO, the predictive log-likelihood for a single
validation case yn is

log p(yn|y−n,θ) = −1
2 log σ2

n −
yn − µn

2σ2
n

− 1
2 log 2π, (12)

where y−n denotes training data with case n excluded. µn and σn are predicted mean and
variance for case n, computed using (9), and can be considered functions of θ. Summing over
all cases, the total likelihood is then

LLOO(θ) =
N∑
n=1

log p(yn|y−n,θ), (13)

which can be optimized over θ. This expression may seem expensive to compute at first because
calculating each µn and σn requires inverting a different matrix. However, these matrices are
highly similar, each with one row and column removed from the covariance matrix for the entire
training set. As a result, µn and σn can be conveniently computed from (Ky,y)−1 as

µn = yn −
[
(Ky,y)−1y

]
n
/
[
(Ky,y)−1]

nn
,

σ2
n = 1/

[
(Ky,y)−1]

nn
,

(14)

where the subscripts refer to the indices of the corresponding matrix/vector. Carefully examining
(14) would reveal that µn is rightfully independent of yn. Since only one matrix inversion is
required, the overall complexity for calculating LLOO is O(N2).

Taking the derivative of the expressions in (14) with respect to θj we obtain

∂µn
∂θj

=
[Zjα]n

[(Ky,y)−1]nn
−

α
[
Zj(Ky,y)−1]

nn

[(Ky,y)−1]nn
,

∂σ2
n

∂θj
=
[
Zj(Ky,y)−1]

nn

[(Ky,y)−1]2nn
,

(15)

where Zj , K−1
y,y

∂Ky,y
∂θj

and α is defined as in previous section. Using the chain rule, the
derivative of the LOO likelihood is then

∂L
∂θj

=
N∑
n=1

∂ log p(yn|y−n,θ)
∂µn

∂µn
∂θj

+ ∂ log p(yn|y−n,θ)
∂σ2

n

∂σ2
n

∂θj

=
N∑
n=1

(
αi[Zjα]n −

1
2

(
1 + α2

n[
(K−1

y,y
)
]nn

)[
Zj(Ky,y)−1]

nn

)
/
[
(Ky,y)−1]

nn
.

(16)

The computational complexity is O(N3), dominated by the N ×N matrix multiplication calcu-
lating Zj . Thus, using a gradient based optimization algorithm for LOO cross-validation is more
expensive than the MAP estimate. However, due to the fact that it is formulated to minimize
the prediction error, LOO cross-validation generally has better performance empirically. For
this reason, we can first use MAP to coarsely find the hyperparameters and fine-tune them
using LOO cross-validation gradients. The combination of both approaches ensures that good
performances are attained at moderate computational costs.

6



3 Reduced-order data-driven forecast models
Building on the GPR framework, we propose a purely data-driven method for constructing
reduced-order dynamical models for nonlinear chaotic systems. It is assumed that we have
no access to the analytical expressions for the vector field representing the dynamics of states;
instead, we only have access to some sample data consisting of the state vector u and its rate of
change u̇: D = {u(n), u̇(n), n = 1, ..., N | u, u̇ ∈ RD}. We also assume that the data originate
from an ergodic system u̇ = g(u) that has reached its statistical steady state. In addition we
assume, for the purpose of algorithm training that the data points and are noise-free. It is not
required that u and u̇ are arranged in time order.

We are primarily interested in the case where the states ui are in general high-dimensional but
‘live’ on a manifold with low intrinsic dimensionality. However, we also assess the performance
of the developed framework when this is not necessarily the case. To construct a predictive
dynamical model from D satisfying these assumptions we follow three major steps:

1. Derive reduced-order representations/embeddings y ∈ Rd and ẏ ∈ Rd of the given data
u ∈ RD and u̇ ∈ RD, where d� D.

2. Learn GPR models for each component of ẏ as a function of the reduced state y. This will
result in GPR models with independent hyperparameters for each component ẏi, i = 1, ..., d
in the reduced-order space.

3. Formulate stochastic models for y in the reduced-order space using GPR dynamics.

Step 1: Order-reduction
The first step aims to provide a mapping from each state vector u(n) in theD-dimensional ambient
space to a representation y in a reduced d-dimensional space. In doing so, the intrinsically low
dimensional structure of the data is extracted and exploited to facilitate efficient modeling. The
procedure for finding such a map is generally known as dimensionality reduction and is by itself
an active area of research. Many techniques, linear and nonlinear, have been established and
used with great success in a variety of applications. It is not our focus in this work to select the
best possible procedure for each application. Instead, we will only use a few state-of-the-art
methods and assess their performance when integrated with the GPR data model.

After dimension reduction, we obtain the low-dimensional coordinates for all training data,
and more importantly a mapping ψ(u) 1 which can be used to convert any non-training data to
its low-dimensional representation. We can then easily use this map along with ambient space
dynamics u̇ to find the reduced space dynamics by evaluating the limit

ẏ = lim
∆t→0

ψ(u + ∆tu̇)− ψ(u)
∆t . (17)

Here we have assumed that dimension reduction is performed ‘imperfectly’, as often is
the case in realistic applications. Through dimension reduction, the state vectors are usually
transformed in a way that allows us to rank the coordinates by their importance and truncate the
ones deemed ‘unimportant’ by the ranking criteria. However, it is realistically impossible for the
dynamics to be decoupled during the same process. As a result, the truncated coordinates still
play roles in deciding the dynamics of the preserved coordinates, which leads to the unfortunate
existence of non-unique dynamics. Figure 1 (left) illustrates this phenomenon, using the Lorenz

1can have no explicit function form and instead depends on training data, which are not included in the
function argument for clarity
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Figure 1: [left] Lorenz 63 attractor: in reduced state space, uncertainty in the reconstructed
vector field is observed; zoomed-in plot shows two groups of intersecting/conflicting trajectories
(red and blue) in 2-dimensional PCA projected space; without additional information, a given
state has two equally likely future states in the projected space [right] probabilistic modeling of
dynamics in a 2-dimensional reduced space: a point is marched to a Gaussian distribution; mean
is connected with long-dashed arrow; aspect ratio of equiprobability contours is characterized
by the variances predicted by the GPR.

63 system. The attractor has a fractal dimension that is slightly higher than 2 and the principal
component analysis is capable of generating a two-dimensional embedding containing 96% of the
total variance. Plotting the trajectories in the reduced space reveals the presence of non-unique
dynamics as suggested by intersecting trajectories. Furthermore, due to the fact that dynamics
are constructed with a finite number of training examples, predictions are made with different
levels of confidence depending on the location of the input with respect to the training data (i.e.
potential interpolation error). These two factors motivate the use of a probabilistic description
for the reduced-order dynamics. This makes a GPR-based dynamics model particularly suitable
in reduced-order space.

Step 2: Gaussian Process Regression
In the second step, we train d independent GPR models, one for each component of the reduced
dynamics ẏ, by estimating the corresponding hyperparameters with the methods described in
section 2.2. The models take in all components of the reduced state vector y as the common
input. We can write the GPR models in the form

ẏi = Gi(y,Di,θi) = N
(
fi(y,Di,θi), σ2

i (y,Di,θi)
)
, (18)

where Di denotes the training data set {ẏ(n)
i ,y(n)|n = 1, ..., N}. In the theorem below we

will show that such a model offers a clean way to quantify the uncertainties in the predicted
dynamics arising from both of the major sources, namely interpolation and truncation errors.

Theorem 1. For the GPR dynamical model (18) with a squared exponential covariance
function of the form (3), the variance of the estimated derivative is bounded by the observation
noise and the first hyperparameter as follows:

σ2
i (y,Di,θi) ≤ θi,1 + θi,3,
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where θi,1 denotes the hyperparameter θ1 for model Gi and θi,3 = σ2
noise,i. The first term on

the right hand side accounts for uncertainties arising from interpolating discrete training data,
while the second component accounts for uncertainty due to order-reduction and/or observation
errors.

Proof: Let us consider the predicted variance for a single test case using (9)

(σ∗i )2 = k(y∗,y∗)− k∗,f (Kf ,f + σ2
noise,iI)−1kf ,∗,

where k(y∗,y∗) = θi,1 + θi,3 and k∗,f , kf ,∗ are row and column vectors respectively. Since
k(·, ·) ≥ 0, k∗,f ≥ 0 and kf ,∗ ≥ 0. Thus (σ∗i )2 is maximized when k∗,f , kf ,∗ approach 0. This
corresponds to the case where the test input y∗ is distant from all training inputs so that the
exponents in the covariance function all approach −∞. The resulting (σ∗i )2 then takes the value
θi,1 + θi,3.

To understand the role of each term in the derived bound, we look at a hypothetical ‘perfect’
training data set for y∗, where all training pairs (yi, ẏi) have the same input as the test case,
i.e. y = y∗ for all y ∈ Di.

Then,
k = θi,1 for every entry in k∗,f ,kf ,∗ and Kf ,f .

As a result, Kf ,f + σ2
noise,iI and its inverse both have simple structures and it can be easily

verified that
k∗,f (Kf ,f + σ2

noise,iI)−1kf ,∗ =
Nθ2

i,1

σ2 +Nθi,1
,

where N is the number of training cases and the dimension of Kf ,f . Thus we have the limit

lim
N→∞

k∗,f (Kf ,f + σ2
noise,iI)−1kf ,∗ = θi,1.

It follows that
lim
N→∞

(σ∗i )2 = θi,1 − θi,1 + θi,3 = θi,3.

This corresponds to the minimum value of σ∗2i , where the interpolation process (GPR) causes
zero uncertainty in the predicted dynamics. The entire variance can be attributed to external
factors, primarily the effect of the truncated coordinates in this case. This completes the proof.

Step 3: Formulation of the stochastic model
We can now use GPR dynamics to construct stochastic models. The simplest and most natural
approach is to utilize a diffusion process with drift and diffusion coefficients obtained directly
from the GPR:

(dyi)GPR = fi(y,Di,θi)dt+ σi(y,Di,θi)dWi, (19)

where Wi denotes a standard Wiener process. The drift and diffusion coefficients are the mean
and uncertainty of the GPR models Gi. By numerically solving (19) for an ensemble of Monte
Carlo samples, the reduced-order states can be forecasted along with associated uncertainty
quantifications. Note that more complicated stochastic models may be utilized in order to take
into account time correlation of the noise. However, in the present context we resort to the most
straightforward option of uncorrelated noise with spatially non-homogenous intensity.
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3.1 Benchmark: Mean stochastic model (MSM)
We now give a brief overview of the mean stochastic models approach. This is simple but yet
powerful method for uncertainty quantification and filtering of reduced-order set of variables
describing turbulent systems [5]. The method, although data-driven, is very different in nature
from the presented framework since it relies on the global statistics of the system attractor, rather
than local information. Nevertheless, a comparison with the presented approach will reveal
the types of systems and dynamical regimes where it is advantageous to use local dynamical
information through GPR instead of the much cheaper MSM method.

In MSM the main idea is to build up the model with two statistical equilibrium properties,
the energy spectrum and damping time scales for each considered variable. In particular, the
components of the reduced state are modeled as diffusion processes having the form

(dyi)MSM = ciyidt+ ξidWi, (20)

where ci and ξi are constants calculated from data, making (20) an Ornstein-Uhlenbeck (OU)
process. In the statistical steady state, model variable yi has zero mean2. Its energy/variance
Ei and decorrelation time scaled Ti are given by

Ei,MSM = var (yi)MSM = −ξ2
i /(2ci), Ti,MSM = −1/ci. (21)

On the other hand, energy and decorrelation time of the data set can be calculated by

Ei = var (yi) = E [yiyi] and Ti =
∞∫

0

E[yi(t)yi(t+ τ)]
var (yi)

dτ, (22)

where the overhead bar represents taking the complex conjugate if the reduced modes are
complex-valued. Assuming this information is readily available, the variance and decorrelation
time of the MSM can be matched with those of the real data by letting [5]

ci = −1/Ti, ξ =
√

2Ei/Ti. (23)

By design, MSM behaves similarly to the real system in the statistical steady state. The
damping and diffusion components mimic the nonlinear interactions between different modes
by removing and injecting energy into the system, respectively. The MSM can be especially
effective for highly chaotic systems because their behaviors are dominated by turbulent nonlinear
interactions whose energy flow bears greater resemblance to the random process used in the
model.

3.2 Blended GPR-MSM forecast models
One apparent drawback of the reduced-order GPR method is the absence of any mechanism to
ensure that trajectories stay on the attractor. Indeed, Theorem 1 implies that GPR naturally
associates more uncertainty in ‘off-attractor’ regions where no training data is present. Therefore,
once a trajectory is driven into such regions, close-to-zero drift coefficients and large diffusion
coefficients will be repeatedly generated and very likely will drive the trajectory farther away
from the attractor.

To address this issue, we formulate a blended GPR - MSM approach: GPR model is used
in regions well encapsulated by training data or else MSM dynamics is used. Note that the

2which we assume to match that of the real data, as satisfied automatically by many dimension reduction
methods; in case this is not true for the reduced data, it will need centering and the modeled quantity instead
measures the deviation from the real data mean
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Figure 2: Blended GPR-MSM forecast for Lorenz 63: red dots are test points whose χ value
(relative to a training data time series of size 10,000) are close to the threshold δ = 0.2 and
they form a decision boundary in the two-dimensional reduced space. Dynamics are determined
by GPR when a point lies inside the boundary and by MSM otherwise. The corresponding
two-dimensional joint density for the training data, generated by a bivariate kernel estimator, is
shown in the back.

variance produced by model (18) offers an easy way to determine whether an excessive amount
of uncertainty is due to the training data not covering the current state very well, by comparing
it with the maximum possible interpolation uncertainty θi,1.

Hence, we define the following composite indicator function to facilitate selection of the more
appropriate dynamical model:

χ(y) =
d∏
i=1

1

(
σ2
i (y)− σ2

noise,i

θi,1
< δ

)
(24)

where δ is a threshold level between 0 and 1, and 1(·) is an indicator function which takes an
expression as its input and returns 1 if the expression is true and 0 otherwise.

In this way, χ returns a value of 1 only if the interpolation uncertainty y falls below a
certain percentage of its maximum possible value. This function is equivalent to drawing a d− 1
dimensional contour object in the reduced state space and assigning all points inside to have
function values of 1. This is a natural estimate of the ‘trust region’ in the reduced space where
GPR dynamics is supported by well positioned training data to produce reliable results. Figure
2 shows an example of trust region in the case of Lorenz 63 system. The resulting decision
boundary is an ‘envelope’ that encloses the majority of the training data. In general, GPR
dynamics is used when interpolation with the available data is feasible and MSM is used when
extrapolation is required. Most importantly, the χ criterion (24) is extremely cheap to evaluate
and with almost no additional computational expense besides computing the predicted variance.
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When implementing the forecast, GPR model is used if χ evaluates to 1 on the current state
and MSM model is used otherwise. Following this criterion, our blended-dynamics model can
be written as (

dyi
dt

)
mixed

= χ(y)
(
dyi
dt

)
GPR

+ (1− χ(y))
(
dyi
dt

)
MSM

. (25)

This blended-dynamics model has the advantages of both GPR and MSM dynamics. In short
times scales dynamics are dominated by GPR to produce more accurate short-term forecast,
whereas for longer time scales MSM dynamics dominate to ensure that key statistical properties
of the ensemble match with those of the real attractor. With this set of properties we have a
data-driven scheme that is not necessarily characterized by a stable linear operator (as it is
the case for example in physics-constrained models [16, 17]), but on the other hand ensures
stability of second-order statistics in the long time regime. This is particularly important for the
dynamics within the reduced-order subspace of a turbulent system characterized by unstable
linear dynamics (see e.g. [18]).

4 Applications
In this section, we demonstrate the performance of our proposed methods in three different
applications originating from different fields of study and exhibiting varying levels of chaotic
behaviors.

4.1 Kuramoto-Sivashinsky equation
We first study the Kuramoto-Sivashinsky (K-S) equation, originally developed by Kuramoto to
model the angular-phase turbulence of a reaction diffusion system [37], and by Sivashinsky to
model perturbations of a plane flame front propagating in a fuel-oxygen mixture [38]. Here we
work with the one-dimensional K-S equation in derivative form:

∂u

∂t
= −ν ∂

4u

∂x4 −
∂2u

∂x2 − u
∂u

∂x
,

u(0, t) = u(L, t) = ∂u

∂x

∣∣∣∣
x=0

= ∂u

∂x

∣∣∣∣
x=L

= 0,

u(x, 0) = u0(x),

(26)

where u is the modeled quantity depending on spatial variable x ∈ [0, L] and time variable
t ∈ [0,∞). ν > 0 is a physical constant representing viscosity. Dirichlet and Neumann boundary
conditions are assigned to ensure that the system is ergodic [39].

(26) is discretized spatially with 2nd order accurate finite difference schemes to produce a
coupled system of ordinary differential equations:

dui
dt

= −ν ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

∆x4 − ui+1 − 2ui − ui−1

∆x2 −
u2
i+1 − u2

i−1
2∆x , (27)

where ui represents the value of u at the ith node, i.e. ui = u(xi) = u(i∆x) = u( iLD ),
i = 0, 1, ..., D + 1 and D is the number of discretized fields in [0, L]. In this example we use
D = 512. Boundary conditions are satisfied by letting u0 = uD+1 = 0 and including additional
ghost nodes u−1 = u1, uD+2 = uD to account for the Neumann boundary conditions.
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Figure 3: Contour plots for u(x, t) at different ν values in steady state. The system becomes
more chaotic for smaller values of ν.

Data is simulated by solving (27) for 5000 time units at intervals of 0.2, after an initial
spin-up period of 1000 units. The first 60% of the data (15000 points) is used for training, and
the remainder is used for testing the prediction skills of the proposed methods.

The chaotic behavior of the K-S equation is dependent on the bifurcation parameter L̃ =
L/2π

√
ν [40]. The system displays higher levels of chaos for bigger values of L̃ (see Figure 3).

To test out the performance of our proposed methodology in different chaotic regimes, L is
kept fixed at 16 and ν is changed to produce different values of L̃ and thus differently chaotic
systems. Here we study the prediction skills for two particular systems: ν = 1/10 and ν = 1/16.

4.1.1 Dimension Reduction: Principal Component Analysis

Applying our proposed method for constructing a data-based model, dimension reduction is
first performed on the 512-dimensional K-S system data. Here we employ the most basic linear
reduction method - principal component analysis (PCA). In particular we reduce the system
state as

a = WT
d ũ (28)

where Wd is the d eigenvectors of the covariance matrix Cuu corresponding to the d largest
eigenvalues. The tilde reflects the fact that the mean state u must be subtracted from data
before the transformation, i.e. ũ = u− u. Such a reduced representation ensures that as much
variance is retained in its d components as possible when limited to using a linear projection.
The spectrum (eigenvalues of the covariance matrix) as well as the mean for different values of
ν are shown in Figure 4.

4.1.2 Model Simulations and Results

We train d GPR models by learning the appropriate hyperparameters using methods described
previously. Figure 5 shows some example GPR model predictions for the dynamics of the first
principal component in 10- and 20-dimensional reduced space using the optimized hyperparame-
ters respectively. When the model is constructed on a 20-dimensional reduced-order space, much
smaller uncertainties are predicted for the dynamics because the unmodeled modes contain
smaller percentages of the overall system energy and thus less prominent effects.
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T
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0 u dt and (bottom) energy spectrum

Ek vs. k for different values of ν; systems with lower ν (more chaotic) have greater average
oscillations near the Dirichlet boundary conditions and slower drop-off in their energy spectra.
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Figure 5: Validation plots: predicted dynamics of the first principal component ȧ1 with (left)
d = 10 and (right) d = 20; predicted mean (red solid) is compared with the true test point
dynamics (yellow dashed); shaded regions capture 2σ1 on both sides of ȧ1. Horizontal axis
corresponds to index of the test point.

The model parameters for the MSM and blended models are also calculated using the same
data series. All models are solved by numerical integration with the Euler-Maruyama method
and a time step of ∆t = 0.02. For each run we evolve 50 independent paths, whose initial
conditions are drawn from a Gaussian distribution with variance 1 in all dimensions of the
original space centered around the initial condition. The integrations are carried out to T = 5.

14



To evaluate the performance of the scheme we compare the model prediction with the true
state. As truth we consider the trajectory evolved from the initial condition u0 with the exact
equations (27). The true state in physical space is then projected onto the most energetic
principal components to give the true reduced-order state, denoted by at. The comparison is
performed for the same initial conditions. As a metric, the standard root mean squared error
(RMSE) is used

RMSE =

√√√√ 1
V

V∑
i=1

(
af
l

(i) − at
l
(i)
)2
, (29)

where subscript l denotes the forecast/truth for the lth leading principal component; V is the
total number of initial conditions tested. The RMSE is calculated at successive time instances
to generate error curves characterizing the evolution of error with time. Figure 6 shows the
reduced-space RMSE curves for predicting the K-S system at ν = 1/10 and ν = 1/16. In each
plot, we have included four error curves: (1) invariant measure corresponding to the error for
using the (constant) attractor mean as the prediction, (2) MSM forecast, (3) reduced GPR model
with 20 principal components (4) mixed GPR-MSM with 20 principal components. ν = 1/10
corresponds to a less chaotic regime, where 20 principal components account for approximately
85% of the total variance. For ν = 1/16, the system is much more chaotic and the attractor
has a higher intrinsic dimension. In this case, the first 20 principal components account for less
than 80% of the total variance.

From the simulation results we observe that for the weakly chaotic regime ν = 1/10 the
reduced-order GPR performs better than the much less expensive MSM. However, the error
does not stabilize and shows signs of diverging in the long run. This problem is not present
for the blended scheme where the error remains bounded as in MSM and converges properly
to the invariant measure; this is not obvious in the plots due to the extremely slow damping
coefficients ci. In the more chaotic regime ν = 1/16, trajectories are much more sensitive to
initial conditions. As a result, the same 20 principal components are expected to capture less
percentage of the overall dynamics. This is manifested in the error curve as it grows much faster
to the invariant measure and the prediction performance of the reduced GPR model is now
comparable to that of the MSM. From these results it is clear that a low intrinsic dimensionality
is important in order for the developed data-driven scheme to perform well. For highly turbulent
systems where this is not the case the less expensive MSM models is the better option.

0 0.5 1 1.5 2 2.5 3 3.5 4

t

0

0.2

0.4

0.6

0.8

1

G
P

R
 f

o
re

c
a

s
t 

ra
ti
o

ν = 1/16, mixed GPR 20 modes
ν = 1/10, mixed GPR 20 modes

Figure 7: Percentage of ensemble members forecasted with GPR over time for ν = 1/10 and
ν = 1/16.

Figure 7 shows the average value of χ vs. time. The proportion of ensemble members
forecasted with GPR drops off much faster in the more chaotic regime due to more trajectories
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Figure 6: RMSE comparison for the K-S system with (a) ν = 1/10 and (b) ν = 1/16. Standard
deviation of the attractor (blue dashed line); MSM (red dashed line); 20 principal components
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approaching edges of the attractor more quickly. Meanwhile, the steady state mixture ratio for
ν = 1/10 is smaller due to the slow damping coefficients: it takes longer for MSM to drive a
trajectory back than for GPR to diffuse it away from the attractor. Hence, trajectories are more
likely to be governed by MSM in the long term.

4.2 Lorenz 96 System
In the second application we investigate the predictions skill of the developed scheme on the
Lorenz 96 (L96) system, originally developed to crudely model the large scale behavior of the
midlatitude atmosphere [41]. L96 is governed by the following system of nonlinear ordinary
differential equations:

dXj

dt
= (Xj+1 −Xj−2)Xj−1 −Xj + F, (30)

where Xj , j = 0, ..., J − 1, represent the "atmospheric variable" discretized spatially. Following
[41], we use J = 40. Periodic boundary conditions are applied. The system consists of a
nonlinear advective-like term (Xj+1−Xj−2)Xj−1, a linear dissipative term −Xj and an external
forcing term F > 0. The interactions amongst these terms conserve the total energy of the
system and keep all Xj always bounded. The system has a trivial equilibrium solution at
X0 = ... = XJ−1 = F , which is unstable for sufficiently large values of the forcing parameter F .
As we increase the value of F , the system moves from weakly chaotic regimes to fully turbulent
[1], as shown in the contour plots in Figure 8.

Data in this application is simulated by integrating (30) from a single initial condition
randomly perturbed from the equilibrium solution by a small amount for 10000 time units. Four
sets of data are generated corresponding to F = 4, F = 6, F = 8 and F = 16. In all cases,
a 4-step Runge-Kutta method is used with a time step of ∆t = 0.01. 60% of data is used for
training and the rest is used for testing.

Figure 8: Contour plots for the L96 system exhibiting different levels of chaos as F changes.
F = 16 system is much more turbulent than F = 8 system

4.2.1 Dimension Reduction: Fourier Analysis and Truncation

Following [42] we pre-process the data by applying the following re-scaling and shifting, so that
transformed variables X̃j have zero mean and unit energy (defined as 1

2
∑
j X̃

2
j ):
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Xj = X + E1/2
p X̃j and t = E−1/2

p t̃, (31)

where X is the mean state and Ep is the average variance in energy fluctuation calculated as:

Ep = 1
2T

J−1∑
0

∫ To+T

To

(Xj −X)2. (32)

Substituting (31) into (30), we arrive at the following rescaled L96 model:

dX̃j

dt̃
= E−1

p (F −X) + E−1/2
p ((X̃j+1 − X̃j−2)X − X̃j) + (X̃j+1 − X̃j−2)X̃j−1. (33)

We then define the discrete Fourier transform and its inverse on the rescaled variables:

X̂k = 1
J

J−1∑
j=0

X̃je
−2πikj/J , X̃j =

J−1∑
k=0

X̂ke
2πikj/J , (34)

while the energy of each Fourier mode X̂k is defined as

Ek ≡ V ar(X̂k) = (X̂k(t̃)− X̂k)(X̂k(t̃)− X̂k)∗. (35)

The resulting energy spectra Ek for Fourier modes k = 0, ..., 20 under different forcing is shown
in Figure 9. We observe that L96 has very different energy levels in its Fourier modes, especially
in the weakly chaotic regimes. Therefore, a simple and natural way to construct a reduced-order
model is to use a few of its most energetic Fourier modes to form a truncated low-dimensional
representation of the whole system and model the effects of the ignored modes stochastically.
The most energetic modes for each forcing is summarized in Table 1. Note that F = 6, F = 8
and F = 16 energy spectra share the same 6 most energetic Fourier modes in slightly different
orders. Note that the most energetic modes may not necessarily be the most dynamically
relevant ones [43]. However, here we focus on quantifying the approximation properties of the
proposed scheme within a given subspace; the selection of this subspace is a different issue,
which is problem- and context-dependent.
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Forcing Regime Selected Wavenumbers k (ordered by energy Ek)
F = 4 7, 10, 14, 9, 17, 16
F = 6 8, 7, 9, 10, 11, 6
F = 8 8, 9, 7, 10, 11, 6
F = 16 8, 9, 10, 7, 11, 6

Table 1: Most energetic Fourier modes used to construct reduced-space GPR models in each
forcing regime.

4.2.2 Model Simulations and Results

The six Fourier modes with the highest energy, Ek, in each regime are used as the reduced-order
representation of the system state. Since the modes are complex-valued, the reduced space is in
fact 12-dimensional. Independent GPR models are constructed for the dynamics of both the
real and imaginary parts of the top six Fourier modes.

Figure 10 shows some examples of predicted dynamics for the real part of the most energetic
Fourier mode in each forcing regime, along with the true dynamics estimated from finite
differences. For F = 4, the dynamics can be predicted almost perfectly with very little error.
As F increases, the predicted dynamics remain close to the true value and well encapsulated
within the two standard deviation interval. However, the predictions come with increasingly
larger uncertainties as the unmodeled modes contain more energy and have bigger impact on
the dynamics of the modeled modes. This is a similar pattern also observed in the K-S system.

Using these GPR models, reduced space dynamics are forecasted for 1000 initial conditions
randomly drawn from the test data set. Each initial condition is made Gaussian with covariance
0.1I in the original space. The true state is obtained by running an ensemble using the model
equations (30) and then applying rescaling and Fourier transform. The RMSE between the
predicted mean state and the true mean state is calculated using definition (29), with the
exception that square of the complex absolute value is used instead. Results for MSM and
blended models are also presented for comparison. The results are shown in Figure 11.

For F = 4, the RMSE of the reduced-order GPR prediction is much lower compared to that
of MSM method in the short term. However, due to chaos in the system, error is amplified
quickly and grows beyond the variance of the system. For F = 6, the reduced-order GPR
still produces significantly better short-term prediction than the MSM, but the gap is visibly
smaller than in the less chaotic F = 4 case. As forcing is increased, the gap further closes and
the short-term performance of the reduced GPR and MSM becomes comparable to each other.
This is a reasonable trend taking into account that the six modeled modes contain a smaller
proportion of the total energy as the systems becomes more chaotic. The dynamical effect of the
unmodeled modes become increasingly significant, to the extent that makes them collectively
more important than the modeled modes. Thus, the diffusion term in (19) dominates and the
model behaves similarly to MSM. Hence, taking into account the low computational complexity,
MSM is the appropriate model to use in very turbulent regimes. To increase the power of the
reduced GPR approach in these highly turbulent regimes, a larger number of Fourier modes is
required.

The results also showcase the mixture model as an effective middle ground between the
reduced GPR and MSM forecast, possessing both the short-term accuracy of the former and the
long-term stability of the latter. Figure 12 shows the percentage of the ensemble for which GPR
dynamics is used as time evolves. We observe that the rate of drop in this percentage increases
with F and is consistent with the rate of increase in the average RMSE for the reduced GPR
forecast.
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Figure 10: Validation plots for the dynamics of the most energetic mode of F = 4, F = 6,
F = 8 and F = 16 with the GPR model (red solid), true test point dynamics (yellow dashed)
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4.3 A barotropic climate model
We now investigate the effectiveness of the proposed method on a spectral barotropic model on
a spherical earth with realistic orography [44]. This model has its forcing parameters calculated
from observations so that the climatological mean and low-frequency variability is realistic. The
model equation is given by

∂ζ

∂t
= −J(ψ, ζ + f + h)− ζ

τ
+K∆3ζ + F (36)

where ζ represents relative vorticity, f = 2Ω sin θ is the Coriolis parameter (Ω is the angular
velocity of the earth), h is the Ekman damping coefficient,K is the coefficient of the scale-selective
damping, and F is the external time-dependent forcing. Furthermore, ψ is the corresponding
stream function such that ζ = ∆ψ. Under appropriate nondimensionalization, this equation has
unit length equal to the radius of the earth and unit time equal to the inverse of the angular
velocity of the earth. The Jacobi operator J(a, b) is defined as
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Figure 11: RMSE comparison of the three most energetic modes for L96 in different forcing
regimes (units for both horizontal and vertical axes correspond to those before rescaling (31)).
Standard deviation from the attractor mean (blue dashed line); MSM (red dashed line); GPR
(yellow solid line); blended GPR-MSM (purple solid thick line). All results are obtained by
averaging over 1000 test initial conditions.
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J(a, b) =
(
∂a

∂λ

∂b

∂µ
− ∂a

∂µ

∂b

∂λ

)
(37)

where µ is the sine of the latitude and λ is the sine of the longitude. The nondimensionalized
orography h is related to the real orography h′ by h = A0h

′/H where A0 = 0.2 defines the
strength of the wind blowing on the surface of the orography and H = 10km is a height scale
[45]. The model is truncated at T21. By restricting the spectral model to modes whose zonal
wavenumber and total wavenumber sum up to even numbers, a model of hemispheric flow is
obtained with a total number of 231 variables. The data used to set up the GPR and MSM
models is acquired by integrating equation (36) for 105 days after an initial spin-up period of
1000 days, using a fourth-order Adams-Bashforth integration scheme with a 45-min time step.
The Ekman damping time scale is set to 15 days and the strength of the scale is selected such
that wavenumber 21 is damped at a time scale of 3 days. The spatial domain (spherical surface)
is discretized into a D = 64× 32 grid with equally spaced latitude and longitude. 80% of data is
randomly selected and used for training while the rest is used for testing. Figure 13 top shows
the mean and variance of the statistical steady state.

4.3.1 Dimension Reduction: Classical Multidimensional Scaling

For the dimension reduction portion of this problem, we use a generalized version of the classical
multidimensional scaling (MDS) procedure. It is motivated by the idea of preserving scalar
products, i.e. the lower-dimensional embedding for a data set should be created such that
the original pairwise scalar products are preserved as much as possible. Hence, assuming the
products are clearly defined in both the original and the reduced space3, MDS seeks to solve
the minimization problem

min
y1,...,yN

∑
i<j

(sζ(i, j)− sy(i, j))2 (38)

where sζ and sy respectively denotes the product function defined in the original ζ space and
the reduced y space. (i, j) are indices of the data between which products are calculated. This

3PCA is equivalent to MDS if the distance measures in both spaces are defined to be the scalar vector (dot)
product; hence PCA is also called classical MDS
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Figure 13: The mean (top left), variance (top right) and energy spectrum (bottom) of the T21
barotropic model in statistical steady state.

objective function minimizes the total squared error between pairwise products. When sy is
chosen to be the scalar vector (dot) product, the analytical solution to this optimization problem
can be obtained. Let [W ]ij = sζ(i, j) be the Gram matrix, and its eigenvectors be sorted
in descending order by absolute value: |κ1| ≥ |κ2| ≥ ... ≥ |κN |. The optimal d-dimensional
embedding for a training point ζn under (38) can be written in terms of the eigenvectors of the
W , Wvl = κlvl, with vl = [v1,l, ..., vN,l]T , as follows

yn =


κ

1/2
1 vn,1

κ
1/2
2 vn,2

...
κ

1/2
d vn,d

 . (39)

Since equation (38) in matrix form can be also interpreted as finding the best low-rank
approximation to the Gram matrix in terms of the Frobenius norm, the optimality of (39) can be
proven by the Eckart-Young-Mirsky theorem. Specifically for this problem, we use the standard
kinetic energy product as measures of proximity between states, which preserves the nonlinear
symmetries of the dynamics for the system (36):

sζ(i, j) = 〈ζi · ζj〉 =
∫
S
∇ψi · ∇ψj dS = −

∫
S
ζiψj dS = −

∫
S
ζjψi dS. (40)

The energy spectrum associated with this definition of sζ is shown in the bottom Figure 13.
Note, however, that (39) only gives the optimal embedding for the N training points used to
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Figure 14: The four most energetic empirical orthogonal functions of the climatology.

construct the Gram matrix W . To calculate the embedding for a new point, it is convenient
to first find the empirical orthogonal functions (EOFs) corresponding to each dimension of the
reduced-order space

φm =
N∑
n=1

κ−1/2
m vn,mζn, (41)

where m runs from 1 to d. The EOFs share the same dimension with ζ and naturally ranked
according to their energy level. In addition, they are orthogonal with respect to the energy
product (40), i.e. 〈φm1 ,φm2〉 = δ(m1,m2), where δ denotes the Kronecker-delta function. The
first four EOFs are shown in Figure 14. They account for 13.5%, 11.4%, 10.4% and 7.1% of the
total energy respectively. Moreover, these EOFs bear resemblance to realistic climate patterns.
For example, the first EOF is characterized by a center of action over the Arctic that is surrounded
by a zonal symmetric structure in midlatitudes, similar to the Arctic Oscillation/Northern
Hemisphere Annular Mode (AO/NAM) [46]. The second, third and four EOFs are comparable
to the East Atlantic/West Russia [47], the Pacific/North America (PNA) [48] and the Tropical
/Northern Hemisphere (TNH) [49] patterns respectively. Therefore, predictions for these EOFs
have high practical significance because they are analogous to predicting corresponding climate
patterns.
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The calculated EOFs act as mode shapes and the components of y as the coefficients for
these mode shapes, since it can be easily verified that ζ =

∑N
m=1 ymφm for a full expansion

d = N . Thus, using the orthogonality property, the reduced representation y∗ for a new state
ζ∗ can be obtained by taking inner products (40) with the EOFs, i.e.

y∗ =


〈ζ∗,φ1〉
〈ζ∗,φ2〉

...
〈ζ∗,φd〉

 (42)

4.3.2 Model Simulations and Results

Here we use d = 30, as φd contains only about 3% of φ1’s energy. Similarly to the previous
applications, 30 GPR models are trained for real-valued ẏ1, ..., ẏ30. 1000 points are randomly
picked from the attractor and used as the testing initial conditions. Centered around each initial
condition, a Gaussian ensemble with a small variance (1× 10−3) along each dimension is formed
and marched forward using the reduced-order GPR, MSM and blended modeling approaches
respectively. We then calculate the average RMSE of the predictions measured against the true
states calculated using the true dynamics. The resulting error comparison is shown in Figure 15.

We observe that the reduced-order GPR approach in the short term significantly outperforms
the MSM predictions: the GPR error curves generally take 300 to 400 hours to reach the
standard error of the real attractor - at least three times longer than the 100 hours offered by
the MSM forecast. This is because the reduced GPR approach takes better advantage of the
inherent low-dimensional structure of the underlying attractor. It models the energy change for
each mode due to nonlinear effects much more precisely. The considered climate model is much
less turbulent than the Lorenz 96 system with F ≥ 16, for which all models have comparable
performance due to the strongly turbulent character of the attractor. In particular, the rates of
change in the modeled modes are much higher at some locations than others. GPR performs
better at differentiating these fast-growing regions of the attractor from the relatively steady
ones while MSM only admits similar rates of change everywhere and for all times. Hence, when
averaged over a larger number of initial conditions, the GPR-based forecasts have much better
performance overall.

The introduction of mixture model in this case does not compromise the prediction perfor-
mance of the GPR in the short term like in the F = 6 regime of L96 system. It helps effectively
control the variance to match that of the true system in the statistical steady state.

5 Conclusions
We have formulated a reduced-order data-driven prediction method for chaotic dynamical
systems using the Gaussian Process Regression (GPR) technique. The developed approach
characterizes reduced-order dynamics in terms of a deterministic and a stochastic component.
The deterministic component mainly embodies the dynamics due to the explicitly modeled
dimensions/modes while the standard error represents dynamics uncertainty due to sources such
as the unmodeled modes and interpolation errors. Based on these two components, a purely
data-driven stochastic model is formulated in the reduced-order space and solved to provide a
probabilistic forecast for the most important modes of the system. This modeling technique is
highly generic and can adapt to a wide variety of nonlinear chaotic systems.

For dynamical systems exhibiting different levels of turbulence/chaotic behaviors, comparison
is carried out on the basis of the root mean squared error (RMSE) between trajectories forecasted

25



0 100 200 300 400 500

time (hours)

0

0.02

0.04

0.06

R
M
S
E
(y

1
)

0 100 200 300 400 500

time (hours)

0

0.02

0.04

0.06

R
M
S
E
(y

2
)

0 100 200 300 400 500

time (hours)

0

0.01

0.02

0.03

0.04

R
M
S
E
(y

3
)

0 100 200 300 400 500

time (hours)

0

0.01

0.02

0.03

R
M
S
E
(y

4
)

0 100 200 300 400 500

time (hours)

0

0.01

0.02

0.03

R
M
S
E
(y

5
)

0 100 200 300 400 500

time (hours)

0

0.01

0.02

0.03
R
M
S
E
(y

6
)

Figure 15: RMSE comparison for 6 most energetic modes in T21 system: standard deviation
of the attractor (blue dashed line); MSM (red dashed line); GPR (yellow solid line); blended
forecast (purple solid thick line); All results are obtained by averaging over 1000 test initial
conditions.

with model dynamics and real dynamics. In addition, the mean stochastic model (MSM) method
is also implemented as a benchmark method. Numerical experiments demonstrate that the GPR-
based forecast has much lower errors provided that the attractor has low intrinsic dimensionality,
i.e. the majority of the energy in the system is captured in the reduced dimensions whose
dynamics are explicitly modeled. However, this condition becomes more difficult to satisfy as
the system becomes more turbulent since energy tends to spread out in more modes than that
can be efficiently included in the GPR models. As a result, the GPR dynamics are dominated
by their stochastic components and prediction performance is comparable to that of the MSM.
Moreover, long-term error of GPR forecast does not naturally converge to the standard error of
the attractor. To resolve this issue we develop a blended GPR-MSM model so that GPR is only
performed at locations enclosed by sufficient training data. The blended approach guarantees
stable and consistent steady-state behavior matching that of the attractor.

There is a number of promising directions towards which studies can be extended. One
possible such direction is to use adaptive modeling such that different hyperparameters and/or
training data sets are used to make forecasts at different locations on the attractor. In this way,
we can improve the prediction skill in rapidly-changing regions by using finer length scales and
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more data evidence while maintaining high accuracy with smaller training data sets and bigger
length scales in smooth regions. Even though this comes at the expense of more computation
costs, sparse GPR algorithms (see [50]) can be used. Another direction is to take into account
correlations in the prediction of dynamics between different variables from the reduced-order
space, instead of modeling them independently of one another. Possible mechanisms for achieving
this goal include using a correlated noise process and introducing correlations in the GP prior (see
cokriging [51, 33]). Although more involved theoretical development and supporting numerical
simulations are needed, both directions have the potential to further upgrade the prediction
skills of GPR dynamical models. Finally, the developed approach can form the basis for
the combination of data-driven and adaptive order-reduction methods (e.g. combined with
dynamically orthogonal equations, [52, 18]) for the formulation of data- and equation-assisted
schemes (see e.g. [53, 54]) for filtering and prediction. This step should be important for the
short-term prediction [55, 56] and probabilistic quantification [57, 58, 59] of systems undergoing
extreme responses.
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