
CDS 101/110: Lecture 8.2
PID Control

November 16, 2016

Goals:
• Nyquist Example
• Introduce and review PID control.
• Show how to use “loop shaping” using PID to achieve a performance 

specification
• Discuss the use of integral feedback and anti-windup compensation

Reading: 
• Åström and Murray, Feedback Systems 2-3, Sections 11.1 – 11.3



Nyquist Example (unstable system)

Consider 𝐿𝐿 𝑠𝑠 = 𝑃𝑃 𝑠𝑠 𝐶𝐶 𝑠𝑠 = 𝑘𝑘
𝑠𝑠(𝑠𝑠−1)

• Pole at the origin, and unstable pole at 𝑠𝑠 = −1
• Q: Does unity gain negative feedback stabilize this system?
• Q: Does closed loop stability depend upon gain, 𝑘𝑘 ?

Analysis of Closed Loop Poles
• 𝐺𝐺𝑦𝑦𝑦𝑦 𝑠𝑠 = 𝑘𝑘

𝑠𝑠2−𝑠𝑠+𝑘𝑘
⇒ characteristic equation roots: 𝑠𝑠 = 1

2
± 1

2
1 − 4𝑘𝑘

• Closed loop system is always unstable for any 𝑘𝑘

Nyquist Plot Analysis
• Aside: magnitude and phase (bode plot) of unstable pole:

• Let 𝐻𝐻 𝑠𝑠 = 1
(𝑠𝑠−𝑎𝑎)

.  𝐻𝐻 𝑖𝑖𝑖𝑖 = 1
𝑖𝑖𝑖𝑖−𝑎𝑎

−𝑖𝑖𝑖𝑖−𝑎𝑎
(−𝑖𝑖𝑖𝑖−𝑎𝑎)

= −𝑖𝑖𝑖𝑖−𝑎𝑎
𝑖𝑖2+𝑎𝑎2

• Magnitude: 𝐺𝐺 𝑖𝑖𝑖𝑖 = 𝑖𝑖2+𝑎𝑎2

𝑖𝑖2+𝑎𝑎2
= 1

𝑖𝑖2+𝑎𝑎2

• Phase: arg 𝐺𝐺 𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 −𝑖𝑖
−𝑎𝑎

= ±180𝑜𝑜 + arctan 𝑖𝑖
𝑎𝑎



Nyquist Example (unstable system)

Bode Plots of Open Loop 𝐿𝐿 𝑠𝑠 = 𝑃𝑃 𝑠𝑠 𝐶𝐶 𝑠𝑠 = 𝑘𝑘
𝑠𝑠(𝑠𝑠−1)

Nyquist Contour and Plot
• Must account for pole on the 𝑖𝑖𝑖𝑖 axis
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a) 𝑖𝑖 = 0+ → +∞
b) 𝑖𝑖 = +∞ → −∞
𝑎𝑎) 𝑖𝑖 = −∞ → 𝑖𝑖 = 0−
𝑑𝑑) 𝑖𝑖 = 0− → 𝑖𝑖 = 0+

𝑖𝑖 = 𝜀𝜀𝑒𝑒𝑖𝑖𝑖𝑖 for [−90𝑜𝑜, 90𝑜𝑜]

𝐺𝐺 𝑠𝑠 = 𝜀𝜀𝑒𝑒𝑖𝑖𝑖𝑖 ≈
𝑘𝑘

−𝜀𝜀𝑒𝑒𝑖𝑖𝑖𝑖
=
𝑘𝑘𝑒𝑒−𝑖𝑖𝑖𝑖
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Nyquist Example (unstable system)

Nyquist Contour and Plot

(a) (b)

(c)
(d)

(𝑑𝑑) 𝑖𝑖 = 0− → 𝑖𝑖 = 0+

𝑖𝑖 = 𝜀𝜀𝑒𝑒𝑖𝑖𝑖𝑖 for [−90𝑜𝑜, 90𝑜𝑜]

𝐺𝐺 𝑠𝑠 = 𝜀𝜀𝑒𝑒𝑖𝑖𝑖𝑖 ≈
𝑘𝑘

−𝜀𝜀𝑒𝑒𝑖𝑖𝑖𝑖
= 𝑘𝑘𝑒𝑒−𝑖𝑖𝑖𝑖

−𝜀𝜀
= 𝑘𝑘

𝜀𝜀
(− cos𝜙𝜙 + 𝑖𝑖 sin𝜙𝜙)

𝐼𝐼𝐼𝐼

+𝑖𝑖∞

−𝑖𝑖∞

(a)

𝑖𝑖 = 0+

𝑅𝑅𝑒𝑒(b)

𝑖𝑖 = 0−

(c)

Accounting: 
• One open loop pole in RHP: 𝑃𝑃 = 1
• One clockwise encirclement of -1 point: 𝑁𝑁 = 1
• 𝑍𝑍 = 𝑁𝑁 + 𝑃𝑃 = 1 + 1 = 2 ⇒ two unstable poles in closed loop system

Homework: show that 𝑘𝑘1(1+𝑘𝑘2𝑠𝑠)
𝑠𝑠(𝑠𝑠−1)

is stable for 𝑘𝑘1𝑘𝑘2 > 1
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Overview: PID control

Parametrized by:
• 𝑘𝑘𝑝𝑝, the “proportional gain”
• 𝑘𝑘𝑖𝑖, the “integral gain”
• 𝑘𝑘𝑑𝑑, the “derivative gain”

Intuition
• Proportional term: provides inputs that correct for “current” errors
• Integral term: insures steady state error goes to zero
• Derivative term: provides “anticipation” of  upcoming changes (also provides 

“damping”)
• Controller specified in time domain, but can be analyzed in frequency domain

A bit of history on “three term control”
• First appeared in 1922 paper by Minorsky: “Directional stability of automatically 

steered bodies” under the name “three term control”

PID P(s)+ ye u

-1

r

Alternatively:

𝑘𝑘𝑝𝑝, 𝑇𝑇𝑖𝑖=
𝑘𝑘𝑝𝑝
𝑘𝑘𝑖𝑖

, 𝑇𝑇𝑑𝑑=
𝑘𝑘𝑑𝑑
𝑘𝑘𝑝𝑝



Utility of PID
• PID control is most common feedback structure in engineering systems
• For many systems, only need PI or PD (special case)
• Many tools for tuning PID loops and designing gains
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Proportional Feedback
Simplest controller choice: u = kpe
• Effect: lifts gain with no change in phase
• Good for plants with low phase up to 

desired bandwidth
• Bode: shift gain up by factor of kp
• Step response: better steady state error, 

but with decreasing stability

kp+
-

r ye u
P(s)

-150

-100

-50

0

50

10-1 100 101 102
-300

-200

-100

0

kp > 0

Steady State error removed by feedforward: 𝑢𝑢 = 𝑘𝑘𝑝𝑝𝑒𝑒 + 𝑢𝑢𝑓𝑓𝑓𝑓
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Frequency Domain Performance Specifications
Specify bounds on the loop transfer function to guarantee desired 

performance

Tracking
BW

SS

 Steady state error: 

⇒ zero frequency (“DC”) gain
Bandwidth: assuming ~90˚ 
phase margin

⇒ sets crossover freq
Tracking: X% error up to 
frequency 𝑖𝑖t ⇒ determines gain 
bound (1 + PC > 100/X)

PC > 100/X

C(s) P(s)++

d

ye u

-1
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Proportional + Integral Compensation
Use to eliminate steady state error
• Effect: lifts gain at low frequency
• Gives zero steady state error
• Handles modeling error
• Bode: infinite SS gain + phase lag
• Step response: zero steady state error, with 

smaller settling time, but more overshoot

+
-

r ye u
P(s)



10

Proportional + Integral + Derivative (PID)

Frequency (rad/sec)

Ph
as

e 
(d

eg
); 

M
ag

ni
tu

de
 (d

B)

Bode Diagrams

0

10

20

30

40

50

10-3 10-2 10-1 100 101 102 103
-100

-50

0

50

100

C(s) P(s)+ ye u

-1

r

Derivative Action:
• 𝑢𝑢 = 𝑘𝑘𝑝𝑝𝑒𝑒 + 𝑘𝑘𝑑𝑑�̇�𝑒 = 𝑘𝑘𝑝𝑝 𝑒𝑒 + 𝑇𝑇𝑑𝑑

𝑑𝑑𝑒𝑒
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑝𝑝𝑒𝑒𝑃𝑃
• 𝑒𝑒𝑝𝑝 is 1st –order (linearized) prediction 

error at time 𝑎𝑎 + 𝑇𝑇𝑑𝑑
• 𝑇𝑇𝑑𝑑 is the derivative time constant



Implementing Derivative Action
Problems with derivatives
• High frequency noise amp-

lified by derivative term
• Step inputs in reference

can cause large inputs

Solution: modified PID control
• Use high frequency rolloff

in derivative term
- 1st-order filter gives

finite gain at high frequency
- use higher order filter if needed

• Don’t feed reference signal through 
derivative block

- Useful when reference has 
unwanted high frequency content

- Better solution: reference shaping 
via two DOF design (F(s) block)

• Many other variations (see text + refs)
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Choosing PID gains (“tuning”)

First order system: 𝑃𝑃 𝑠𝑠 = 𝑏𝑏
𝑠𝑠+𝑎𝑎

• PI controller has char. poly: 𝑠𝑠2 + 𝑎𝑎 + 𝑏𝑏𝑘𝑘𝑝𝑝 𝑠𝑠 + 𝑏𝑏𝑘𝑘𝑖𝑖
• Closed loop poles can be set arbitrarily: 

Second Order System: 𝑃𝑃 𝑠𝑠 = 𝑖𝑖0
2

𝑠𝑠2+2𝜁𝜁𝑖𝑖0𝑠𝑠+𝑖𝑖0
2

• PID controller allows closed loop poles to be set arbitrarily

Higher Order Systems:
• Use PID to controller a “reduced order” (simplified system)

• Use PID “knobs” to set performance for “dominant” modes

12

Zeigler-Nichols step response method
• Design PID gains based on step response
• Measure maximum slope + intercept
• Works OK for many plants (but underdamped)
• Maybe useful way to get a first cut controller, 

especially for higher order, or unknown order 

Response 
to “bump 

test”



PID "Tuning"

Ziegler-Nichols frequency response method
• Increase proportional gain (with zero derivative and 

integral gain) until system goes unstable     → 𝑘𝑘𝑐𝑐
• Use critical gain and frequency as parameters
• Based on Nyquist plot

Variations
• Modified formulas (see text) give better response
• Relay feedback: provides automated way to obtain 

critical gain, frequency

13
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Galil “Controller Board”

Built in Discrete Time PID 
Built in “gain tuning” 
procedures 

PID Controllers are easy to 
implement
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Example: Cruise Control using PID - Specification
Performance Specification
• ≤ 1% steady state error

- Zero frequency gain > 100
• ≤ 10% tracking error up to 10 

rad/sec
- Gain > 10 from 0-10 rad/sec

• ≥ 45˚ phase margin
- Gives good relative stability
- Provides robustness to 

uncertainty

Observations
• Purely proportional gain won’t work: 

to get gain above desired level will 
not leave adequate phase margin

• Need to increase the phase from 
~0.5 to 2 rad/sec and increase gain 
as well
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Example: Cruise Control using PID - Design
Approach
• Use integral gain to make steady 

state error small (zero, in fact)
• Use derivative action to increase 

phase lead in the cross over region
• Use proportional gain to give desired 

bandwidth
Controller
• Ti = 1/0.1; Td = 1/1; k = 2000

Closed loop system
• Very high steady state gain
• Adequate tracking @ 1 rad/sec
• ~80° phase margin
• Verify with Nyquist
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Example: Cruise Control using PID - Verification
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Observations
• Very fast response (probably

too aggressive)
• Back off on Ti to get 

something more reasonable
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Example: PID cruise control

Ziegler-Nichols design for cruise controller
• Plot step response, extract τ and a, compute gains

Result: sluggish  increase loop gain + 
more phase margine (shift zero) Frequency (rad/sec)
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Windup and Anti-Windup Compensation

Problem
• Limited magnitude input (saturation)
• Integrator “winds up” => overshoot

Solution
• Compare commanded input to actual
• Subtract off difference from integrator

20

PID P(s)+ ye uc

-1

r ua
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Summary: Frequency Domain Design using PID
Loop Shaping for Stability & Performance
• Steady state error, bandwidth, tracking

Main ideas
 Performance specs give bounds on 

loop transfer function
 Use controller to shape response
 Gain/phase relationships constrain 

design approach
 Standard compensators: 

proportional, PI, PID
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