

CDS 101/110: Lecture 8.2 PID Control

November 16, 2016

Goals:

- Nyquist Example
- Introduce and review PID control.
- Show how to use "loop shaping" using PID to achieve a performance specification
- Discuss the use of integral feedback and anti-windup compensation

Reading:

• Åström and Murray, Feedback Systems 2-3, Sections 11.1 – 11.3

Nyquist Example (unstable system)

Consider
$$L(s) = P(s)C(s) = \frac{k}{s(s-1)}$$

- Pole at the origin, and unstable pole at s = -1
- **Q:** Does unity gain negative feedback stabilize this system?
- **Q:** Does closed loop stability depend upon gain, *k* ?

Analysis of Closed Loop Poles

- $G_{yr}(s) = \frac{k}{s^2 s + k} \Rightarrow$ characteristic equation roots: $s = \frac{1}{2} \pm \frac{1}{2} \sqrt{1 4k}$
- Closed loop system is *always* unstable for any k

Nyquist Plot Analysis

• Aside: magnitude and phase (bode plot) of unstable pole:

• Let
$$H(s) = \frac{1}{(s-a)}$$
. $H(i\omega) = \frac{1}{i\omega-a} \frac{-i\omega-a}{(-i\omega-a)} = \frac{-i\omega-a}{\omega^2+a^2}$

• Magnitude:
$$|G(i\omega)| = \frac{\sqrt{\omega^2 + a^2}}{\omega^2 + a^2} = \frac{1}{\sqrt{\omega^2 + a^2}}$$

• Phase: $\arg(G(i\omega)) = \arctan\left(\frac{-\omega}{-a}\right) = \pm 180^{\circ} + \arctan\left(\frac{\omega}{a}\right)$

Nyquist Example (unstable system)

Nyquist Contour and Plot

Nyquist Example (unstable system)

Nyquist Contour and Plot

Accounting:

- One open loop pole in RHP: P = 1
- One clockwise encirclement of -1 point: N = 1
- $Z = N + P = 1 + 1 = 2 \implies$ two unstable poles in closed loop system

Homework: show that $\frac{k_1(1+k_2s)}{s(s-1)}$ is stable for $k_1k_2 > 1$

Overview: PID control

$$y \qquad u = k_p e + k_i \int_0^t e(\tau) d\tau + k_d \frac{de}{dt}$$
$$= k_p \left(e + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de}{dt} \right)$$

Parametrized by:

- k_p , the "proportional gain"
- k_i , the "integral gain"
- k_d , the "derivative gain"

Alternatively:
$$k_p, \quad T_i = \frac{k_p}{k_i}, \quad T_d = \frac{k_d}{k_p}$$

Intuition

- Proportional term: provides inputs that correct for "current" errors
- Integral term: insures steady state error goes to zero
- Derivative term: provides "anticipation" of upcoming changes (also provides "damping")
- Controller specified in time domain, but can be analyzed in frequency domain

A bit of history on "three term control"

 First appeared in 1922 paper by Minorsky: "Directional stability of automatically steered bodies" under the name "three term control"

Utility of PID

- PID control is most common feedback structure in engineering systems
- For many systems, only need PI or PD (special case)
- Many tools for tuning PID loops and designing gains

(a) PID using error feedback


```
(b) PID using two degrees of freedom
```


Proportional Feedback

Simplest controller choice: $u = k_p e$

- Effect: lifts gain with no change in phase
- Good for plants with low phase up to desired bandwidth
- Bode: shift gain up by factor of kp
- Step response: better steady state error, but with decreasing stability

 $k_p > 0$

Steady State error removed by feedforward: $u = k_p e + u_{ff}$

Frequency Domain Performance Specifications

Specify bounds on the loop transfer function to guarantee desired performance

$$L(s) = P(s)C(s)$$

$$H_{er} = \frac{1}{1+L} \qquad \qquad H_{yr} = \frac{L}{1+L}$$

• Steady state error:

 $H_{er}(0) = 1/(1 + L(0)) \approx 1/L(0)$

 \Rightarrow zero frequency ("DC") gain

•Bandwidth: assuming ~90° phase margin

$$\frac{L}{1+L}(j\omega_c) \approx \left|\frac{1}{1+j}\right| = \frac{1}{\sqrt{2}}$$

- \Rightarrow sets crossover freq
- •Tracking: X% error up to frequency $\omega_t \Rightarrow$ determines gain bound (1 + PC > 100/X)

Proportional + Integral Compensation

Use to eliminate steady state error

- Effect: lifts gain at low frequency
- Gives zero steady state error
- Handles modeling error
- Bode: infinite SS gain + phase lag
- Step response: zero steady state error, with smaller settling time, but more overshoot

Proportional + Integral + Derivative (PID)

Derivative Action:

- $u = k_p e + k_d \dot{e} = k_p \left(e + T_d \frac{de}{dt} \right) = k_p e_p$
- e_p is 1st –order (linearized) prediction error at time $t + T_d$
- T_d is the derivative time constant

Implementing Derivative Action

Problems with derivatives

- High frequency noise amplified by derivative term
- Step inputs in reference can cause large inputs

Solution: modified PID control

- Use high frequency rolloff in derivative term
 - 1st-order filter gives finite gain at high frequency
 - use higher order filter if needed
- Don't feed reference signal through derivative block
 - Useful when reference has unwanted high frequency content
 - Better solution: reference shaping via two DOF design (F(s) block)
- Many other variations (see text + refs)

Choosing PID gains ("tuning")

First order system: $P(s) = \frac{b}{s+a}$

- PI controller has char. poly: $s^2 + (a + bk_p)s + bk_i$
- Closed loop poles can be set arbitrarily:

Second Order System: $P(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$

PID controller allows closed loop poles to be set arbitrarily

Higher Order Systems:

- Use PID to controller a "reduced order" (simplified system)
- Use PID "knobs" to set performance for "dominant" modes

Zeigler-Nichols step response method

- Design PID gains based on step response
- Measure maximum slope + intercept
- Works OK for many plants (but underdamped)
- Maybe useful way to get a first cut controller, especially for higher order, or unknown order

PID "Tuning"

Туре	k_p	T_i	T_d
Р	1/a		
PI	0.9/a	3τ	
PID	1.2/a	2τ	0.5τ

(a) Step response method

Ziegler-Nichols frequency response method

- Increase proportional gain (with zero derivative and integral gain) until system goes unstable $\rightarrow k_c$
- Use critical gain and frequency as parameters
- Based on Nyquist plot

Variations

- Modified formulas (see text) give better response
- Relay feedback: provides automated way to obtain critical gain, frequency

$$k_{p} = \frac{0.15\tau + 0.35T}{K\tau} \left(\frac{0.9T}{K\tau}\right), \quad k_{i} = \frac{0.46\tau + 0.02T}{K\tau^{2}} \left(\frac{0.3T}{K\tau^{2}}\right),$$
$$k_{p} = 0.22k_{c} - \frac{0.07}{K} \left(0.4k_{c}\right), \quad k_{i} = \frac{0.16k_{c}}{T_{c}} + \frac{0.62}{KT_{c}} \left(\frac{0.5k_{c}}{T_{c}}\right).$$

 $0.5k_c$

 $0.4k_c$

 $0.6k_c$

 $0.8T_{c}$

(b) Frequency response method

 $0.5T_c = 0.125T_c$

Ρ

ΡI

PID

12

PID Controllers are easy to implement

$$u = -\frac{Z_2}{Z_1}e = -\frac{R_2}{R_1}\frac{(1+R_1C_1s)(1+R_2C_2s)}{R_2C_2s}e.$$

 $k_p = \frac{R_1 C_1 + R_2 C_2}{R_1 C_2}, \qquad T_i = R_1 C_1 + R_2 C_2, \qquad T_d = \frac{R_1 R_2 C_1 C_2}{R_1 C_1 + R_2 C_2}.$

Example: Cruise Control using PID - Specification

Frequency (rad/sec)

Performance Specification

- ≤ 1% steady state error
 - Zero frequency gain > 100
- ≤ 10% tracking error up to 10 rad/sec
 - Gain > 10 from 0-10 rad/sec
 - ≥ 45° phase margin
 - Gives good relative stability
 - Provides robustness to uncertainty

Observations

- Purely proportional gain won't work: to get gain above desired level will not leave adequate phase margin
- Need to increase the phase from ~0.5 to 2 rad/sec and increase gain as well

Example: Cruise Control using PID - Design

Frequency (rad/sec)

Approach

- Use integral gain to make steady state error small (zero, in fact)
- Use derivative action to increase phase lead in the cross over region
- Use proportional gain to give desired bandwidth

Controller

Ti = 1/0.1; Td = 1/1; k = 2000

$$C(s) = 2000 \frac{s^2 + 1.1s + 0.1}{s}$$

$$= 2200 + \frac{200}{s} + 2000s$$

Closed loop system

- Very high steady state gain
- Adequate tracking @ 1 rad/sec
- ~80° phase margin
- Verify with Nyquist

Example: Cruise Control using PID - Verification

Example: PID cruise control

$$P(s) = \frac{1/m}{s+b/m} \times \frac{r}{s+a}$$

Ziegler-Nichols design for cruise controller

Plot step response, extract T and a, compute gains

•Result: *sluggish* ® increase loop gain + more phase margine (shift zero)

Windup and Anti-Windup Compensation

Problem

- Limited magnitude input (saturation)
- Integrator "winds up" => overshoot

Solution

- Compare commanded input to actual
- Subtract off difference from integrator

Summary: Frequency Domain Design using PID

Loop Shaping for Stability & Performance

• Steady state error, bandwidth, tracking

Main ideas

- Performance specs give bounds on loop transfer function
- Use controller to shape response
- Gain/phase relationships constrain design approach
- Standard compensators: proportional, PI, PID

